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SINGULAR POINTS OF TUBULAR SURFACES IN
MINKOWSKI 3-SPACE

M. K. KARACAN, H. ES AND Y. YAYLI

ABSTRACT. In this paper, we examine singular points of tubular sur-
faces and its parallel surfaces, which is based on two-parameter spatial
motion along a curve in Minkowski 3-space. Related results are pre-
sented also.

1. INTRODUCTION

Let TR? = {(r1,72,73) |r1,72,73 € IR} be a 3-dimensional vector space,
r = (r1,72,73) and s = (s1, S2, 53) be two vectors in IR3. The Lorentz scalar
product of the vectors r and s is defined by

(r,s)L = —r151 + rosa + r383.

The space IR3 = (I R3, (,) L) is called a 3-dimensional Lorentz space, or a
Minkowski 3-space. The Lorentz vector product of the vectors r and s is
defined by

r AL s = (ross — r3sa, T183 — r3S1,T281 — r182) .
This yields
e1 AN ea = —e3,ea N[, e3 = €1,e3 A\, €] = —e3

where ey, es, e3 are the base of the space TR3. The vector r in TR? is called
a spacelike vector, a lightlike(null) vector or a timelike vector if (r,r), > 0,
(r,r)y; =0or (r,r); <0 respectively. The norm of the vector r is defined by
7|l = +/I{r;7) |, and r is called a unit vector if ||r||, = 1. Semi-orthogonal
matrices provide a rotation by the angle (hyperbolic) ¢ around the vector

. The shape of the matrix depends on the type of the vector ¢ as seen in
[4].
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—

i) If ¢(s) is a spacelike vector,then
Ay(s,t) = I + Csinht + C*(—1 + cosht). (1.1)

ii) If 5(—5_5 is a timelike vector,then
Ag(s,t) = I + Csint + C*(1 — cost). (1.2)

If C' is a semi-skew symetric matrix, then

0 C3 —C9
CEIR§|, CT:*€C€, C=1|c 0 —ca
—C2 C1 0

C(3,1) = .

g €eEIR, =10
0

O = O
_ o O

\

Let 7 denote the ground vector and P denote the column matrix form of
the point. The equations

CP=CNT (1.3)
and
CAL(CALTD)=—(C, D)+ {C, ) (1.4)

are valid. Therefore, from equation (1.1) if c(—s)> is a spacelike vector, then
Ai(s,t)P = [I + C'sinht + C*(—1 + cosht)] P.

From the equation (1.2) and if ;(—5_5 is a timelike vector, then
Ay(s,t)P = [I+ Csint + C*(1 — cott)| P.

Using the equations (1.3) and (1.4), we get

Aq(s,t)P = pcosht+ (¢, ) c (1 —cosht)+ (¢ AL p)sinht  (1.5)
and

Ag(s,t)P = pcost — (¢, p)c(1—cost)+ (¢ AL P)sint. (1.6)
Let a be a space curve given by

a:I— 1IR3 s— afs)

be differentiable for s € I C IR. In addition, let a vector field ¢(s) defined
along the curve a(s) be given by

c:a(l) — UTIRi’
sel
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Let C(s) be a semi-skew symetric matrix defined by the vector ¢ for all
s € I. The matrices A;(s,t) and As(s,t) are semi-orthogonal matrices de-
fined by C(s). The moving Frenet frame defined along the curve «([f) is
{a(s),T(s),N(s),B(s)} and p is a fixed point in this frame. With these
notations and assumptions we can give the following definition:

Definition 1.1. The motion ¢(s,t)(P) = A12(s,t)P + a(s) is called the
two parameter motion defined along the curve in Minkowski 3—space [2].

