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A REMARK ON VETRIVEL’S EXISTENCE THEOREM ON
KY FAN’S BEST APPROXIMANT

HEMANT KUMAR NASHINE

Abstract. Vetrivel (1996) proved an existence theorem on Ky fan’s
best approximant for multifunction with open inverse values. The object
of this paper is to present an improved and extended version of this
result.

1. Introduction

Let M be a nonempty compact convex subset of a Hausdorff locally con-
vex topological vector space E. In 1969, Fan [1] established a best approx-
imation theorem which says that for any continuous function f : M → E
there exists a continuous seminorm p on E and a point z in M such that

p
(
f(z)− z

)
= inf

{
p
(
f(z)− x

)
: x ∈ M

}
.

Since then various aspects of this theorem have been studied by a number
of authors, cf [4] and the references therein.

In 1996, Vetrivel [5] proved an existence theorem on Ky fan’s best approx-
imant for multifunction with open inverse values in the setting of Hausdorff
locally convex topological vector spaces.

Theorem 1.1. Let M be a nonempty compact convex subset of Hausdorff
locally convex topological space E. Suppose that T : M → 2E is a multi-
function such that

(i) T −1(y) is open for all y ∈ E;
(ii) for every open set U in M, the set ∩{T u : u ∈ U} is empty or

contractible; and
(iii) T (M) is contractible.

Then, there exists an element x0 ∈M and y0 ∈ T (x0) such that

p(x0 − y0) = inf
{
p(y0 − z) : z ∈ M

}
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In this paper, our purpose is to improve and extend the above result.
For this purpose, we use the concept given by Tarafdar and Watson [6].
The results which we use to prove the result are due to Horvath [2] and
Lassonde [3].

2. Preliminaries

Let us recall the following :

Definition 2.1. Let X and Y be non-empty sets. The collection of all non-
empty subsets of X is denoted by 2X . A multifunction or set-valued function
from X to Y is defined to be a function that assigns to each elements of X
a non-empty subset of Y . If T is a multifunction from X to Y , then it is
designated as T : X → 2Y , and for every x ∈ X, T x is called a value of T .
For A ⊆ X, the image of A under T , denoted by T (A), is defined as

T (A) =
⋃

x∈A

T x

For B ⊆ Y , the preimage or inverse image of B under T , denoted by T −1(B),
is defined as

T −1(B) = {x ∈ X : T x ∩B 6= φ}
If y ∈ Y , then T −1(y) is called a inverse value of T . If it is open, then it is
called open inverse value.

Definition 2.2. A multivalued function T : X → 2Y is upper semicontin-
uous (usc)(lower semicontinuous(lsc)) if T −1(B) = {x ∈ X : T x ∩ B 6= φ}
is closed(open) for each closed (open) subset B of Y . If T is both usc and
lsc, then it is continuous .

A multifunction T : X → 2Y is said to be a compact multifunction, if
T (X) is contained in a compact subset of Y .

It is known that if T : X → 2Y is an upper semicontinuous multifunction
with compact values, then T (K) is compact in Y whenever K is compact
subset of X.

Definition 2.3. A single valued function g from a topological space X to
another topological space Y is said to be proper if g−1(K) is compact in X
whenever K is compact in Y . It is remarked that if g is continuous and X
is a compact space, then the map g is proper.

Throughout, E denotes a Hausdorff locally convex topological vector
space and p be a continuous semi-norm on it.

Definition 2.4. Let M be a convex subset of E and g : M → M a
continuous map. Then g is said to be
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i) almost affine, if

p(gy − z) ≤ λp(gx1 − z) + (1− λ)p(gx2 − z),

(ii) almost quasi-convex , if

p(gy − z) ≤ max
{
p(gx1 − z), p(gx2 − z)

}
,

where y = λx1 + (1− λ)x2, x1, x2 ∈M, λ ∈ [0, 1] and z ∈ E.

Definition 2.5. [7]. Let M be a convex subset of E. Let T : M→ 2E . A
mapping g from M to E is said to be almost quasi-convex with respect to
T , if

p(gy − T z) ≤ max
{
p(gx1 − T z), p(gx2 − T z)

}
,

where y = λx1 + (1− λ)x2, x1, x2 ∈M, λ ∈ [0, 1] and z ∈M.

Definition 2.6. A single valued function g : M→ E is said to be p−con-
tinuous if p[g(xα) − g(x)] → 0 for each x in M and every net {xα} in M
converging to E.

