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UNIVERSALITY RESULTS FOR WELL-FOUNDED POSETS

MIRNA DŽAMONJA AND KATHERINE THOMPSON

Abstract. In this paper it is shown that the univerality spectrum of
well-founded posets is exactly the same as the spectrum of the class of
well-orders. A universality result for a restricted class of well-founded
posets under rank and order preserving embeddings is also proved. This
is done using a club guessing method generalised by Kojman which
demonstrates a surjective homomorphism with subsets of the reals of
bounded size ordered by inclusion.

1. Introduction

Well-founded partial orders arise naturally in many different areas of
mathematics. In the context of universality, they are interesting structures
because they provide a simple example of a theory which is not first order.

To clarify our use of universality, we will present the basic definitions.
Embeddings for ordered sets are normally injective order-preserving maps,
but other types of embeddings will be considered. This will be the definition
of the embedding unless otherwise specified. Given a set of structures, Aλ

each of size λ, a universal model for Aλ is one which embeds all other
structures in Aλ. If there does not exist a universal model for Aλ, then
we consider its complexity, or the smallest size of a family of structures of
Aλ which embeds the rest. Such a family of structures is called a universal
family. The complexity of a class is also referred to as the cofinality by some
authors. The universal spectrum for a class of structures A is the family
of cardinals for which A has a universal model (given cardinal arithmetic
assumptions).

In Section 2 we will give an account of the universality spectrum of well-
founded partial orders under the usual embeddings.
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Recall that a well-founded partial order is a partial order which does not
have infinite decreasing sequences. We sometimes abbreviate well-founded
partial order as WFPO. Kojman and Shelah in [3] prove in ZFC that if any
complete first order theory with the strict order property has a universal
model in some power, then so does the theory of linear orders. If we restrict
ourselves to well-founded partial orders, then we cannot use the results in [3]
since the strict order property only applies to complete first order theories.
In [9] it is proved that every partial order has an extension to a linear
order. We also cannot immediately use this extension to deny the existence
of universal WFPOs as the extending linear orders are generally not well-
founded (see [6]).

However, in [1] one can find a proof that every WFPO has a linear aug-
mentation that is well ordered. So any universal well order is also a universal
WFPO. Moreover, we shall show that WFPOs have universal models in ex-
actly the cardinalities that ordinals do, namely that for every λ ≥ ℵ0 there
are λ+ many well orders which are jointly universal for all well-founded par-
tial orders of size λ. Thus, the universality spectrum for both ordinals and
WFPOs is only the set of finite cardinals.

In Section 3, we shall consider a different type of universality. We will
restrict both the set of structures and the embedding to get a different
universality result for a certain kind of well-founded partial orders. This is
done via a club guessing method first used by Shelah and Kojman in [3]
and then generalized by Kojman in [2]. Kojman’s method involves finding
a surjective homomorphism between certain subsets of P(ω) ordered by the
subset relation and the structures in question ordered by embeddability.

The embeddings considered in that section preserve rank as well as order.
This type of embedding has been mostly considered in the context of trees
(see e.g. [10]).

The main result then is as follows. Let Aλ be the set of isomorphism
types of well-founded posets A of size λ regular for ℵ1 < λ < 2ℵ0 such that
for all x ∈ A and α < rk(x) we have that |{y ≤ x : rk(y) = α}| < λ and
|{z ∈ A : x ≤ z}| < λ. Then the complexity of Aλ under rank and order
preserving embeddings is at least 2ℵ0 .

We do not know if our result can be obtained without the use of the
club guessing method, or if it is consistent for our class to have complexity
ℵ1 < 2ℵ0 at ℵ1. A consistency proof of such a complexity is provided by
Shelah in [7], where there is a universal linear order of size ℵ1. It is not clear
if this complex method could be applied to our class of structures. There is
also the method for proving positive consistency results about universality
due to Džamonja and Shelah in [5]. It applies to abstract elementary classes
(with certain additional properties) but the class of well-founded posets is
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not an abstract elementary class because it is not closed under increasing
unions.