Here, ¢(s,t)(P) indicates a trajectory level. We now give some properties
of p(s,t)(P). We will always use the frame {7’)7 ﬁ, E} instead of the Frenet

frame

{T(s), N(s), B(s) }
in the remainder of this paper. We will also choose the tangent vector field

=
T instead of the vector field €. A trajectory of the point P indicates a
surface under the two parameter motion. The equation of this surface is

i) If ¢ is a spacelike vector, then from equations (1.1) and (1.5), we have
©1(s,t)(P) = P cosht + (?, (1 — cosht)? + sinht.(? AL D)+ als).
(1.7)

i) If ¢ is a timelike vector, then from equations (1.2) and (1.6), we have

0a(5,8)(P) = P cost— (T, P)r(l—cost) T +sint.(T AL T) +a(s). (L8)

2. CHARACTERIZATIONS OF TUBULAR SURFACES

i) If a(s) is a spacelike curve, then tangent T isa spacelike and we have
the following cases:

a) T spacelike, N timelike and B spacelike. In this case and from equa-
tion (1.7) we have [2]

Mi(s,t) = a(s) + A (ﬁ cosht + E)sinht) (2.1)
where 7 = AN, A€ IR, A > 0.

Thus, equation (2.1) is the parametric equation of a tubular surface de-
fined along the curve a(s) in Minkowski 3-space.

b) T spacelike, N spacelike and B timelike. In this case and from
equation (1.7) we have

— — .
Ms(s,t) = afs) + A (N cosht — B sinh t) (2.2)

where 7 = AN, A€ IR, A > 0.
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Thus, equation (2.2) is the parametric equation of a tubular surface de-
fined along the curve a(s) in Minkowski 3-space.

ii) If a(s) is a timelike curve, then the tangent T is a timelike and we have
the following:

The tangent T timelike, N spacelike and B spacelike. In this case and
from equation (1.8), we have [2]

Ms(s,t) = a(s) + A (ﬁ cost + §sint) (2.3)

where 7:)\ﬁ, ANETIR, X > 0.
Thus, equation (2.3) is the parametric equation of a tubular surface de-
fined along the curve a(s) in Minkowski 3-space.

3. SINGULAR POINTS OF THE TUBULAR SURFACE M (s, t)

From equation (2.1) we have

— —
Mg Ap, M1 = A1+ Ak cosht) (N cosht + B sinht)

where
9 = Mis = (14 Akcosht) T + (Arsinht) N + (A7 cosht) B
s
oM
(%1 = My; = (Asinht) N+ (Acosht) B

and the Frenet formula (see [5])
- — — — —
T =kN,N =xT +7B,B =71N.

Here x and 7 are the curvature and torsion of curve a(s), respectively. The
singular points are the points on the surface Mj(s,t) such that

Mys N, My =0
or equivalently
(1+ Ak cosht) = 0.
Thus, we have the following theorem:

Theorem 3.1. The point Mi(so,to) of a surface My (s,t) is a singular point
if and only if

(1 4+ Ak(so) cosh(tg)) = 0.
Corollary 3.2. If the vector M1 is on the normal plane which is constructed
using N and B, then all points on the surface are singular.

Corollary 3.3. If K =0 then (1 4+ Ak cosht) # 0 .
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Theorem 3.4. If M, is a cylindrical tubular surface then it has no singular
points on M;.

Proof. k = 0 on the cylindrical tubular surface. For k = 0, (1 + Ak cosht) =
14 0. O

Corollary 3.5. Singular points on the tubular surface are independent of
T, the torsion of the curve a(s), and only depend on the curvature k of the
curve as).

Theorem 3.6. Let a(s) be a Lorentzian circle. In this case, k = const. and

the singular points satisfy
ht !
cosht=——=a
AK

or equivalently, the singular points (s,t) on My satisfy
t:1n<a+\/a2—1>, 1<a.

We next find which points on which surfaces are singular points of Mj.

Theorem 3.7. If A = —% = const. then all points on the curve (t = 0),
which is the locus of centre of curvature of the curve a(s), are singular points
of surface M.

