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ON RICCI CURVATURE OF CERTAIN SUBMANIFOLDS
IN A COSYMPLECTIC SPACE FORM

XIMIN LIU AND JIANBIN ZHOU

Abstract. In this paper, we obtain some sharp inequalities between
the Ricci curvature and the squared mean curvature for slant, bi-slant
and semi-slant submanifolds in cosymplectic space forms. Estimates of
the scalar curvature and the k-Ricci curvature, in terms of the squared
mean curvature, are also proved respectively.

1. Introduction

According to B.Y. Chen, one of the basic problems in submanifold theory
is to find simple relationships between the main extrinsic invariants and
the main intrinsic invariants of a submanifold. Scalar curvature and Ricci
curvature are among the main intrinsic invariants, while the squared mean
curvature is the main extrinsic invariant. In [5], B.Y. Chen establishes a
relationship between sectional curvature function K and the shape operator
for submanifolds in real space forms. In [6], he also gives a relationship
between Ricci curvature and squared mean curvature.

A contact version of B.Y. Chen’s inequality and its applications to slant
immersions in a Sasakian space form M̃ (c) are given in [4]. There is another
interesting class of almost contact metric manifolds, namely cosymplectic
manifolds [8].

In the present paper, we will study the Ricci curvature of certain sub-
manifolds, i.e., slant, bi-slant and semi-slant submanifolds in a cosymplectic
space form, and get some very interesting results. The rest of this paper is
organized as follows. Necessary details about cosymplectic manifolds and
the submanifolds are reviewed in Section 2. In Section 3, some inequalities
between Ricci curvature and squared mean curvature function for bi-slant,
semi-slant and slant submanifolds in cosymplectic space forms. We also dis-
cuss the equality cases. In the last section, we establish some relationship

2000 Mathematics Subject Classification. 53C40, 53C15.
Key words and phrases. Cosymplectic space form, Ricci curvature, k-Ricci curvature,

slant submanifold, bi-slant submanifold, semi-slant submanifold.



96 XIMIN LIU AND JIANBIN ZHOU

between the k-Ricci curvature and the squared mean curvature for bi-slant,
semi-slant and slant submanifolds in cosymplectic space forms. In partic-
ular, we give similar results for invariant, anti-invariant and contact CR
submanifolds.

2. Preliminaries

Let M̃ be a (2m + 1)-dimensional almost contact manifold ([1]) endowed
with an almost contact structure (ϕ, ξ, η), that is, ϕ is a (1, 1) tensor field,
ξ is a vector field and η is a 1-form such that ϕ2 = −I + η⊗ ξ and η (ξ) = 1.
Then, ϕ (ξ) = 0 and η ◦ ϕ = 0. The almost contact structure is said to be
normal if the induced almost complex structure J on the product manifold
M̃ ×R defined by J (X,λd/dt) = (ϕX − λξ, η (X) d/dt) is integrable, where
X is tangent to M̃ , t the coordinate of R and λ a smooth function on M̃×R.

Let g be a compatible Riemannian metric with (ϕ, ξ, η), that is, g(ϕX, ϕY )
= g (X,Y )− η (X) η (Y ) or equivalently, Φ (X, Y )= g (X, ϕY )= −g (ϕX, Y )
and g (X, ξ) = η (X) for all X, Y ∈ TM̃ . Then, M̃ becomes an almost
contact metric manifold equipped with an almost contact metric structure
(ϕ, ξ, η, g) .

If the fundamental 2-form Φ and 1-form η are closed, then M̃ is said to be
almost cosymplectic manifold ([1]). A normal almost cosymplectic manifold
is cosymplectic. An almost contact metric structure is cosymplectic if and
only if ∇̃Xϕ = 0, where ∇̃ is the Levi-Civita connection of the Riemannian
metric g. From the formula ∇̃Xϕ = 0 it follows that ∇̃Xξ = 0.

A plane section σ in TpM̃ of an almost contact metric manifold M̃ is
called a ϕ-section if σ ⊥ ξ and ϕ (σ) = σ. M̃ is of constant ϕ-sectional
curvature if at each point p ∈ M̃ , the sectional curvature K̃(σ) does not
depend on the choice of the ϕ-section σ of TpM̃ , and in this case for p ∈ M̃

and for any ϕ-section σ of TpM̃ , the function c defined by c (p) = K̃(σ)
is called the ϕ-sectional curvature of M̃ . A cosymplectic manifold M̃ with
constant ϕ-sectional curvature c is said to be a cosymplectic space form and
is denoted by M̃(c).

