STABILITY OF *n*-TH ORDER FLETT'S POINTS AND LAGRANGE'S POINTS

IWONA PAWLIKOWSKA

ABSTRACT. In this article we show the stability of Flett's points and Lagrange's points in the sense of Hyers and Ulam.

In 1958 Flett [1] proved the following variant of Lagrange's Mean Value Theorem:

Theorem 1. If $f:[a,b] \to \mathbb{R}$ is differentiable on [a,b] and f'(a) = f'(b) then there exists a point η such that

$$f(\eta) - f(a) = f'(\eta)(\eta - a).$$

The problem of stability of functional equations was first posed by S. M. Ulam in 1960 [2]. He asked "when is it true that the solution of an equation differing slightly from a given one, must of necessity be close to the solution of the given equation"? The first result concerned stability of homomorphisms was proved by Hyers [3]. In [4] Das, Riedel and Sahoo proved the Hyers-Ulam stability of Flett's points i.e. such points η for which Flett's Mean Value Theorem holds true. Let

 $\mathcal{F} = \{f : [a, b] \to \mathbb{R} \mid f \text{ is continuously differentiable,} \}$

$$f(a) = 0, f'(a) = f'(b)$$
.

Their result is the following:

Theorem 2. Let $f \in \mathcal{F}$ and η be a Flett's point of f in (a,b). Assume that there is a neighbourhood N of η in (a,b) such that η is the unique Flett's point of f in N. Then for each $\varepsilon > 0$, there is a $\delta > 0$ such that for every $h \in \mathcal{F}$ satisfying $|h(x) - f(x)| < \delta$ for all $x \in N$, there exists a point $\xi \in N$ such that ξ is a Flett's point of h and $|\xi - \eta| < \varepsilon$.

The main tool in their work is the result due to Hyers and Ulam [5]:

²⁰⁰⁰ Mathematics Subject Classification. 39B82, 26A24, 26A06.

 $[\]it Key\ words\ and\ phrases.$ Hyers-Ulam stability, Flett's Mean Value Theorem, Flett's point, Lagrange's point.

Theorem 3. Let $f: \mathbb{R} \to \mathbb{R}$ be n-times differentiable in a neighbourhood N of the point η . Suppose that $f^{(n)}(\eta) = 0$ and $f^{(n)}$ changes sign at η . Then, for all $\varepsilon > 0$, there exists a $\delta > 0$ such that for every function $g: \mathbb{R} \to \mathbb{R}$ which is n-times differentiable in N and satisfies $|f(x) - g(x)| < \delta$ for all $x \in N$, there exists a point $\xi \in N$ with $g^{(n)}(\xi) = 0$ and $|\xi - \eta| < \varepsilon$.

In [6] we proved the following extension of Flett's Mean Value Theorem:

Theorem 4. Let $f:[a,b] \to \mathbb{R}$ be an n times differentiable function with $f^{(n)}(a) = f^{(n)}(b)$. Then there exists a point $\eta \in (a,b)$ such that

$$f(\eta) - f(a) = \sum_{k=1}^{n} (-1)^{k-1} \frac{1}{k!} f^{(k)}(\eta) (\eta - a)^{k}.$$
 (1)

Let

 $\mathcal{F}_n^{bc} = \{f : [a, b] \to \mathbb{R} \mid f \text{ is } n\text{-times continuously differentiable,} \}$

$$f(a) = 0, f^{(n)}(a) = f^{(n)}(b)$$
.

By Theorem 4 for any $f \in \mathcal{F}_n^{bc}$, there is an intermediate point $\eta \in (a, b)$ such that (1) holds. Such an intermediate point η will be called the *n*-th order Flett's point of the function f with boundary condition.

