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SINGULAR POINTS OF TUBULAR SURFACES IN
MINKOWSKI 3-SPACE

M. K. KARACAN, H. ES AND Y. YAYLI

Abstract. In this paper, we examine singular points of tubular sur-
faces and its parallel surfaces, which is based on two-parameter spatial
motion along a curve in Minkowski 3-space. Related results are pre-
sented also.

1. Introduction

Let IR3 = {(r1, r2, r3) | r1, r2, r3 ∈ IR} be a 3-dimensional vector space,
r = (r1, r2, r3) and s = (s1, s2, s3) be two vectors in IR3. The Lorentz scalar
product of the vectors r and s is defined by

〈r, s〉L = −r1s1 + r2s2 + r3s3.

The space IR3
1 =

(
IR3, 〈, 〉L

)
is called a 3-dimensional Lorentz space, or a

Minkowski 3-space. The Lorentz vector product of the vectors r and s is
defined by

r ∧L s = (r2s3 − r3s2, r1s3 − r3s1, r2s1 − r1s2) .

This yields

e1 ∧L e2 = −e3, e2 ∧L e3 = e1, e3 ∧L e1 = −e2

where e1, e2, e3 are the base of the space IR3
1. The vector r in IR3

1 is called
a spacelike vector, a lightlike(null) vector or a timelike vector if 〈r, r〉L > 0,
〈r, r〉L = 0 or 〈r, r〉L < 0 respectively. The norm of the vector r is defined by
‖r‖L =

√|〈r, r〉L|, and r is called a unit vector if ‖r‖L = 1. Semi-orthogonal
matrices provide a rotation by the angle (hyperbolic) t around the vector−→c . The shape of the matrix depends on the type of the vector −→c as seen in
[4].

2000 Mathematics Subject Classification. 53A17, 53A35.
Key words and phrases. Two parameter motion, motion along a curve, tubular surface,

singular points, parallel surface, Minkowski 3-space.



74 M. K. KARACAN, H. ES AND Y. YAYLI

i) If
−−→
c(s) is a spacelike vector,then

A1(s, t) = I + C sinh t + C2(−1 + cosh t). (1.1)

ii) If
−−→
c(s) is a timelike vector,then

A2(s, t) = I + C sin t + C2(1− cos t). (1.2)

If C is a semi-skew symetric matrix, then

C(3, 1) =





C ∈ IR 3
3|, CT = −εCε, C =




0 c3 −c2

c3 0 −c1

−c2 c1 0




ci ∈ IR, ε =



−1 0 0
0 1 0
0 0 1








.

Let −→p denote the ground vector and P denote the column matrix form of
the point. The equations

C.P = −→c ∧L
−→p (1.3)

and
−→c ∧L (−→c ∧L

−→p ) = −〈−→c ,−→p 〉L−→c + 〈−→c ,−→c 〉L−→p (1.4)

are valid. Therefore, from equation (1.1) if
−−→
c(s) is a spacelike vector, then

A1(s, t)P =
[
I + C sinh t + C2(−1 + cosh t)

]
P.

From the equation (1.2) and if
−−→
c(s) is a timelike vector, then

A2(s, t)P =
[
I + C sin t + C2(1− cot t)

]
P.

Using the equations (1.3) and (1.4), we get

A1(s, t)P = −→p cosh t + 〈−→c ,−→p 〉L−→c (1− cosh t) + (−→c ∧L
−→p ) sinh t (1.5)

and

A2(s, t)P = −→p cos t− 〈−→c ,−→p 〉L−→c (1− cos t) + (−→c ∧L
−→p ) sin t. (1.6)

Let α be a space curve given by

α : I → IR3
1, s → α(s)

be differentiable for s ∈ I ⊂ IR. In addition, let a vector field c(s) defined
along the curve α(s) be given by

c : α(I) →
⋃

s∈I

TIR3
1

s → c(s) =
(
α(s),

−−→
c(s)

)
=
−−→
c(s)

∣∣
α(s) .
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Let C(s) be a semi-skew symetric matrix defined by the vector −→c for all
s ∈ I. The matrices A1(s, t) and A2(s, t) are semi-orthogonal matrices de-
fined by C(s). The moving Frenet frame defined along the curve α(I) is{

α(s),
−−→
T (s),

−−−→
N(s),

−−→
B(s)

}
and p is a fixed point in this frame. With these

notations and assumptions we can give the following definition:

Definition 1.1. The motion ϕ(s, t)(P ) = A1,2(s, t)P + α(s) is called the
two parameter motion defined along the curve in Minkowski 3−space [2].