2. Well-founded posets and well-orders

We will first examine the universal spectrum of well-orders under ZFC
with the usual embeddings and show how this is related to the universal
spectrum of well-founded partial orders. The results regarding these spectra
do not seem to appear in the literature even though the proofs are easy
corollaries of known results.

Fraisse in [1, Section 2.9.2] showed that any well-founded partial can be
augmented to a well-order. This can be done by well-ordering the antichain
of elements at each rank of the poset. These augmentations do not affect
embeddings since the original order is preserved. Thus, the existence of
a universal well-order in a given cardinal is equivalent to the existence of
a universal well-founded partial order in that cardinal. Moreover, the two
classes must have the same complexity in every cardinality.

Fact 2.1. For any infinite cardinal λ, the complexity of the set of well-orders
of size < λ is cf(λ).

In particular, the complexity of well-orders of size λ is λ+. Fewer than
λ+ well-orders do not suffice since by the regularity of λ+ there would be
an ordinal with order type larger than all of them.

So we may say that for an infinite cardinal λ, the complexity of the set
of WFPOs of size λ is λ+. This fact is non-trivial if λ+ < 2λ. That is, λ+

would form a “small” universal family, i.e. a family whose size is less than
the number of isomorphism types of WFPOs of size λ.

3. A universality result using the preservation/construction
method

In this section we will use a stronger embedding and get a result about
the complexity of a restricted class of well-founded partial orders of a certain
size under these embeddings. The embedding will preserve not only order,
but rank as well, a notion introduced in the last section. First, we will give
an intuitive idea of the type of argument used in the proof.

Kojman in [2] generalized a method used in [3] to show that graphs
omitting a certain type of subgraph have no universal model at certain
λ ∈ (ℵ1, 2ℵ0), in fact they have complexity at least max{λ+, 2ℵ0}. We
will call this the preservation/construction method. We shall use this
method in a certain class of well-founded partial orders.

Now we will fix a regular cardinal λ ∈ (ℵ1, 2ℵ0), so in particular we assume
CH fails.
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In the next result, we will use the preservation/construction method for
certain well-founded partial orders. Given a WFPO with universe λ, one
assigns an index to club many elements of λ (that is, the set of elements of
λ to which we assign an index forms a club of λ). Modulo a club guessing
sequence, club many of these indices are preserved under embeddings.
Then we show that for every infinite subset of ω we can construct a
well-founded partial order with universe λ which has that set as the index of
club many elements. The contradiction comes as the universal must have an
element corresponding to all 2ℵ0 many infinite subsets of ω. The definition
of the index can be quite complicated and in this case, it is only fixed up
to a filtration. Since any two filtrations agree on a club, the index is fixed
modulo the club filter on λ and thus the preservation is obtained when we
use a club guessing sequence.

To prove the preservation property, we construct a surjective homo-
morphism from a set of structures of size λ, to subsets of (a certain set
of the size of) the continuum. A homomorphism in this context is a map
which preserves a specified ordering. We will define the homomorphism for
our context.

Notation 3.1. If A1, A2 ∈ Aλ are structures of size λ, then A1 � A2 means
that there exists an embedding f : A1 → A2.

The homomorphism Φ that we will study is from 〈Aλ,�〉, that is, the set
of structures Aλ together with the embedding order, to a certain structure
P ordered by the subset relation, denoted by 〈P,⊆〉. We shall define P
below. To say that the homomorphism preserves these relations means that
if A1, A2 ∈ Aλ with A1 � A2 then Φ(A1) ⊆ Φ(A2).

Let P̄(ω) = P(ω)/Fin, where Fin is the ideal of all finite subsets of ω.
Let

P = {B ∈ [P̄(ω)]≤λ : ∅ ∈ B}.
One can see that when the surjective homomorphism from Aλ to P exists

at λ ∈ (ℵ1, 2ℵ0), the complexity of the set Aλ is at least 2ℵ0 . In fact,
if Φ is a homomorphism from one quasi-ordered set with cofinal range in
another, then the complexity of the first set is at least that of the second.
The theorem specifically for graphs forbidding a certain subgraph is due to
Kojman in [2].

