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PERTURBATING UPPER SEMI-FREDHOLM WITH
STRICTLY SINGULAR OPERATORS

FERNANDO GALAZ-FONTES

Abstract. Given an upper semi-Fredholm operator L, following the
work of P. Cassaza and N. Kalton [1] and others, we introduce and
study a set of upper semi-Fredholm operators having the same index as
L and which is invariant under strictly singular perturbations.

1. Introduction

Throughout this work X, Y and Z will be Banach spaces and L ∈ L(X, Y ),
where L(X,Y ) is the Banach space of all bounded linear maps T : X → Y .
As usual, we take L(X) = L(X, X).

Assume a, b ∈ [0, 1[, T ∈ L(Y ) and let I be the identity operator on Y .
Generalizing a well known theorem of C. Neumann, it was proved by S. H.
Hilding [4] in 1948 that if

‖(I − T )y‖ ≤ a‖y‖+ b‖Ty‖, ∀ y ∈ Y,

then T : Y → Y is an onto isomorphism. In 1999, P. Casazza and N. Kalton
[1] discuss the more general case where X is a (closed) subspace of Y and
L, T ∈ L(X, Y ) satisfy

‖(L− T )x‖ ≤ a‖Lx‖+ b‖Tx‖, ∀x ∈ X.

Under this assumption they proved that several properties of L, including
that of being a Fredholm operator and the value of its index, carry over to T .
In this paper we weaken the above inequality and analyze the consequences
of assuming instead

‖(L− T )x‖ ≤ a‖Lx‖+ ‖Tx‖+ ‖Kx‖, ∀x ∈ X. (1)

Here the “perturbation” K : X → Z is strictly singular and the operator
L : X → Y is upper semi-Fredholm. This motivates the introduction and
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study of “perturbation sets” consisting of operators T ∈ L(X, Y ) satisfying
some cases of inequality (1). With this approach we obtain several of the
results established in [1].

2. Strictly singular and upper semi-Fredholm operators

Let T ∈ L(X, Y ). Its kernel will be denoted by N(T ) and its range by
R(T ). If V ⊂ X is a (linear) subspace, then TV indicates the restriction of T
to V . The operator T is strictly singular if when V ⊂ X is a subspace, T is 1-
1 on V and (TV )−1 is continuous, it follows that dimV < ∞. We will denote
the space consisting of all these operators by S(X, Y ); S(X) ≡ S(X, X).

Let K ∈ L(X,Y ). Then K is a compact operator if for any bounded
sequence {xn} ⊂ X, the sequence {Kxn} has a subsequence converging in
Y . The space consisting of all these operators will be indicated by K(X, Y );
K(X) ≡ K(X, X).

Clearly, if K ∈ L(X, Y ) and dimR(K) < ∞, then K is compact. Re-
ciprocally, it is well known that if K is compact and R(K) is closed, then
dimR(K) < ∞. This implies that compact operators are strictly singu-
lar. Thus all the statements concerning strictly singular operators apply, in
particular, to those which are compact.

For the convenience of the reader we indicate the following fundamental
property of operators whose range is not closed, together with a character-
ization of strictly singular operators. Both results were established by T.
Kato [3, Ch. 3].

Theorem 1. Let T ∈ L(X, Y ).
i) If R(T ) is not closed, then given ε > 0 there exists an infinite di-

mensional subspace V ⊂ X such that ‖TV ‖ ≤ ε.
ii) The operator T is strictly singular if, and only if, given ε > 0 and

an infinite dimensional subspace V ⊂ X, there is an infinite dimen-
sional subspace W ⊂ V such that ‖TW ‖ ≤ ε.

It is well known, and follows from the above result, that S(X, Y ) is a
closed subspace of L(X, Y )

An operator T ∈ L(X, Y ) is upper semi-Fredholm if dimN(T ) < ∞ and
R(T ) is closed. The set consisting of all these operators will be indicated by
Φ+(X, Y ); Φ+(X) ≡ Φ+(X,X). Let T ∈ Φ+(X, Y ). Then its index is given
by i(T ) = α(T ) − β(T ), where α(T ) ≡ dimN(T ) and β(T ) ≡ dimY/R(T ).
If also β(T ) < ∞, then T is said to be a Fredholm operator.