Here, ϕ(s, t)(P ) indicates a trajectory level. We now give some properties
of ϕ(s, t)(P ). We will always use the frame

{−→
T ,
−→
N,
−→
B

}
instead of the Frenet

frame {−−→
T (s),

−−−→
N(s),

−−→
B(s)

}

in the remainder of this paper. We will also choose the tangent vector field−→
T instead of the vector field −→c . A trajectory of the point P indicates a
surface under the two parameter motion. The equation of this surface is
i) If −→c is a spacelike vector, then from equations (1.1) and (1.5), we have

ϕ1(s, t)(P ) = −→p cosh t + 〈−→T ,−→p 〉L(1− cosh t)
−→
T + sinh t.(

−→
T ∧L

−→p ) + α(s).
(1.7)

ii) If −→c is a timelike vector, then from equations (1.2) and (1.6), we have

ϕ2(s, t)(P ) = −→p cos t−〈−→T ,−→p 〉L(1− cos t)
−→
T +sin t.(

−→
T ∧L

−→p )+α(s). (1.8)

2. Characterizations of tubular surfaces

i) If α(s) is a spacelike curve, then tangent
−→
T is a spacelike and we have

the following cases:
a)
−→
T spacelike,

−→
N timelike and

−→
B spacelike. In this case and from equa-

tion (1.7) we have [2]

M1(s, t) = α(s) + λ
(−→
N cosh t +

−→
B sinh t

)
(2.1)

where −→p = λ
−→
N, λ ∈ IR, λ > 0.

Thus, equation (2.1) is the parametric equation of a tubular surface de-
fined along the curve α(s) in Minkowski 3-space.

b)
−→
T spacelike,

−→
N spacelike and

−→
B timelike. In this case and from

equation (1.7) we have

M2(s, t) = α(s) + λ
(−→
N cosh t−−→B sinh t

)
(2.2)

where −→p = λ
−→
N, λ ∈ IR, λ > 0.



76 M. K. KARACAN, H. ES AND Y. YAYLI

Thus, equation (2.2) is the parametric equation of a tubular surface de-
fined along the curve α(s) in Minkowski 3-space.
ii) If α(s) is a timelike curve, then the tangent

−→
T is a timelike and we have

the following:
The tangent

−→
T timelike,

−→
N spacelike and

−→
B spacelike. In this case and

from equation (1.8), we have [2]

M3(s, t) = α(s) + λ
(−→
N cos t +

−→
B sin t

)
(2.3)

where −→p = λ
−→
N, λ ∈ IR, λ > 0.

Thus, equation (2.3) is the parametric equation of a tubular surface de-
fined along the curve α(s) in Minkowski 3-space.

3. Singular points of the tubular surface M1(s, t)

From equation (2.1) we have

M1s ∧L M1t = λ(1 + λκ cosh t)
(−→
N cosh t +

−→
B sinh t

)

where
∂M1

∂s
= M1s = (1 + λκ cosh t)

−→
T + (λτ sinh t)

−→
N + (λτ cosh t)

−→
B

∂M1

∂t
= M1t = (λ sinh t)

−→
N + (λ cosh t)

−→
B

and the Frenet formula (see [5])
−→
T
′
= κ

−→
N,
−→
N
′
= κ

−→
T + τ

−→
B,
−→
B
′
= τ

−→
N.

Here κ and τ are the curvature and torsion of curve α(s), respectively. The
singular points are the points on the surface M1(s, t) such that

M1s ∧L M1t = 0

or equivalently

(1 + λκ cosh t) = 0.

Thus, we have the following theorem:

Theorem 3.1. The point M1(s0, t0) of a surface M1(s, t) is a singular point
if and only if

(1 + λκ(s0) cosh(t0)) = 0.

Corollary 3.2. If the vector M1s is on the normal plane which is constructed
using

−→
N and

−→
B, then all points on the surface are singular.

Corollary 3.3. If κ = 0 then (1 + λκ cosh t) 6= 0 .
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Theorem 3.4. If M1 is a cylindrical tubular surface then it has no singular
points on M1.

Proof. κ = 0 on the cylindrical tubular surface. For κ = 0, (1 + λκ cosh t) =
1 6= 0. ¤
Corollary 3.5. Singular points on the tubular surface are independent of
τ, the torsion of the curve α(s), and only depend on the curvature κ of the
curve α(s).

Theorem 3.6. Let α(s) be a Lorentzian circle. In this case, κ = const. and
the singular points satisfy

cosh t = − 1
λκ

= a

or equivalently, the singular points (s, t) on M1 satisfy

t = ln
(
a +

√
a2 − 1

)
, 1 ≤ a.

We next find which points on which surfaces are singular points of M1.

Theorem 3.7. If λ = − 1
κ = const. then all points on the curve (t = 0),

which is the locus of centre of curvature of the curve α(s), are singular points
of surface M1.

Proof. Since (1 + λκ cosh t) = 0 for t = 0, (1 + λκ) = 0, i.e., λ = − 1
κ =

const. and the parametric curve of the surface is M1(s, 0) = α(s) − 1
κ

−→
N.