The curvature tensor R̃ of a cosymplectic space form M̃(c) is given by [8].

4R̃ (X, Y, Z, W ) = c[g (X, W ) g (Y,Z)− g (X, Z) g (Y, W )

+ g (X,ϕW ) g (Y, ϕZ)− g (X, ϕZ) g (Y, ϕW )− 2g (X,ϕY ) g (Z, ϕW )

− g (X,W ) η (Y ) η (Z) + g (X, Z) η (Y ) η (W )

− g (Y, Z) η (X) η (W ) + g (Y, W ) η (X) η (Z)] (1)

for all X, Y, Z, W ∈ TM̃ .
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Let M be an n-dimensional Riemannian manifold. The scalar curvature
τ at p is given by τ =

∑
i<j Kij , where Kij is the sectional curvature of

M associated with a plane section spanned by ei and ej at p ∈ M for any
orthonormal basis {e1, dots, en} for TpM . Now let M be a submanifold of
an m-dimensional manifold M̃ equipped with a Riemannian metric g. The
Gauss and Weingarten formulae are given respectively by ∇̃XY = ∇XY +
σ (X, Y ) and ∇̃XN = −ANX +∇⊥XN for all X, Y ∈ TM and N ∈ T⊥M ,
where ∇̃, ∇ and ∇⊥ are respectively the Riemannian, induced Riemannian
and induced normal connections in M̃ , M and the normal bundle T⊥M of
M respectively, and σ is the second fundamental form related to the shape
operator A by g (h (X,Y ) , N) = g (ANX,Y ). Then the equation of Gauss
is given by

R̃(X,Y, Z,W ) = R(X, Y, Z, W )+g(h(X, W ), h(Y, Z))−g(h(X, Z), h(Y, W ))
(2)

for any vectors X, Y, Z, W tangent to M , where R̃ and R are the curvature
tensors of M̃ and M respectively.

The relative null space of M at a point p ∈ M is defined by

Np = {X ∈ TpM |σ(X,Y ) = 0, for all Y ∈ TpM} .

Let {e1, . . . , en} be an orthonormal basis of the tangent space TpM . The
mean curvature vector H at p ∈ M is

H =
1
n

trace (σ) =
1
n

n∑

i=1

σ (ei, ei) . (3)

The submanifold M is totally geodesic in M̃ if σ = 0, and minimal if H = 0.
If σ(X, Y ) = g(X, Y )H for all X, Y ∈ TM , then M is totally umbilical. We
put

σr
ij = g(σ(ei, ej), er) ‖σ‖2 =

n∑

i,j=1

g(σ(ei, ej), σ(ei, ej)),

where er belongs to an orthonormal basis {en+1, . . . , em} of the normal space
T⊥p M .

Suppose L is a k-plane section of TpM and X a unit vector in L. We
choose an orthonormal basis {e1, . . . , ek} of L such that e1 = X.

Define the Ricci curvature RicL of L at X by

RicL(X) = K12 + K13 + · · ·+ K1k, (4)

where Kij denotes the sectional curvature of the 2-plane section spanned by
ei, ej . We simply call such a curvature a k-Ricci curvature.
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The scalar curvature τ of the k-plane section L is given by

τ(L) =
∑

1≤i<j≤k

Kij . (5)

For each integer k, 2 ≤ k ≤ n, the Riemannian invariant θk on an n-dimen-
sional Riemannian manifold M is defined by

Θk(p) =
1

k − 1
inf
L,X

RicL(X), p ∈ M, (6)

where L runs over all k-plane sections in TpM and X runs over all unit
vectors in L.

Now let M be an n-dimensional submanifold in an almost contact metric
manifold. For a vector field X in M , we put

ϕX = PX + FX, PX ∈ TM, FX ∈ T⊥M.

Thus, P is an endomorphism of the tangent bundle of M and satisfies
g (X, PY ) = −g (PX, Y ) for all X,Y ∈ TM . The squared norm of P is
given by

‖P‖2 =
n+1∑

i,j=1

g (ei, P ej)
2

for any local orthonormal basis {e1, e2, . . . , en+1} for TpM .
A submanifold M of an almost contact metric manifold with ξ ∈ TM

is called a semi-invariant submanifold or a contact CR submanifold ([8]) if
there exists two differentiable distributions D and D⊥ on M such that (i)
TM = D⊕D⊥⊕E , (ii) the distribution D is invariant by ϕ, i.e., ϕ(D) = D,
and (iii) the distribution D⊥ is anti-invariant by ϕ, i.e., ϕ(D⊥) ⊆ T⊥M .