Remark 1. The following proposition, with compact operators instead of
strictly singular operators appears in [2, Lemma 1.3.12]. Apparently it is
due to H. O. Tylli.
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Proposition 1. Let L ∈ L(X, Y ). Then, L ∈ Φ+(X,Y ) if, and only if,
there exists a number C > 0, a Banach space Z and a strictly singular
operator K ∈ L(X,Z) such that

‖x‖ ≤ C‖Lx‖+ ‖Kx‖, ∀x ∈ X. (2)

Proof. Assume first L ∈ Φ+(X, Y ). Since N ≡ N(L) is finite dimensional,
there is a closed subspace V ⊂ X such that X = N ⊕ V . Let P ∈ L(X) be
the corresponding projection onto N .

Noting LV is 1-1 and R(LV ) = R(L) is closed, from the open mapping
theorem follows there is a number C > 0 such that

‖v‖ ≤ C‖LV v‖, ∀ v ∈ V. (3)

Take x ∈ X. Since x− Px ∈ V , (2) implies

‖x‖ ≤ ‖x− Px‖+ ‖Px‖ ≤ C‖LV (x− Px)‖+ ‖Px‖ = C‖Lx‖+ ‖Px‖.
Since dimR(P ) < ∞, it follows that P is compact and so it is strictly
singular. Hence, the conclusion follows.

Suppose now that (2) holds. Thus

‖x‖ ≤ ‖Kx‖, ∀x ∈ N(L).

This inequality states that K is 1-1 on U = N(L) and (KU )−1 is continuous.
Since K ∈ S(X,Z), this implies dimN(L) < ∞.

Assume now that R(L) is not closed. Then, using Theorem 1, we find

an infinite dimensional subspace V ⊂ X such that ‖LV ‖ <
1
C

. By (2), this
implies

(1− C‖LV ‖) ‖x‖ ≤ ‖Kx‖, ∀x ∈ V.

Thus, K is not strictly singular. So, we conclude that L ∈ Φ+(X, Y ). ¤

Given Banach spaces Z1, Z2, we will consider in Z1×Z2 the norm given by
‖(z1, z2)‖ ≡ ‖z1‖+‖z2‖. If T1 ∈ L(X, Z1), T2 ∈ L(X, Z2), then the operator
(T1, T2) ∈ L(X, Z1×Z2) is defined by (T1, T2)x ≡ (T1x, T2x), ∀x ∈ X. Thus

‖(T1, T2)x‖ = ‖T1x‖+ ‖T2x‖, ∀x ∈ X.

and so ‖(T1, T2)‖ ≤ ‖T1‖+ ‖T2‖.
Lemma 1. If K1 ∈ S(X, Z1), K2 ∈ S(X, Z2), it follows that (K1,K2) ∈
S(X, Z1 × Z2).

Proof. Let V ⊂ X be an infinite dimensional subspace and ε > 0. Applying
Theorem 1 twice it is possible to find an infinite dimensional subspace W ⊂
V such that ‖(K1)W ‖ ≤ ε

2 , ‖(K2)W )‖ ≤ ε
2 . This implies ‖(K1, K2)W ‖ ≤ ε.

From Theorem 1 it follows now that (K1,K2) ∈ S(X,Z1 × Z2). ¤
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Assume dimX < ∞ and take T ∈ L(X, Y ). Then dimR(T ) < ∞,
and so R(T ) is closed. It follows that T ∈ Φ+(X, Y ). Hence, we have
Φ+(X, Y ) = L(X, Y ). Take now K ∈ L(X, Y ). Since dimR(K) < ∞,
then K is a compact operator. It follows that S(X,Y ) = L(X, Y ). So
Φ+(X, Y ) ∩ S(X,Y ) = L(X, Y ).

When dimX = ∞, the following result indicates a totally different situa-
tion.

Lemma 2. If dimX = ∞, then Φ+(X, Y ) ∩ S(X, Y ) = ∅.
Proof. Assume that dimX = ∞ and L ∈ Φ+(X, Y ). We will prove that L
is not strictly singular. Take N = N(T ) and choose as V a closed subspace
V ⊂ X and C > 0 as in (3). Clearly, ‖LW ‖ ≥ C−1, for any nonzero
subspace W ⊂ V . Applying Theorem 1, we conclude that L is not strictly
singular. ¤
Remark 2. Assume dimX = ∞ and suppose X has closed infinite dimen-
sional subspaces V and W such that X = V ⊕W . (Clearly, this situation
occurs in the classical Banach spaces.) Let now P ∈ L(X) be the corre-
sponding projection onto V . Then P /∈ Φ+(X, Y ) ∪ S(X,Y ).