This curve is the locus of centre of curvature of the curve α(s). Since for
t = 0 and λ = − 1

κ , (1 + λκ cosh t) = 1 − 1 = 0 at the points on this curve,
these points are singular. ¤
Theorem 3.8. Let κ = const. for all s. With the conditions of t = const.
and λ = − 1

aκ (cosh t = a) on the surface M1 all points on the curve α(s)
(Lorentzian circle, helix) are singular.

Proof. Since (1 + λκ cosh t) = 1− 1
aκκ cosh t = 0, these points are singular.

¤
Theorem 3.9. Let α(s) be the Bertrand curve. On the conditions of t = 0
and λ = − 1

κ = const. the points on β(s) curve, which is the couple of the
α(s) curve, are singular.

Proof. Let β(s) = α(s) + η
−→
N, η = λ = − 1

κ for the α(s) Bertrand curve.
Then we have

(1 + λκ cosh t) = 1− λ
1
λ

= 0.

¤
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4. Singular points of the parallel tubular surface M∗
1 (s, t)

Definition 4.1. The parallel surface of the surface M1(s, t) defined by

M∗
1 (s, t) = M1(s, t) + µU1(s, t),

where
U1 =

M1s ∧L M1t

‖M1s ∧L M1t‖L

is the unit normal of the surface M1.

Theorem 4.2. The parallel surface M∗
1 (s, t) of the tubular surface M1(s, t)

is still tubular surface [3], where

M∗
1 (s, t) = α(s) + (λ + µ)

(−→
N cosh t +

−→
B sinh t

)
.

Now, let’s investigate whether or not the points on surface M1(s, t) and
its parallel surface M∗

1 (s, t) are the same. The normal of the parallel surface
M∗

1 (s, t) is

M∗
1s ∧L M∗

1t = (λ + µ) (1 + (λ + µ) κ cosh t)
(
(cosh t)

−→
N + (sinh t)

−→
B

)
,

where
∂M∗

1

∂s
= M∗

1s = (1 + (λ + µ) κ cosh t)
−→
T

+ ((λ + µ) τ sinh t)
−→
N + ((λ + µ) τ cosh t)

−→
B

∂M∗
1

∂t
= M∗

1t = ((λ + µ) sinh t)
−→
N + ((λ + µ) cosh t)

−→
B.

Theorem 4.3. The singular points (s, t) on the surface M1(s, t) are not
singular on the parallel surface M∗

1 (s, t).

Proof. The points (s, t) on the parallel surface M∗
1 (s, t) are singular points

if and only if
(1 + (λ + µ) κ cosh t) = 0.

But
(1 + (λ + µ) κ cosh t) = 1 + λκ cosh t + µκ cosh t = 0,

which is impossible if µ = 0. Therefore, the points (s, t) on M∗
1 (s, t) are not

singular. ¤
Theorem 4.4. The point M∗

1 (s0, t0) of the parallel surface M∗
1 (s, t) is sin-

gular point if and only if (1 + (λ + µ) κ(s0) cosh t0) = 0.

Proof. The point (s0, t0) on the surface M∗
1 is singular point if and only if

M∗
1s(s0, t0) ∧L M∗

1t(s0, t0) = 0 ⇔ (1 + (λ + µ)κ(s0) cosh t0) = 0.

¤
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Corollary 4.5. If the vector M∗
1s is on the normal plane, constructed by

−→
N

and
−→
B, then all the points on the surface are singular.

Corollary 4.6. If κ = 0, then (1 + (λ + µ) κ cosh t) 6= 0 .

Theorem 4.7. If M∗
1 is a cylindrical tubular surface there are not any

singular points on M∗
1 .

Proof. κ = 0 on the cylindrical tubular surface. For κ = 0, (1 + (λ + µ)
κ cosh t) = 1 6= 0. ¤

Corollary 4.8. Singular points on the tubular surface M∗
1 are independent

of τ, which is torsion of the curve α(s), and only depend on the κ curvature
of the curve α(s).

Theorem 4.9. Let α(s) be a Lorentzian circle. Then, since κ = const., if

cosh t = − 1
(λ + µ) κ

= a

and
t = ln

(
a +

√
a2 − 1

)
, 1 ≤ a

the points (s, t) on the surface M∗
1 are singular.

We now examine which points on which curves are singular for t = 0 in
parametric curves.

Theorem 4.10. If λ + µ = − 1
κ = const. all points on the curve (t = 0),

which is the locus of the centre of curvature of the curve α(s), are singular
points of surface M∗

1 .

Proof. Since (1 + (λ + µ) κ cosh t) = 0 for t = 0, (1 + (λ + µ) κ) = 0, i.e
λ + µ = − 1

κ = const. which implies

M∗
1 (s, 0) = α(s) − 1

κ

−→
N.