The submanifold M tangent to ξ is said to be invariant or anti-invariant
([9]) according as F = 0 or P = 0. Thus, a CR-submanifold is invariant or
anti-invariant according as D⊥ = {0} or D = {0}. A proper CR-submanifold
is neither invariant nor anti-invariant.

For each non zero vector X ∈ TpM , such that X is not proportional to
ξp, we denote the angle between ϕX and TpM by θ (X). Then M is said
to be slant ([2], [7]) if the angle θ (X) is constant, that is, it is independent
of the choice of p ∈ M and X ∈ TpM − {ξ}. The angle θ of a slant
immersion is called the slant angle of the immersion. Invariant and anti-
invariant immersions are slant immersions with slant angle θ = 0 and θ =
π/2 respectively. A proper slant immersion is neither invariant nor anti-
invariant.

We say that a submanifold M tangent to ξ is a bi-slant submanifold of
M̃ ([3]) if there exists two orthogonal distributions D1 and D2 on M such
that
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(i) TM = D1 ⊕D2 ⊕ {ξ}.
(ii) For any i = 1, 2, the distribution Di is slant distribution with angle

θi.
Let 2d1 = dim D1 and 2d2 = dim D2.

Remark. If either d1 or d2 vanishes, the bi-slant submanifold is a slant sub-
manifold. Thus slant submanifolds are particular cases of bi-slant subman-
ifolds.

We say that M tangent to ξ is a semi-slant submanifold of M̃ ([3]) if there
exists two orthogonal distributions D1 and D2 on M such that

(i) TM = D1 ⊕D2 ⊕ {ξ}.
(ii) The distribution D1 is invariant by ϕ, i.e., ϕ(D1) = D1.
(iii) The distribution D2 is slant with angle θ 6= 0.

Let 2d1 = dim D1 and 2d2 = dim D2.
The invariant distribution of a semi-slant submanifold is a slant distribu-

tion with zero angle. Moreover, it is clear that, if θ = π
2 , then the semi-slant

submanifold is a semi-invariant submanifold.
(a) If d2 = 0, then M is an invariant submanifold.
(b) If d1 = 0 and θ = π

2 , then M is an anti-invariant submanifold.
(c) If d1 = 0 and θ 6= π

2 , then M is a proper slant submanifold, with
slant angle θ.

We say that a semi-slant submanifold is proper if d1d2 6= 0 and θ 6= π
2 .

3. Ricci curvature and squared mean curvature

Chen established a sharp relation between the Ricci curvature and squared
mean curvature for submanifold in real space forms ([6]).

In this section we want to prove some similar inequalities for bi-slant,
semi-slant and slant submanifolds in a cosymplectic space form.

Theorem 3.1. Let M be an (n = 2d1 + 2d2 + 1)-dimensional bi-slant sub-
manifold in a (2m+1)-dimensional cosymplectic space form M̃(c) tangential
to the structure vector field ξ. Then,

(i) For each unit vector X ∈ TpM orthogonal to ξ and if X ∈ D1 we
have

4Ric (X) ≤ n2‖H‖2 + (n− 1)c +
1
2

(
3cos2θ1 − 2

)
c, (7)

and if X ∈ D2 we have

4Ric (X) ≤ n2‖H‖2 + (n− 1)c +
1
2

(
3cos2θ2 − 2

)
c. (8)
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(ii) If H(p) = 0, a unit vector X ∈ TpM orthogonal to ξ satisfies the
equality case of (7) or (8) if and only if X belongs to the relative
null space Np.

(iii) The equality case of (7) or (8) holds for all unit vectors orthogonal
to ξ at p if and only if p is a totally geodesic point.

Proof. We choose an orthonormal basis {e1, . . . , en = ξ, en+1, . . . , e2m+1}
such that e1, . . . , en are tangent to M at p, with e1 = X.