Now we want to investigate the Hyers-Ulam stability of such points. Our result reads as follows:

Theorem 5. Let $f \in \mathcal{F}_n^{bc}$ and η be a n-th order Flett's point of f with boundary condition in (a,b). Suppose that there exists a neighbourhood N of η in (a,b) such that η is the unique n-th order Flett's point of f with boundary condition in N. Then for each $\varepsilon > 0$, there exists a positive constant $\tilde{\delta}$ such that for every $h \in \mathcal{F}_n^{bc}$ satisfying $||h - f||_{n-1} < \tilde{\delta}$ in N, there exists a point $\xi \in N$ such that ξ is a n- th order Flett's point of h with boundary condition and $|\xi - \eta| < \varepsilon$.

In the proof we will need the following lemma (cf. [6, pg.282]).

Lemma 2.1. [6] Let n be a nonnegative integer and $f:[a,b] \to \mathbb{R}$ be n times differentiable. Define $g:(a,b] \to \mathbb{R}$ by

$$g(x) = \frac{f(x) - f(a)}{x - a}.$$

Then g is n times differentiable for all $x \in (a, b]$ and we have

$$g^{(n)}(x) = (-1)^n n! \frac{f(x) - f(a) + \sum_{k=1}^n (-1)^k \frac{1}{k!} f^{(k)}(x) (x-a)^k}{(x-a)^{n+1}},$$

that is

$$g^{(n)}(x) = \frac{f^{(n)}(x)}{x - a} - n \frac{g^{(n-1)}(x)}{x - a}, \ x \in (a, b].$$

Moreover, if $f^{(n+1)}(a)$ exists, we have

$$\lim_{x \to a} g^{(n)}(x) = \frac{1}{n+1} f^{(n+1)}(a).$$

Proof of Theorem 5. The first part of the proof is similar to the one after Theorem 3 in [4].

Let $N = (\eta - r, \eta + r)$ for some r > 0 satisfy our assumptions and let $c = \eta - r - a$, (c > 0).

We define new functions $F:(a,b]\to\mathbb{R}$ and $G_f:[a,b]\to\mathbb{R}$ by the following formulas

$$F(x) = \frac{f(x) - f(a)}{x - a},$$

$$G_f(x) = \begin{cases} F^{(n-1)}(x), & \text{if } x \in (a, b], \\ \frac{1}{n} f^{(n)}(a), & \text{if } x = a. \end{cases}$$

By Lemma 2.1 we see that F is n-times differentiable and thus G_f is well defined and continuous. We can assume that $f^{(n)}(a) = f^{(n)}(b) = 0$, otherwise, we replace the function f by $n!f(x) - x^n f^{(n)}(a)$.

Now we will show that there exists a point $\eta \in (a, b)$ such that $G'_f(\eta) = 0$. It follows that $F^{(n)}(\eta) = 0$ which is equivalent to the equation (1) so η is the n-th order Flett's point of f with boundary condition in (a, b). It is easily seen that $G_f(a) = 0$.

Let us assume that $G_f(b) = 0$. Then by Rolle's Theorem there exists an intermediate point $\eta \in (a, b)$ such that $G'_f(\eta) = 0$. In the other case we have $G_f(b) \neq 0$. We will work under the assumption $G_f(b) > 0$. From Lemma 2.1 we conclude that

$$G'_f(b) = \frac{f^{(n)}(b)}{b-a} - n\frac{G_f(b)}{b-a} < 0.$$

Hence there exists a point $x_1 < b$ such that

$$G_f(x_1) > G_f(b) > G_f(a) = 0.$$

Thus there exists a $x_0 \in (a, x_1)$ such that $G_f(x_0) = G_f(b)$. Now applying Rolle's Theorem we get an intermediate point $\eta \in (a, b)$ such that $G'_f(\eta) = F^{(n)}(\eta) = 0$.