Proof. Since (14 Akcosht) = 0 for t = 0, (1+ Ak) = 0, i.e,, A = —

const. and the parametric curve of the surface is Mi(s,0) = a(s) — = N.
This curve is the locus of centre of curvature of the curve a(s). Since for
t=0and \ = —%, (1+ Axcosht) =1 —1 =0 at the points on this curve,
these points are singular. O

1
K
1
K

Theorem 3.8. Let k = const. for all s. With the conditions of t = const.
and A = —L (cosht = a) on the surface My all points on the curve afs)
(Lorentzian circle, heliz) are singular.

Proof. Since (1 + Akcosht) =1 — ;—Hfﬁ cosht = 0, these points are singular.
O

Theorem 3.9. Let a(s) be the Bertrand curve. On the conditions of t = 0
and A = —% = const. the points on [(s) curve, which is the couple of the
a(s) curve, are singular.

Proof. Let ((s) = a(s) + nﬁ, n = A= —21 for the a(s) Bertrand curve.
Then we have

1
(1+ Axcosht) =1— )\X =0.
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4. SINGULAR POINTS OF THE PARALLEL TUBULAR SURFACE Mj (s, )

Definition 4.1. The parallel surface of the surface M(s,t) defined by
Mik(sﬂ t) = Ml(S, t) + MUl(Sa t)v

where
Mg N, Myy

[Mis AL Mully,
is the unit mormal of the surface M;.

Theorem 4.2. The parallel surface M{(s,t) of the tubular surface M (s,t)
is still tubular surface [3], where

— —
Mi(s,t) = a(s) + (A + p) (N cosht + B sinht) .

U, =

Now, let’s investigate whether or not the points on surface M (s,t) and
its parallel surface M7 (s,t) are the same. The normal of the parallel surface
M (s,t) is

M, AL My, = 0+ ) (1+ (A + p) s cosh t) ((cosht) N + (sinht) §) ,

where
M*
OM; =M, =1+ ()\—l—,u)/icosht)?
0s
— —
+ ((A+ p) 7sinht) N + ((A+ p) 7 cosht) B
oMy
5o = Miy = (A + p)sinht) N + (A + p) cosht) B.

Theorem 4.3. The singular points (s,t) on the surface Mi(s,t) are not
singular on the parallel surface M (s,t).

Proof. The points (s,t) on the parallel surface M7 (s,t) are singular points
if and only if
(14 (A + ) kcosht) = 0.

But
(I 4+ (A4 p)kcosht) =14 Akcosht + prcosht =0,

which is impossible if @ = 0. Therefore, the points (s,t) on M (s,t) are not
singular. m
Theorem 4.4. The point M (so,to) of the parallel surface M7 (s,t) is sin-
gular point if and only if (1 4+ (X + p) k(sp) coshtg) = 0.
Proof. The point (sg, o) on the surface M, is singular point if and only if
M7 (s0,to) AL Mi(s0,t0) =0 < (14 (A + ) £(sg) coshtp) = 0.
([l
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Corollary 4.5. If the vector M7, is on the normal plane, constructed by N
—
and B, then all the points on the surface are singular.

Corollary 4.6. If K =0, then (14 (A4 p) kcosht) #0 .

Theorem 4.7. If M{ is a cylindrical tubular surface there are not any
singular points on M.

Proof. kK = 0 on the cylindrical tubular surface. For k = 0, (1 + (A + p)
kcosht) =1 #0. O

Corollary 4.8. Singular points on the tubular surface M7 are independent
of T, which is torsion of the curve «(s), and only depend on the k curvature
of the curve «(s).

Theorem 4.9. Let a(s) be a Lorentzian circle. Then, since k = const., if

1
CEr I

t:1n<a+\/a2—1>, 1<a

the points (s,t) on the surface My are singular.

cosht = —

and

We now examine which points on which curves are singular for ¢ = 0 in
parametric curves.

Theorem 4.10. If A+ pu = —+ = const. all points on the curve (t = 0),
which is the locus of the centre of curvature of the curve a(s), are singular

points of surface M.