From the equation of Gauss, we have

n2‖H‖2 = 2‖σ‖2 +2τ − n(n− 1)
4

c− [6(d1cos
2θ1 +d2cos

2θ2)−2n+2]
c

4
. (9)

From above equation, we have

n2‖H‖2 = 2τ +
2m+1∑

r=n+1

[
(σr

11)
2 + (σr

22 + · · ·+ σr
nn)2 + 2

∑

i<j

(σr
ij)

2
]

− 2
2m+1∑

r=n+1

∑

2≤i<j≤n

σr
iiσ

r
jj −

n(n− 1)
4

c− [6(d1cos
2θ1 + d2cos

2θ2)− 2n + 2]
c

4

= 2τ +
1
2

2m+1∑

r=n+1

[(σr
11 + · · ·+ σr

nn)2 + (σr
11 − σr

22 − · · · − σr
nn)2]

+ 2
2m+1∑

r=n+1

∑

i<j

(σr
ij)

2 − 2
2m+1∑

r=n+1

2
∑

2≤i<j≤n

σr
iiσ

r
jj −

n(n− 1)
4

c

− [6(d1cos
2θ1 + d2cos

2θ2)− 2n + 2]
c

4
. (10)

From the equation of Gauss we can get
a) If X ∈ D1

Kij =
2m+1∑

r=n+1

[σr
11 + σr

22 − (σr
12)

2] +
c

4
+ 3cos2θ1

c

4
, (11)

and consequently

∑

2≤i<j≤n

Kij =
2m+1∑

r=n+1

∑

2≤i<j≤n

[σr
iiσ

r
jj − (σr

ij)
2] +

(n− 1)(n− 2)
2

c

4

+ [6(d1cos
2θ1 + d2cos

2θ2)− 3cos2θ1 − 2n + 4]
c

8
. (12)

Substituting (12) in (10), we have
1
2
n2‖H‖2 ≥ 2Ric (X)− 2(n− 1)

c

4
− c

4
(3cos2θ1 − 2)
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which is equivalent to (7).
b) If X ∈ D2

Kij =
2m+1∑

r=n+1

[σr
11 + σr

22 − (σr
12)

2] +
c

4
+ 3cos2θ2

c

4
, (13)

and consequently

∑

2≤i<j≤n

Kij =
2m+1∑

r=n+1

∑

2≤i<j≤n

[σr
iiσ

r
jj − (σr

ij)
2] +

(n− 1)(n− 2)
2

c

4

+ [6(d1cos
2θ1 + d2cos

2θ2)− 3cos2θ2 − 2n + 4]
c

8
. (14)

Substituting (14) in (10), we have

1
2
n2‖H‖2 ≥ 2Ric (X)− 2(n− 1)

c

4
− c

4
(3cos2θ2 − 2)

which is equivalent to (8).
The equality case of (7) or (8) is satisfied if and only if

σr
11 = σr

22 + · · ·+ σr
nn,

σr
12 = · · · = σr

1n = 0, r ∈ {n + 1, . . . , 2m + 1} . (15)

If H(p) = 0, (15) implies that e1 = X belongs to the relative null space Np

at p. Conversely, if e1 = X lies in the relative null space, then (15) holds
because H(p) = 0 is assumed. This proves statement (ii).

Now, we prove (iii). Assume that the equality case of (7) or (8) for all
unit tangent vectors orthogonal to ξ at p ∈ M is true. Then for each
r ∈ {n + 1, . . . , 2m + 1}, we have

2σr
ii = σr

11 + · · ·+ σr
nn, i ∈ {1, . . . , n} ,

σr
ij = 0, i 6= j. (16)

Thus, we have two cases, namely either n = 1 or n 6= 1. In the first case p is a
totally umbilical point, while in the second case p is a totally geodesic point.
Since ξ ∈ TM , therefore each totally umbilical point is totally geodesic.
Thus in both cases, p is a totally geodesic point. The proof of converse part
is straightforward. ¤

Similarly we can prove the following theorems:

Theorem 3.2. Let M be an (n = 2d1+2d2+1)-dimensional semi-slant sub-
manifold in a (2m+1)-dimensional cosymplectic space form M̃(c) tangential
to the structure vector field ξ. Then,
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(i) For each unit vector X ∈ TpM orthogonal to ξ and if X ∈ D1 we
have

4Ric (X) ≤ n2‖H‖2 + nc− 1
2
c, (17)

and if X ∈ D2 we have

4Ric (X) ≤ n2‖H‖2 + (n− 1)c+
1
2

(
3cos2θ − 2

)
c. (18)

(ii) If H(p) = 0, a unit vector X ∈ TpM orthogonal to ξ satisfies the
equality case of (17) or (18) if and only if X belongs to the relative
null space Np.

(iii) The equality case of (17) or (18) holds for all unit vectors orthogonal
to ξ at p if and only if p is a totally geodesic point.