Definition 2.7. Let M ⊆ E. Let x ∈ E. An element y ∈ M is called a
best M−approximant to x ∈ E, if

p(x− y) = dp(x,M) = inf
{
p(x− z) : z ∈M}

.

The set of best M-approximants to x with respect to the seminorm p is
denoted by PM(x) and is defined as

PM(x) =
{
z ∈M : p(x− z) = dp(x,M)

}
.

It is well known that if M is a nonempty compact convex subset of E, for
each x ∈ E, PM(x) is a nonempty compact convex subset of M and the
function defined by x → PM(x) is an upper semicontinuous multifunction.

For N ∈ N, let < N > be the set of all nonempty subsets of {0,1,2, . . . , N}.
Let ∆n = co{e0, e1, e2, . . . , en} be the standard simplex of dimensional n,
where {e0, e1, e2, . . . , en} is the canonical basis of RN+1 and for J ∈ N , let
∆J = co{ej : j ∈ J}.

A topological space X is said to be contractible, if the identity mapping
IX of X is homotopic to a constant function. Note that any nonempty
convex or star-shaped subset of a topological space is contractible [6].

Horvath [2] proved the following:
Theorem 2.8. [2]. Let X be a topological space. For any nonempty subset
J of {0, 1, . . . , n}, let ΓJ be a nonempty contractible subset of X. If φ 6=
J ⊂ J ′ ⊂ {0, 1, . . . , n} implies ΓJ ⊂ ΓJ ′, then there exists a single valued
continuous function f : ∆n → X such that g[∆J ] ⊆ ΓJ for all nonempty
subset J of {0, 1, . . . , n}.

Also, we need the following fixed point theorem due to Lassonde [3]:
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Theorem 2.9. [3]. Let T : ∆n → ∆n be a multifunction such that T =
Tn ◦Tn−1 ◦ · · · ◦T1 ◦T0, ∆n →T0 X1 →T1 X2 →T2 · · · →Tn Xn+1 = ∆n, where
each Ti is either a single-valued continuous function (in which case Xi+1

is assumed to be a Hausdorff topological space) or an upper semicontinuous
multifunction with Ti(x), a nonempty compact convex subset of Xi+1 (in
which case Xi+1 is a convex subset of a Hausdorff topological vector space).
Then, there exists a point x0 ∈ ∆n such that x0 ∈ T (x0).

3. Main result

First, we prove our main result.

Theorem 3.1. Let M be a nonempty compact convex subset of a Hausdorff
locally convex topological space E. Suppose that T : M → 2E is a multi-
function and

(i) T −1(y) contains an open set Oy(which may be empty) such that⋃
y∈T (M)Oy = M;

(ii) for every open set V in M, the set ∩{T v : v ∈ V} is empty or
contractible;

(iii) T (M) is contractible;
(iv) g : M → M is a p−continuous, proper, almost quasi convex with

respect to T and surjective single valued map.
Then, there exists an element x0 ∈M such that

dp(gx0, T x0) = dp(T x0,M)

Proof. We first show that there exist an n−simplex ∆n and two functions
f : ∆n → T (M) and h : M→ ∆n such that f(h(x)) ∈ T (x) for all x ∈M.

Since M is compact and
⋃

y∈T (M)Oy = M, there exists a finite sub-
set {y0, y1, y2, . . . , yn} ⊂ T (M) such that M =

⋃n
i=0Oyi . Now, for each

nonempty subset J of N = {0, 1, 2, . . . , n}, define

ΓJ =

{
∩{T (x) : x ∈ ⋂

j∈J Oyj}, if
⋂

j∈J Oyj 6= φ,

T (M), otherwise

Evidently, if x ∈ ⋂
j∈J Oyj , then {yj : j ∈ J} ⊂ T (x). By(ii), each ΓJ

is nonempty contractible and it is clear that ΓJ ⊆ ΓJ ′ , whenever φ 6= J ⊂
J ′ ⊂ N.

By Theorem 2.8, there exists a single valued continuous function f : ∆n →
T (M) such that f [∆J ] ⊆ ΓJ , for all φ 6= J ⊂ N . Let {h0, h1, . . . , hn} be
a continuous partition of unity subordinated to the open covering {Oyi}i∈N

i.e., for each i ∈ N, hi : M→ [0, 1] is continuous; {x ∈M : hi(x) 6= 0} ⊂ Oyi

such that
∑n

i=0 hi(x) = 1 for all x ∈M.