3. Perturbation sets

Now, after fixing L ∈ L(X, Y ), we will consider three kinds of sets. First,
we define F0(L) to consist of all those T ∈ L(X, Y ) such that

‖(L− T )x‖ ≤ a‖Lx‖+ ‖Tx‖, ∀x ∈ X. (4)

for some a ∈ [0, 1[. Second, for a fixed Banach space Z and K ∈ S(X, Z)
we define FK(L) to consist of all those T ∈ L(X, Y ) satisfying

‖(L− T )x‖ ≤ a‖Lx‖+ ‖Tx‖+ ‖Kx‖, ∀x ∈ X. (5)

for some a ∈ [0, 1[. Finally, we define

F (L) =
⋃

K

FK(L). (6)

Here the union is over all Banach spaces Z and K ∈ S(X,Z), such that the
inequality (5) holds. Clearly,

F0(L) ⊂ FK(L) ⊂ F (L), ∀L ∈ L(X, Y ). (7)

In what follows, we will always have K ∈ S(X,Z). Let T ∈ F (L) and
take a, Z and K such that (5) holds. Then

‖Lx‖ ≤ ‖(L− T )x‖+ ‖Tx‖ ≤ a‖Lx‖+ 2‖Tx‖+ ‖Kx‖, ∀x ∈ X.

Thus
(1− a)‖Lx‖ ≤ 2‖Tx‖+ ‖Kx‖, ∀x ∈ X. (8)
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Proposition 2. We have

i) λL ∈ F0(L), ∀λ ∈]0,∞[. In particular, L ∈ F0(L).
ii) If T ∈ FK(L), then λL+(1−λ)T ∈ FK(L), ∀λ ∈ [0, 1]. So, FK(L)

is connected.

Proof. i) Consider first the case λ ∈]0, 1]. Then

‖(L− λL)x‖ = (1− λ)‖Lx‖.
Hence, λL satisfies (4). Consider now λ ∈]1,∞[. Then

‖(L− λL)x‖ = (λ− 1)‖Lx‖ ≤ λ− 1
λ

‖λLx‖, ∀x ∈ X.

And so λL satisfies (4).

ii) Consider λ ∈ [0, 1[. Let T ∈ FK(L) and take a ∈ [0, 1[ such that (5)
holds. Thus

‖[L− (λL + (1− λ)T ]x‖
≤ (1− λ)[a‖Lx‖+ ‖Tx‖+ ‖Kx‖]
≤ (1− λ)a‖Lx‖+ ‖[λL + (1− λ)T ]x‖+ λ‖Lx‖+ ‖Kx‖,
≤ [(1− λ)a + λ]‖Lx‖+ ‖[λL + (1− λ)T ]x‖+ ‖Kx‖, ∀x ∈ X.

Since (1− λ)a + λ ∈ [0, 1[, it follows that λL + (1− λ)T ∈ FK(L). ¤

Theorem 2. Let L ∈ Φ+(X, Y ). Then:

i) If T ∈ F (L), then T + S ∈ F (L), ∀S ∈ S(X, Y ).
ii) F (L) is connected.
iii) F (L) ⊂ Φ+(X,Y ) and the index is constant on F (L).
iv) F (L) is open.

Proof. i) Let T ∈ F (L) and take α ∈ [0, 1[, a Banach space Z and K such
that (5) holds. Then

‖[L− (T + S)]x‖ ≤ ‖(L− T )x‖+ ‖Sx‖
≤ a‖Lx‖+ ‖Tx‖+ ‖Kx‖+ ‖Sx‖
≤ a‖Lx‖+ ‖(T + S)x‖+ ‖Kx‖+ ‖2Sx‖, ∀x ∈ X.

Using Lemma 1, the conclusion follows.

ii) The conclusion follows directly from ii) in Proposition 2.
Using Proposition 1, let us next fix for L a Banach space Z1, K1 ∈

S(X, Z1) and a number C > 0 such that

‖x‖ ≤ C‖Lx‖+ ‖K1x‖, ∀x ∈ X. (9)
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Likewise, we consider T ∈ F (L) and take a ∈ [0, 1[, Z2 a Banach space and
K2 ∈ S(Y, Z2) such that

‖(L− T )x‖ ≤ a‖Lx‖+ ‖Tx‖+ ‖K2x‖, ∀x ∈ X.

iii) Proceeding as we did to obtain (8), from the above inequality follows

(1− a) ‖Lx‖ ≤ 2‖Tx‖+ ‖K2x‖, ∀x ∈ X. (10)

Then, by (9) and (10) we have

(1− a)‖x‖ ≤ C(1− a)‖Lx‖+ (1− a)‖K1x‖
≤ 2C‖Tx‖+ ‖CK2x‖+ (1− a)‖K1x‖, ∀x ∈ X.

By Lemma 1, K ≡ ((1− a)K1, CK2) ∈ S(X, Z1 ×Z). Since (1− a) > 0, by
Proposition 1 this implies T ∈ Φ+(X,Y ).