Let $\varepsilon > 0$ be given. Analogously, for any function $h \in \mathcal{F}_n^{bc}$ we define new

functions $H:(a,b]\to\mathbb{R}$ and $G_h:[a,b]\to\mathbb{R}$ by

$$H(x) = \frac{h(x) - h(a)}{x - a},$$

$$G_h(x) = \begin{cases} H^{(n-1)}(x), & \text{if } x \in (a, b], \\ \frac{1}{n}h^{(n)}(a), & \text{if } x = a. \end{cases}$$

Applying Theorem 3 we see that there exists a $\delta > 0$ such that for every function $R: [a,b] \to \mathbb{R}$ which is differentiable in N we have

$$|R(x) - G_f(x)| < \delta \tag{2}$$

for every $x \in N$ and there exists a point $\xi \in N$ with $R'(\xi) = 0$ and $|\xi - \eta| < \varepsilon$. Let

$$\tilde{\delta} = \frac{\delta}{(n-1)!(\frac{1}{c^n} + \frac{1}{c^{n-1}} + \frac{1}{2!c^{n-2}} + \frac{1}{3!c^{n-3}} + \dots + \frac{1}{(n-2)!c^2} + \frac{1}{c})} > 0.$$

Now we show that if $||h-f||_{n-1} = \max_{x \in N} \{|f(x)-h(x)|, |f'(x)-h'(x)|, \ldots, |f^{n-1}(x)-h^{n-1}(x)|\} < \tilde{\delta}$ in N for every $h \in \mathcal{F}_n^{bc}$ then $|G_f(x)-G_h(x)| < \delta$ where $x \in N$. If $||h-f||_{n-1} < \tilde{\delta}$ then applying Lemma 2.1 we obtain for every $x \in N$

$$|G_{f}(x) - G_{h}(x)| \leq \frac{(n-1)!}{|x-a|^{n}} |f(x) - h(x)| + \frac{(n-1)!}{|x-a|^{n-1}} |f'(x) - h'(x)|$$

$$+ \frac{(n-1)!}{2!|x-a|^{n-2}} |f''(x) - h''(x)| + \frac{(n-1)!}{3!|x-a|^{n-3}} |f'''(x) - h'''(x)| + \dots$$

$$+ \frac{(n-1)!}{(n-1)!|x-a|} |f^{(n-1)}(x) - h^{(n-1)}(x)| < \frac{(n-1)!}{c^{n}} |f(x) - h(x)|$$

$$+ \frac{(n-1)!}{c^{n-1}} |f'(x) - h'(x)| + \frac{(n-1)!}{2!c^{n-2}} |f''(x) - h''(x)|$$

$$+ \frac{(n-1)!}{3!c^{n-3}} |f'''(x) - h'''(x)| + \dots + \frac{(n-1)!}{(n-1)!c} |f^{(n-1)}(x) - h^{(n-1)}(x)| < \|f^{(n-1)}(x) - h^{(n-1)}(x)\| < \|f^{(n-1)}(x) - h^{(n-1)}(x)\| < \delta$$

where the last inequality follows from the definition of δ . From Theorem 3 we conclude that there exists a point $\xi \in N$ such that $G'_h(\xi) = 0$ and $|\xi - \eta| < \varepsilon$. From $G'_h(\xi) = 0$ it is easily seen that ξ is a n-th order Flett's point of h with boundary condition. Now the proof of the theorem is complete.

Davitt, Powers, Riedel and Sahoo [7] removed the boundary assumption on the derivative and they proved the following generalization of Flett's Mean Value Theorem:

Theorem 6. Let $f:[a,b] \to \mathbb{R}$ be differentiable on [a,b]. Then there exists a point $\eta \in (a,b)$ such that

$$f(\eta) - f(a) = (\eta - a)f'(\eta) - \frac{1}{2} \frac{f'(b) - f'(a)}{b - a} (\eta - a)^{2}.$$

In [6] we proved the following "Taylor-like" extension of Flett's MVT.

Theorem 7. Let $f:[a,b] \to \mathbb{R}$ be n times differentiable. Then there exists a point $\eta \in (a,b)$ such that

$$f(\eta) - f(a) = \sum_{k=1}^{n} (-1)^{k-1} \frac{1}{k!} f^{(k)}(\eta) (\eta - a)^{k} + (-1)^{n} \frac{1}{(n+1)!} \frac{f^{(n)}(b) - f^{(n)}(a)}{b - a} (\eta - a)^{n+1}.$$
 (3)

We call

 $\mathcal{F}_n = \{ f : [a, b] \to \mathbb{R} \mid f \text{ is } n\text{-times continously differentiable, } f(a) = 0 \}.$

From Theorem 7 we know that for any $f \in \mathcal{F}_n$ there exists a point $\eta \in (a,b)$ such that formula (3) holds. Such an intermediate point we call the n-th order Flett's point of the function f in (a,b).