Theorem 3.3. Let M be an n-dimensional θ-slant submanifold in a (2m +
1)-dimensional cosymplectic space form M̃(c) tangential to the structure vec-
tor field ξ. Then,

(i) For each unit vector X ∈ TpM orthogonal to ξ, we have

4Ric (X) ≤ n2‖H‖2 + (n− 1)c +
1
2

(
3cos2θ − 2

)
c. (19)

(ii) If H(p) = 0, a unit vector X ∈ TpM orthogonal to ξ satisfies the
equality case of (19) if and only if X belongs to the relative null
space Np.

(iii) The equality case of (19) holds for all unit vectors orthogonal to ξ
at p if and only if p is a totally geodesic point.

For invariant, anti-invariant and contact CR submanifolds in a cosym-
plectic space form, we have the following results.

Corollary 3.1. Let M be an n-dimensional invariant submanifold in a
(2m+1)-dimensional cosymplectic space form M̃(c) tangential to the struc-
ture vector field ξ. Then,

(i) For each unit vector X ∈ TpM orthogonal to ξ, we have

4Ric (X) ≤ nc− c

2
. (20)

(ii) If H(p) = 0, a unit vector X ∈ TpM orthogonal to ξ satisfies the
equality case of (20) if and only if X belongs to the relative null
space Np.

(iii) The equality case of (20) holds for all unit vectors orthogonal to ξ
at p if and only if p is a totally geodesic point.

Corollary 3.2. Let M be an n-dimensional anti-invariant submanifold in a
(2m+1)-dimensional cosymplectic space form M̃(c) tangential to the struc-
ture vector field ξ. Then,
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(i) For each unit vector X ∈ TpM orthogonal to ξ, we have

4Ric (X) ≤ n2‖H‖2 + (n− 2)c. (21)

(ii) If H(p) = 0, a unit vector X ∈ TpM orthogonal to ξ satisfies the
equality case of (21) if and only if X belongs to the relative null
space Np.

(iii) The equality case of (21) holds for all unit vectors orthogonal to ξ
at p if and only if p is a totally geodesic point.

Corollary 3.3. Let M be an n-dimensional contact CR submanifold in a
(2m+1)-dimensional cosymplectic space form M̃(c) tangential to the struc-
ture vector field ξ. Then,

(i) For each unit vector X ∈ TpM orthogonal to ξ and if X ∈ D we
have

4Ric (X) ≤ n2‖H‖2 + nc− 1
2
c. (22)

and if X ∈ D⊥ we have

4Ric (X) ≤ n2‖H‖2 + (n− 2)c. (23)

(ii) If H(p) = 0, a unit vector X ∈ TpM orthogonal to ξ satisfies the
equality case of (22) or (23) if and only if X belongs to the relative
null space Np.

(iii) The equality case of (22) or (23) holds for all unit vectors orthogonal
to ξ at p if and only if p is a totally geodesic point.

4. k-Ricci curvature

In this section, we study the relationship between the k-Ricci curvature
and the squared mean curvature for bi-slant, slant and semi-slant submani-
folds in a cosymplectic space form.

First, we state a relationship between the scalar curvature and the squared
mean curvature for bi-slant submanifolds in a cosymplectic space form.

Theorem 4.1. Let M be an (n = 2d1 + 2d2 + 1)-dimensional bi-slant sub-
manifold in a (2m+1)-dimensional cosymplectic space form M̃(c) tangential
to the structure vector field ξ. Then we have

‖H‖2 ≥ 2τ

n(n− 1)
− c

4
− [3(d1cos

2θ1 + d2cos
2θ2)− n + 1]c

2n(n− 1)
. (24)

Proof. We choose an orthonormal basis {e1, . . . , en = ξ, en+1, . . . , e2m+1} at
p ∈ M such that e1, . . . , en are tangent to M at p such that en+1 is parallel
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to the mean curvature vector H(p) and e1, . . . , en diagonalize the shape
operator An+1. Then the shape operators take the forms

An+1 =




a1 0 . . . 0
0 a2 . . . 0
. . . . . .
. . . . . .
0 0 . . . an.




(25)

Ar =
(
hr

ij

)
, i, j = 1, . . . , n; r = n + 2, . . . , 2m; traceAr =

n∑

i=1

hr
ii = 0.

(26)
From (9), we get

n2‖H‖2 = 2τ +
n∑

i=1

a2
i +

2m+1∑

r=n+2

n∑

i,j=1

(hr
ij)

2 − n(n− 1)
4

c

− [6(d1cos
2θ1 + d2cos

2θ2)− 2n + 2]
c

4
. (27)

On the other hand, since

0 ≤
∑

i<j

(ai − aj)2 = (n− 1)
∑

i

a2
i − 2

∑

i<j

aiaj ,

we obtain

n2 ‖H‖2 = (
n∑

i=1

ai)2 =
n∑

i=1

a2
i + 2

∑

i<j

aiaj ≤ n

n∑

i=1

a2
i ,

which implies
n∑

i=1

a2
i ≥ n ‖H‖2 .