Proof. Since (1 4+ (A+p)kcosht) = 0 fort =0, (1+(A+pu)k) =0, ie
A p= —% = const. which implies

1
M (s,0) = a(s) — ;ﬁ.

This curve is the locus of the centre of curvature of the curve a(s). Since for
t=0and A+ p=—+, (14 (A4 p)kcosht) =1 —1 =0 at the points on
this curve, these points are singular. [l

Theorem 4.11. Let k = const. for all s. With the conditions of all t =
const. and A\ + p1 = —ﬁ (cosht = a) on the surface M all points on the

curve a(s)(Lorentzian circle, helix) are singular.

Proof. Since (14 (A+p)rcosht) = 1 — -Lrcosht = 0, these points are
singular. [l
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Theorem 4.12. Let a(s) be the Bertrand curve. On the conditions of t = 0
and A+ p = —% = const. the points on the curve (3(s), the couple of the

curve a(s), are singular.

Proof. Let B(s) = a(s) + (5ﬁ, § = A+ p = —1 for the Bertrand curve af(s).
For the points on this curve

(14+ (A +p)rcosht) =1— (A +p) =0

(A + )
is obtained. O
5. SINGULAR POINTS OF THE TUBULAR SURFACE Ms(s,t)
From equation (2.2) we have
Mog N, Moy = A(1 — Ak cosh t) (ﬁ cosht — B sinht)
where
— — —
Mss = (1 — Akcosht) T — (Arsinht) N + (A7 cosht) B
My = (Asinht) N - (Acosht) B

and the Frenet formula (see [5]),

- — — - —

T =xN,N =—rT +7B,B =71N.
Here k and 7 are curvature and torsion of the curve «(s), respectively.
Mos N, Moy = 0 if and only if (1 — Ak cosht) = 0. The study of the geometric

properties the singular points can be done using the same methods as in
Section 3.

6. SINGULAR POINTS OF THE PARALLEL TUBULAR SURFACE M;(s,t)

Theorem 6.1. The parallel surface M3 (s,t) of the tubular surface Ma(s,t)
1s still tubular surface.

N — —
M5 (s,t) = a(s) + (A + p) (N cosht — B smht) .

Now, let’s investigate whether or not the points on surface Ms(s,t) and
its parallel surface M5 (s, t) are the same. The normal of the parallel surface
M3 (s,t) is

— —
M, Ap Mg = (A + p) (1 — (A + p) & cosh t) <(cosht) N — (sinh?) B) ,

where
—

My, =(1- (/\—FM)/{COSht)? - (()\—l—u)Tsinht)ﬁ + ((A+ p) Tcosht) B
M3, = (A + p)sinht) N — (A + p) cosht) B.
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The study can be carried out using the same technique as in Section 4.

7. SINGULAR POINTS OF THE TUBULAR SURFACE M3(s,t)

From equation (2.3), we have
— —
Mss A, M3y = A(1 4 Ak cost) (—N cost — B sint)

where

—

— —
Mss = (14 Akcost) T — (Arsint) N + (AT cost) B
M3y = —(Asimt)ﬁ%—()\cost)g>

and the Frenet formula (see [5])
- — — — —
T =kN,N =rT +7B,B =—-7N

where k and 7 are curvature and torsion of «(s) curve, respectively. Msg A
M3z, = 0 if and only if (1 + Ak cost) = 0. The study is similar to Section 5.

8. SINGULAR POINTS OF THE PARALLEL TUBULAR SURFACE Mj(s,t)

Theorem 8.1. The M;(s,t) parallel surface of Ms(s,t), a tubular surface,
is still a tubular surface.

M3 (s,t) = a(s) + (A + ) (ﬁcost—l—ﬁsint) .

Now, let’s investigate whether or not the points on surface M3(s,t) and
its parallel surface M (s, t) are the same. The normal to the parallel surface
M3 (s,t) is

M3, N, M3y = (A +p) (1+ (A + p) keost) (— (cost) N - (sint) §> ,

where

—

M, =(1+ ()\+,u)f<acost)? - (()\—F,u)Tsint)]—)V + ((A+ p)Tsint) B
M3, = —((A+p) Sint)ﬁ—i- ((A+ p) cost) B.

The study is carried out using the same steps as in Section 6.
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