In particular, no universal model exists. This will be the construction
lemma as defined above. That is, given that the homomorphism preserves
the ordering, we can construct an element that cannot embed into any set
of < 2ℵ0 structures.

Now our aim is to show that this homomorphism exists for certain families
of well-founded partial orders. However, we must use a different type of
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embedding than the usual one for ordered sets. If we used the usual order
preserving embedding then every member of the class would embed into an
ordinal of the same size. Therefore, the complexity would be as discussed
in Section 2. We will give here the definition of the embedding that we use.

Definition 3.2. Let (A,≤A), (B,≤B) be well-founded partial orders of size
λ. A rank preserving embedding is a (one-to-one) map f : A → B where
for all x, y ∈ A we have x ≤A y implies that f(x) ≤B f(y) and rkA(x) =
rkB(f(x)).

So the embedding preserves order and rank. Note that this does not imply
that incomparability is preserved. The result given will hold for injective
and non-injective embeddings. Embeddings like these (without one-to-one)
have been considered extensively in the literature, see e.g. Todorčević and
Väänänen’s paper [10]. Now that we have defined the embedding, we will
concentrate on the homomorphism.

Using part of [2, Th. 1.10] we can reduce the homomorphism we are
looking for to one modulo a normal ideal.

First we will explain the notation (P,⊆)λ/I used below. Let s : λ → P
and t : λ → P so for all α < λ we have s(α) ∈ P and similarly for t. Then
s ⊆I t if and only if {α : s(α) 6⊆ t(α)} ∈ I.

Below is the precise statement of the reduction from [2] just mentioned.

Lemma 3.3. Let λ be a regular infinite cardinal. For every proper ideal I
over λ, if there exists φ : 〈Aλ,�〉 → (P,⊆)λ/I a surjective homomorphism
then there exists Φ : 〈Aλ,�〉 → (P,⊆) a surjective homomorphism.

Proof. We will construct ψ : (P,⊆)λ/I → (P,⊆) such that ψ ◦ φ = Φ.
That is, we will show that (P,⊆) is a homomorphic image of (P,⊆)λ/I for
every ideal I. Suppose that Ā = 〈A(δ) : δ < λ〉 is a representative of an
equivalence class of (P,⊆)λ/I. Define

ψ([Ā]) := {x ∈ P̄(ω) : {δ < λ : x ∈ Ā(δ)} 6∈ I}.
In words, ψ([Ā]) is the set of all elements of P which appear in a positive
set of coordinates.

One can check that the definition of ψ([Ā]) does not depend on the choice
of representative. So suppose 〈A(δ) : δ < λ〉 =I 〈B(δ) : δ < λ〉. This
means that {δ < λ : A(δ) 6= B(δ)} ∈ I. Hence for any x ∈ P̄(ω) we have
{δ < λ : x ∈ Ā(δ)} 6∈ I if and only if {δ < λ : x ∈ B̄(δ)} 6∈ I.

To see that ψ is a homomorphism, suppose 〈A(δ) : δ < λ〉 ⊆I 〈B(δ) : δ <
λ〉. Hence for every x ∈ P̄(ω) we have {δ < λ : x ∈ A(δ) does not imply
x ∈ B(δ)} ∈ I.

Finally, we show that ψ is surjective. Given A ∈ P let Ā be the equiv-
alence class of 〈A(δ) : δ < λ〉 where each A(δ) = A. Then ψ([Ā]) = {x ∈
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P̄(ω) : {δ < λ : x ∈ A(δ)} 6∈ I} = {x ∈ P̄(ω) : x ∈ A} = A. Here we use
that I is proper. �

Now we will restrict ourselves to finding this homomorphism for certain
WFPOs. Let Aλ be the set of well-founded partial orders A with size λ and
such that the following two conditions hold:

1. For all x ∈ A and α < rk(x) we have that |{y ≤ x : rk(y) = α}| < λ,
2. For all x ∈ A we have |{z ∈ A : x ≤ z}| < λ.

Examples of such structures include any disjoint union λ copies of an or-
dinal < λ. Let 〈Aλ,�〉 be the set defined above with the rank preserving
embedding.