Now we prove the stability of n-th order Flett's points.

Theorem 8. Let $f \in \mathcal{F}_n$ and η be n-th order Flett's point of f in (a,b). Suppose that there exists a neighborhood N of η in (a,b) such that η is the unique n-th order Flett's point of f in N. Then for each $\varepsilon > 0$, there exist positive constants $\tilde{\delta}$, δ_a , δ_b such that for every $h \in \mathcal{F}_n$ satisfying $||h-f||_{n-1} < \tilde{\delta}$ in N, $|h^{(n)}(a) - f^{(n)}(a)| < \delta_a$, $|h^{(n)}(b) - f^{(n)}(b)| < \delta_b$, there exists a point $\xi \in N$ such that ξ is a n-th order Flett's point of h and $|\xi - \eta| < \varepsilon$.

Proof. Let $\varepsilon > 0$ be given and assume that $N = (\eta - r, \eta + r)$ for some r > 0 satisfies assumptions of the theorem.

Let $c = \eta - r - a$. We define new function $\varphi : [a, b] \to \mathbb{R}$ by the formula

$$\varphi(x) = f(x) - \frac{1}{(n+1)!} \frac{f^{(n)}(b) - f^{(n)}(a)}{b-a} (x-a)^{n+1}.$$

In view of our assumptions on f it follows that φ is n-times differentiable. We can show that $\varphi^{(n)}(a) = \varphi^{(n)}(b)$. It is easily seen that if η is a n-th order Flett's point of f in (a,b) then η is the n-th order Flett's point of φ in (a,b) with boundary condition. So we have that if $f \in \mathcal{F}_n$ then $\varphi \in \mathcal{F}_n^{bc}$.

By Theorem 5 we know that there is a $\delta > 0$ such that for every function $R \in \mathcal{F}_n^{bc}$ such that $||R - \varphi||_{n-1} < \delta$ in N we get that there exists a $\xi \in N$ such that ξ is the n-th order Flett's point of R with boundary condition in N and $|\xi - \eta| < \delta$. Let

$$\tilde{\delta} = \frac{\delta}{3}, \ \delta_a = \delta_b = \frac{\delta}{3\sum_{k=1}^{n-1} \frac{c^k}{(k+1)!}}.$$

We define new function $\psi : [a, b] \to \mathbb{R}$, by the formula

$$\psi(x) = h(x) - \frac{1}{(n+1)!} \frac{h^{(n)}(b) - h^{(n)}(a)}{b - a} (x - a)^{n+1}.$$

We show that if

$$||f - h||_{n-1} < \tilde{\delta}, \quad |h^{(n)}(a) - f^{(n)}(a)| < \delta_a, \quad |h^{(n)}(b) - f^{(n)}(b)| < \delta_b \quad (4)$$

then $||\varphi - \psi||_{n-1} < \delta$ in N. Assume that (4) are satisfied. Then we have

$$||\varphi - \psi||_{n-1} \le |f(x) - h(x)| + |f'(x) - h'(x)| + |f''(x) - h''(x)|$$

$$+ |f^{(n-1)}(x) - h^{(n-1)}(x)| + (|f^{n}(a) - h^{n}(a)| + |f^{n}(b) - h^{n}(b)|)$$

$$\cdot \left(\frac{|x - a|^{n}}{n!|b - a|} + \frac{|x - a|^{n-1}}{(n-1)!|b - a|} + \dots + \frac{|x - a|^{2}}{2!|b - a|}\right) < ||f - h||_{n-1}$$

$$+ (|f^{n}(a) - h^{n}(a)| + |f^{n}(b) - h^{n}(b)|) \left(\frac{c^{n-1}}{n!} + \frac{c^{n-2}}{(n-1)!} + \dots + \frac{c}{2!}\right) < \delta$$

Analogously we get that if η is a n-th order Flett's point of ψ in (a, b) with boundary condition then η is the n-th order Flett's point of h in (a, b) which completes the proof.