So we have

n2‖H‖2 = 2τ+n‖H‖2−n(n− 1)
4

c−[3(d1cos
2θ1+d2cos

2θ2)−2n+2]
c

4
, (28)

which is equivalent to (24). ¤
Using Theorem 4.1, we obtain the following.

Theorem 4.2. Let M be an (n = 2d1 + 2d2 + 1)-dimensional bi-slant sub-
manifold in a (2m+1)-dimensional cosymplectic space form M̃(c) tangential
to the structure vector field ξ. Then, for any integer k, 2 ≤ k ≤ n, and any
point p ∈ M , we have

‖H‖2 (p) ≥ Θk(p)− c

4
− [3(d1cos

2θ1 + d2cos
2θ2)− n + 1]c

2n(n− 1)
. (29)
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Proof. Let {e1, . . . , en = ξ} be an orthonormal basis of TpM . Denote by
Li1...ik the k-plane section spanned by ei1 , . . . , eik . It follows from (4) and
(5) that

τ(Li1...ik) =
1
2

∑

i∈{i1,...,ik}
RicLi1...ik

(ei), (30)

τ(p) =
1

Ck−2
n−2

∑

1≤i1<···<ik≤n

τ(Li1...ik). (31)

Combining (6), (30) and (31), we find

τ(p) ≥ n(n− 1)
2

Θk(p). (32)

From (24) and (32), we obtain (29). ¤

Similarly we can prove the following theorems:

Theorem 4.3. Let M be an (n = 2d1+2d2+1)-dimensional semi-slant sub-
manifold in a (2m+1)-dimensional cosymplectic space form M̃(c) tangential
to the structure vector field ξ. Then we have

‖H‖2 ≥ 2τ

n(n− 1)
− c

4
− [3(d1 + d2cos

2θ)− n + 1]c
2n(n− 1)

. (33)

Theorem 4.4. Let M be an (n = 2d1 + 2d2 + 1)-dimensional semi-slant
submanifold in a (2m + 1)-dimensional cosymplectic space form M̃(c) tan-
gential to the structure vector field ξ. Then, for any integer k, 2 ≤ k ≤ n,
and any point p ∈ M , we have

‖H‖2 (p) ≥ Θk(p)− c

4
− [3(d1 + d2cos

2θ)− n + 1]c
2n(n− 1)

. (34)

Theorem 4.5. Let M be an n-dimensional θ-slant submanifold in a (2m +
1)-dimensional cosymplectic space form M̃(c) tangential to the structure vec-
tor field ξ. Then we have

‖H‖2 ≥ 2τ

n(n− 1)
− c

4
− [3(n− 1)cos2θ − 2n + 2]c

4n(n− 1)
. (35)

Theorem 4.6. Let M be an n-dimensional θ-slant submanifold in a (2m +
1)-dimensional cosymplectic space form M̃(c) tangential to the structure vec-
tor field ξ. Then, for any integer k, 2 ≤ k ≤ n, and any point p ∈ M , we
have

‖H‖2 (p) ≥ Θk(p)− c

4
− [3(n− 1)cos2θ − 2n + 2]c

4n(n− 1)
. (36)
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Finally for invariant, anti-invariant contact CR submanifolds in a cosym-
plectic space form, we have:

Corollary 4.1. Let M be an n-dimensional invariant submanifold in a
(2m+1)-dimensional cosymplectic space form M̃(c) tangential to the struc-
ture vector field ξ. Then, for any integer k, 2 ≤ k ≤ n, and any point p ∈ M ,
we have

Θk(p) ≤ c

4
+

c

4n
. (37)

and
‖H‖2 (p) ≥ Θk(p)− c

4
+

c

2n
. (38)

Corollary 4.2. Let M be an (n = 2d1 + 2d2 + 1)-dimensional contact CR
submanifold (θ1 = 0, θ2 = π

2 ) in a (2m + 1)-dimensional cosymplectic space
form M̃(c) tangential to the structure vector field ξ. Then, for any integer
k, 2 ≤ k ≤ n, and any point p ∈ M , we have

‖H‖2 (p) ≥ Θk(p)− c

4
− (3d1 − n + 1)c

2n(n− 1)
. (39)
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