Theorem 3.4. Suppose that λ > ℵ1 is regular. Then there is a proper,
normal ideal I over λ such that there exists a surjective homomorphism
φ : 〈Aλ,≤〉 → (P,⊆)λ/I.

Proof. We will first define the ideal I and show that it is normal and λ-
complete. Then we define the homomorphism φ and show that this is indeed
a surjective homomorphism.

Fix a club guessing sequence C̄ = 〈cδ : δ ∈ S〉 such that S ⊆ λ is
stationary and type(cδ) = ω for all cδ ∈ C̄. This sequence is known to exist,
see Shelah’s introduction to club guessing in [8] for more information. For
each δ ∈ S, let 〈αδ

n : n < ω〉 be the increasing enumeration of cδ. The
notation used below, A ⊆∗ B, means that all but finitely many members of
A are also members of B.

Let

I := {X ⊆ λ : (∃E ⊆ λ a club) (∀δ ∈ X ∩ S) cδ 6⊆∗ E}.
One can easily check that this is an ideal. Since C̄ is a club guessing

sequence, I is proper, that is, λ 6∈ I.
The ideal is normal and λ-complete as we now show. �

Lemma 3.5. The ideal I, defined above, is normal, i.e. it is closed under
diagonal unions of length λ.

Proof. Given a sequence 〈Nα : α < λ〉 such that each Nα is in I, let N =
5{Nα : α < λ}.

For each α < λ let Eα witness the fact that Nα is in I. The diagonal
intersection of the witnesses

E = 4α<λEα = {β : (∀α < β) β ∈ Eα},
is itself a club, as it is the diagonal intersection of λ club subsets of λ (the
proof of this statement can be found in [4, Ch. II, Lemma 6.14]).

Now we will show that E witnesses that N ∈ I. If E does not witness that
N ∈ I then there exists a δ ∈ N such that cδ ⊆∗ E. We know that there is
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an α < δ such that cδ 6⊆∗ Eα by the definition of N . Let β ∈ cδ \ (α+ 1) be
arbitrary such that β ∈ E. Such a β exists as it is assumed that cδ ⊆∗ E
and cδ is unbounded in δ. By definition of E we have β ∈ Eα since β > α.
Hence we are left with

cδ ⊆∗ {β ∈ cδ : β ∈ E \ (α+ 1)} ⊆ {β ∈ cδ : β ∈ Eα} ⊆ Eα,

which contradicts our assumptions on cδ. �

Lemma 3.6. Let λ be as above. Then the ideal I given in the proof of
Theorem 3.4 is λ-complete, i.e. it is closed under unions of size < λ.

Proof. Given an ordinal i∗ < λ and a sequence 〈Xi : i < i∗〉 of members of
I, we will show that X =

⋃
i<i∗ Xi is a member of I.

For each i < i∗, fix a club Ei such that Ei witnesses the fact that Xi is in
I. Let E =

⋂
i<i∗ Ei. We know that E is a club since it is the intersection

of fewer than λ clubs of λ (again, this fact and proof can be found in [4, Ch.
2, Lemma 6.8]).

Now we will show that E witnesses that X is in I. For each δ ∈ X, there
exists an α < i∗ such that δ ∈ Xα, thus cδ 6⊆∗ Eα. Suppose, contrary to
the statement of the lemma, that cδ ⊆∗ E for some δ ∈ X. However by the
definition of E, we get cδ ⊆∗ E ⊆ Eα, which is a contradiction. �

Now by Lemma 3.3 it suffices to define the homomorphism modulo the
proper ideal I. Since in the homomorphism we are only concerned with
preservation of relations modulo I, we can work with representatives of each
equivalence class of I.