A REMARK ON VETRIVEL’S EXISTENCE THEOREM · · · 53

Define h : M→ ∆n by

h(x) =
(
h0(x), h1(x), h2(x), . . . , hn(x)

)
for all x ∈M.

Then, h is continuous. Then, h(x) ⊂ ∆J(x) for all x ∈M, where J(x) : {j ∈
N : hj(x) 6= 0}. Therefore, we have

f
(
h(x0)

) ∈ f(∆J(x)) ⊆ ΓJ(x) ⊆ T (x), for all x ∈M. (3.1)

Let G = g−1PA : E →M. Since g is a almost quasi convex with respect to
T , G is a convex valued multi-function.

In fact, let x1, x2 ∈ G(x) and λ ∈ [0, 1]. Since g is almost quasi-convex
with respect to T , it follows that

p
(
g(λx1+(1−λ)x2)−T x

) ≤ max
{
p(g(x1)−T x), p(g(y2)−T x)

}
=dp(T x,M)

(3.2)
Since g is onto and M is convex,

p
(
g(λx1 + (1− λ)x2)− T x

) ≥ dp(T x,M) (3.3)

From (3.2) and ( 3.3), we obtain

g
(
λx1 + (1− λ)x2

) ∈ PM
(T (x)

)

and hence
λx1 + (1− λ)x2 ∈ g−1

(
PM(T (x))

)

Thus G(x) is convex for each x ∈M.
Moreover Gx is compact as g−1 sends compact sets to compact sets and

PM(x) is compact. Also, G is a compact multi-function because both g−1

and PM send compact sets onto compact sets.
It remains to show that G is upper semicontinuous. To prove this, we

show that G−1(D) is closed for any closed subset D of M. Let D be any
closed subset of M and {zα} be any sequence in G−1(D) and zα → z0 for
some z0 ∈ M. Since G(zα) ∩ D 6= φ for each α, let wα ∈ G(zα) ∩ D which
implies g(wα) ∈ PM(zα); i.e.,

dp

(
g(wα), zα

)
= dp(zα,M).

Since zα → z0, we have dp(zα,M) → dp(z0,M). Since, PM(T (M)) is com-
pact and hence by the hypothesis, g−1(PM(co T (M)) is compact. Now,
since

wα ∈ G(zα) ⊆ G(
co T (M)

)
= (g−1 ◦ PM)

(
co T (M)

)

which is compact set, has a convergent subnet. Without loss of generality,
we can assume wα → w0. Since g is a p−continuous, p [g(wα)− g(w0)] → 0.
Now, we have

p [g(w0)− z0] ≤ p [g(w0)− g(wα)] + p [g(wα)− zα] + p (zα − z0)

= p [g(w0)− g(wα)] + dp(zα,M) + p (zα − z0)
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Taking the limit, we see that

p [g(w0)− z0] = dp(z0,M).

Thus, g(w0) ∈ PM(z0) which implies w0 ∈ G(z0)∩D ; i.e., z0 ∈ G−1(D) and
so G−1(D) is closed and hence G is upper semicontinuous.

Applying Theorem 2.9 to the multifunction hGf : ∆n → ∆n, there exists
an element s0 ∈ ∆n such that s0 ∈ hGf(s0). So, s0 ∈ h(x0) where x0 ∈ M
and g(x0) ∈ PMfs0. Hence, from (3.1) f(s0) = (fh)(x0) ∈ T (x0).

Let y0 = fs0, then we have gx0 ∈ PMy0, dp(gx0, y0) = dp(y0,M). So,
dp(gx0, T x0) ≤ dp(gx0, y0) = dp(y0,M).

But, since y0 ∈ T x0, dp(y0,M) = dp(T x0,M). So, dp(gx0, Tx0) ≤
dp(T x0,M).

Also, it is evident that dp(T x0,M) ≤ dp(gx0, T x0). Thus, dp(gx0, T x0) =
dp(T x0,M).

This completes the proof. ¤
In the Theorem 3.1, if g = I, identity mapping, we then get the following

consequence:

Corollary 3.2. Let M and T are as in the Theorem 3.1. Then, there exists
an element x0 ∈M such that

dp(x0, T x0) = dp(T x0,M).
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