The index function is continuous on Φ+(X, Y ) and F (L) ⊂ Φ+(X, Y ) is
connected. This implies the index is constant on F (L).

iv) Take now R ∈ L(X,Y ) and a number r > 0 such that a + rC < 1.
Then, if ‖T −R‖ ≤ r and x ∈ X, by (9) we have

‖(L−R)x‖ ≤ ‖(L− T )x‖+ ‖(T −R)x‖
≤ a‖Lx‖+ ‖Tx‖+ ‖K2x‖+ r‖x‖
≤ (a + rC)‖Lx‖+ ‖Tx‖+ ‖K2x‖+ r‖K1x‖
≤ (a + rC)‖Lx‖+ ‖Tx‖+ ‖(rK1,K2)x‖.

By Lemma 1, (rK1,K2) is strictly singular. Hence the conclusion follows.
¤

Remark 3. 1) Assume dimX < ∞. Then S(X, Y ) = L(X, Y ) and i) of
Theorem 2 implies F (L) = L(X,Y ), ∀L ∈ L(X, Y ).

Assume now dimX = ∞ and let L ∈ S(X, Y ). Take T ∈ L(X,Y ). Then

‖(L− T )x‖ ≤ 0 + ‖Tx‖+ ‖Lx‖, ∀x ∈ X,

It follows that T ∈ F (L). So, we also have F (L) = L(X,Y ), ∀L ∈ S(X, Y ).
Let I ∈ L(X) be the identity operator on X. By iii) in Theorem 2 and

lemma 2, it follows that F (I) ∩ S(X) = ∅. Moreover, −I /∈ F (I).

2) Let L ∈ L(X,Y ) be a Fredholm operator. Applying iii) in Theorem 2
it follows that F (L) consists solely of Fredholm operators

The following result is Corollary 3 in [1]. An operator T ∈ L(X,Y ) will
be said to be an isomorphism if it is 1-1 and has closed range.

Corollary 1. Let L ∈ L(X,Y ) be an isomorphism.
i) If aI − L is an isomorphism for all a > 0, then L is onto.
ii) If aI − L is an isomorphism for all a < 0, then L is onto.
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Proof. i) Note L ∈ Φ+(X, Y ). Hence, by iii) and iv) in Theorem 2, there is
some r > 0 such that if T ∈ L(X, Y ) and ‖L− T‖ < r, then T ∈ Φ+(X,Y )
and i(T ) = i(L). Taking a0 > 0 sufficiently small, it follows that i(L) =
i(L − a0I) = i(a0I − L). Similarly, taking a > 0 large enough, we have
i(aI − L) = i(I − L

a ) = i(I) = 0. On other hand, A = {aI − L : a > 0}
⊂ Φ+(X, Y ) is connected. By the continuity of the index, this implies the
index is constant on A. Hence, i(L) = 0. Since α(L) = 0, we conclude
β(L) = 0.

The proof of ii) is analogous. ¤
The next result shows that strictly singular and upper semi-Fredholm

operators have some kind of “complementary” properties.

Proposition 3. Let R ∈ L(X, Y ), T ∈ L(X, Z) satisfy ‖Rx‖ ≤ ‖Tx‖,
∀x ∈ X.

i) If T is strictly singular, then R is also strictly singular.
ii) If R is upper semi-Fredholm, then T is also upper semi-Fredholm.

Proof. i) Let V ⊂ X be a subspace such that ‖Rx‖ ≥ C‖x‖, ∀x ∈ V . Since
‖Tx‖ ≥ ‖Rx‖ and T is strictly singular, this implies that dimV < ∞.

ii) The hypothesis implies that T ∈ F (L). The conclusion follows now
from i) in Theorem 2. ¤

Assume L ∈ Φ+(X,Y ), L 6= 0. Then we can find a compact operator
K ∈ L(X,Y ) such that α(L + K) 6= α(L). By i) in Theorem 2, we have
L + K ∈ Φ+(X,Y ). This implies that α(·) is not constant on FK(L). The
next result, which extends Theorem 8 in [1], indicates this is not the case
for F0(L), when α(L) = 0.

Corollary 2. Let L ∈ L(X, Y ) be an isomorphism. If T ∈ F0(L), then T
is also an isomorphism and β(T ) = β(L).

Proof. From (8) (with K = 0) follows N(T ) ⊂ N(L) and so α(T ) = 0.
Theorem 2 indicates that T ∈ Φ+(X, Y ) and i(L) = i(T ). This implies
β(L) = β(T ). ¤
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