This curve is the locus of the centre of curvature of the curve α(s). Since for
t = 0 and λ + µ = − 1

κ , (1 + (λ + µ)κ cosh t) = 1 − 1 = 0 at the points on
this curve, these points are singular. ¤

Theorem 4.11. Let κ = const. for all s. With the conditions of all t =
const. and λ + µ = − 1

aκ (cosh t = a) on the surface M∗
1 all points on the

curve α(s)(Lorentzian circle, helix) are singular.

Proof. Since (1 + (λ + µ)κ cosh t) = 1 − 1
aκκ cosh t = 0, these points are

singular. ¤
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Theorem 4.12. Let α(s) be the Bertrand curve. On the conditions of t = 0
and λ + µ = − 1

κ = const. the points on the curve β(s), the couple of the
curve α(s), are singular.

Proof. Let β(s) = α(s) + δ
−→
N, δ = λ + µ = − 1

κ for the Bertrand curve α(s).
For the points on this curve

(1 + (λ + µ) κ cosh t) = 1− (λ + µ)
1

(λ + µ)
= 0

is obtained. ¤

5. Singular points of the tubular surface M2(s, t)

From equation (2.2) we have

M2s ∧L M2t = λ(1− λκ cosh t)
(−→
N cosh t−−→B sinh t

)

where

M2s = (1− λκ cosh t)
−→
T − (λτ sinh t)

−→
N + (λτ cosh t)

−→
B

M2t = (λ sinh t)
−→
N − (λ cosh t)

−→
B

and the Frenet formula (see [5]),
−→
T
′
= κ

−→
N,
−→
N
′
= −κ

−→
T + τ

−→
B,
−→
B
′
= τ

−→
N.

Here κ and τ are curvature and torsion of the curve α(s), respectively.
M2s∧LM2t = 0 if and only if (1− λκ cosh t) = 0. The study of the geometric
properties the singular points can be done using the same methods as in
Section 3.

6. Singular points of the parallel tubular surface M∗
2 (s, t)

Theorem 6.1. The parallel surface M∗
2 (s, t) of the tubular surface M2(s, t)

is still tubular surface.

M∗
2 (s, t) = α(s) + (λ + µ)

(−→
N cosh t−−→B sinh t

)
.

Now, let’s investigate whether or not the points on surface M2(s, t) and
its parallel surface M∗

2 (s, t) are the same. The normal of the parallel surface
M∗

2 (s, t) is

M∗
2s ∧L M∗

2t = (λ + µ) (1− (λ + µ) κ cosh t)
(
(cosh t)

−→
N − (sinh t)

−→
B

)
,

where

M∗
2s = (1− (λ + µ) κ cosh t)

−→
T − ((λ + µ) τ sinh t)

−→
N + ((λ + µ) τ cosh t)

−→
B

M∗
2t = ((λ + µ) sinh t)

−→
N − ((λ + µ) cosh t)

−→
B.
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The study can be carried out using the same technique as in Section 4.

7. Singular points of the tubular surface M3(s, t)

From equation (2.3), we have

M3s ∧L M3t = λ(1 + λκ cos t)
(
−−→N cos t−−→B sin t

)

where

M3s = (1 + λκ cos t)
−→
T − (λτ sin t)

−→
N + (λτ cos t)

−→
B

M3t = − (λ sin t)
−→
N + (λ cos t)

−→
B

and the Frenet formula (see [5])

−→
T
′
= κ

−→
N,
−→
N
′
= κ

−→
T + τ

−→
B,
−→
B
′
= −τ

−→
N

where κ and τ are curvature and torsion of α(s) curve, respectively. M3s ∧
M3t = 0 if and only if (1 + λκ cos t) = 0. The study is similar to Section 5.

8. Singular points of the parallel tubular surface M∗
3 (s, t)

Theorem 8.1. The M∗
3 (s, t) parallel surface of M3(s, t), a tubular surface,

is still a tubular surface.

M∗
3 (s, t) = α(s) + (λ + µ)

(−→
N cos t +

−→
B sin t

)
.

Now, let’s investigate whether or not the points on surface M3(s, t) and
its parallel surface M∗

3 (s, t) are the same. The normal to the parallel surface
M∗

3 (s, t) is

M∗
3s ∧L M∗

3t = (λ + µ) (1 + (λ + µ) κ cos t)
(
− (cos t)

−→
N − (sin t)

−→
B

)
,

where

M∗
3s = (1 + (λ + µ) κ cos t)

−→
T − ((λ + µ) τ sin t)

−→
N + ((λ + µ) τ sin t)

−→
B

M∗
3t = − ((λ + µ) sin t)

−→
N + ((λ + µ) cos t)

−→
B.

The study is carried out using the same steps as in Section 6.
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