The similar result can be obtained with the Lagrange Mean Value Theorem.

Theorem 9. Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Then there exists a point $\eta \in (a,b)$ such that

$$f(b) - f(a) = (b - a)f'(\eta).$$
 (5)

For every differentiable function f there exists an intermediate point η such that (5) holds. Such a point η will be called the Langrange's point of the function f.

Let us define

$$\mathcal{L} = \{ f : [a, b] \to \mathbb{R} \mid f \text{ is continuously differentiable, } f(a) = 0 \}.$$

We will prove the following theorem:

Theorem 10. Let $f \in \mathcal{L}$ and η be Lagrange's point of f in (a,b). Suppose that there exists a neighbourhood N of η in (a,b) such that η is the unique Lagrange's point of f in N. Then for each $\varepsilon > 0$, there exist positive constants δ_0 and δ_b such that for every $h \in \mathcal{L}$ satisfying $|h(x) - f(x)| < \delta_0$, $|h(b) - f(b)| < \delta_b$ for all $x \in N$, there exists a point $\xi \in N$ such that ξ is Lagrange's point of h and $|\xi - \eta| < \varepsilon$.

Proof. Assume that $N = (\eta - r, \eta + r)$ for some r > 0 and $c = \eta - r - a$ (c > 0). Let us define new function $G_f : [a, b] \to \mathbb{R}$ by

$$G_f(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Since G_f is continuously differentiable and $G_f(a) = G_f(b) = f(a)$ it follows that there exists a point $\eta \in (a, b)$ such that $G'_f(\eta) = 0$.

Let $h:[a,b]\to\mathbb{R}$ have the asserted properties. Analogously we define $G_h:[a,b]\to\mathbb{R}$ by the following formula

$$G_h(x) = h(x) - \frac{h(b) - h(a)}{b - a} (x - a).$$

Let $\varepsilon > 0$ be given. From Theorem 3 it follows that there is a $\delta > 0$ such that for every function $R : [a, b] \to \mathbb{R}$ which is differentiable in N satisfying $|R(x) - G_f(x)| < \delta$ in N we get that there exists a ξ such that $R'(\xi) = 0$ and $|\xi - \eta| < \varepsilon$.

Let us define $\delta_0 = \delta_b = \frac{\delta}{2}$. Now if $|h(x) - f(x)| < \delta_0$, $|h(b) - f(b)| < \delta_b$ then we have for all $x \in N$

$$|G_h(x) - G_f(x)| \le |h(x) - f(x)|$$

 $+ \frac{|h(b) - f(b)|}{|b - a|} |x - a| + \frac{|h(a) - f(a)|}{|b - a|} |x - a| < \delta.$

This concludes the proof.

References

- [1] T. M. Flett, A mean value theorem, Math. Gaz., 42 (1958), 38-39.
- [2] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York 1960, Problems in Modern Mathematics, Science Editions, Wiley, (1964).
- [3] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224.
- [4] M. Das, T. Riedel and P. K. Sahoo, Hyers-Ulam Stability of Flett's points, Appl. Math. Lett., 16 (2003), 269–271.
- [5] D. H. Hyers and S. M. Ulam, On the stability of differential expressions, Math. Mag., 28 (1954), 59–64.

- [6] I. Pawlikowska, An extension of a theorem of Flett, Demonstr. Math., 32 (1999), 281–286.
- [7] R. M. Davitt, R. C. Powers, T. Riedel and P. K. Sahoo, Flett's mean value theorem for holomorphic functions, Math. Mag., 72 (1999), 304–307.

(Received: December 30, 2005) Institute of Mathematics

Silesian University

E-mail: pawlikow@us.edu.pl

and current address

Department of Mathematics University of Louisville

 $E-maul: \ iwonap@erdos.math.louisville.edu$