Since each A ∈ Aλ has an isomorphic copy whose universe is λ×λ×2 we
shall only work with such orders. This is because such a coding will allow
us to construct the appropriate elements of Aλ in the surjection argument
in Lemma 3.9.

In order to define the homomorphism φ, we must introduce a couple of
auxiliary functions that might be different for each A ∈ Aλ, but will be fixed
now for the rest of the proof. Let A be such a WFPO and let Aα := λ×α×2
for α < λ. Also, if (A,≤A) is a well-founded partial order and x ∈ A then
define A[x] := {y ∈ A : y ≤A x}.

Now, fix A ∈ Aλ (with universe λ × λ × 2). Recall that αδ
n is the n-th

term in the enumeration of cδ. Also recall that cδ has order type ω and is
an element of the club guessing sequence we fixed at the beginning of this
proof. For x ∈ A and δ < λ let

φ(A, x, δ) =

{
[{n < ω : A[x] ∩Aαδ

n 6= A[x] ∩Aαδ
n+1}]Fin if δ ∈ S

∅ otherwise
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φ(A, δ) = {φ(A, x, δ) : x ∈ A} ∪ {∅}
φ(A) = [〈φ(A, δ) : δ < λ〉]I .

One can see that φ(A) is a member of Pλ/I as φ(A, x, δ) ∈ P̄(ω) and
φ(A, δ) ⊆ [P̄(ω)]≤λ while ∅ ∈ φ(A, δ). One can see that φ(A, x, δ) is a subset
of ω mod Fin. Since |A| = λ then |φ(A, δ)| ≤ λ.

We need to show that φ is a homomorphism as required. This next
lemma corresponds to the preservation lemma in [3] where the invariance
preserved here is the subset relation on the reals.

Lemma 3.7. The map φ as defined above is a homomorphism. In particu-
lar, if A1, A2 ∈ Aλ, then A1 � A2 implies that φ(A1) ⊆ φ(A2) modulo I.

Proof. Let A1, A2 be as in the statement of the lemma. We need to show
that

S \ {δ ∈ S : φ(A1, δ) ⊆ φ(A2, δ)} ∈ I.
Since we are assuming that A1 � A2, there is a rank preserving embedding
(in the sense of Definition 3.2) f : A1 → A2. In this proof we use the
notation (α, γ, l) < δ for α, γ < λ and l < 2 to mean α, γ < δ. Also, for
X ⊆ λ × λ × 2 we define sup(X) to be sup({α : (∃β, l)(α, β, l) ∈ X or
(β, α, l) ∈ X}). Let

C = {δ < λ :(∀α, γ < δ) (∀l < 2)f(α, γ, l) < δ, and

(∀α, γ < δ and ∀l < 2 such that f−1(α, γ, l) is well-defined)

f−1(α, γ, l) < δ}

and let D be the set of all δ < λ such that for all α, γ < δ for all l < 2
and for all β, ε,m, if there exists z ≥Ai (α, γ, l), (β, ε,m) then we have that
rkAi((α, γ, l)) = rkAi((β, ε,m)) implies β, ε < δ for i = 1, 2. �

Claim 3.8. If A1 � A2 and f is as above then E = C ∩D is a club subset
of λ.

Proof. This proof will be given in two parts; both C and D will be shown
to form a club. Then E, as the intersection of these two clubs is a club.

We will first show that C is unbounded in λ, that is, given β < λ we can
find α ∈ (β, λ) such that α ∈ C. To this end, we will define a sequence
〈βn : n < ω〉 with β0 = β and βω = supn<ω βn = α. Let

βn+1 =sup ({f(δ, ε,m) : δ, ε < βn and m < 2}
∪ {f−1(α, γ, l) : α, γ < βn, l < 2 and f−1(α, γ, l) is well-defined}

)
∪ (βn + 1).

Note that each βn < λ.
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To show that α ∈ C, note that for all δ, ε < α and m < 2 there exists an
n < ω such that δ, ε < βn. Therefore, there also exists an n < ω such that
f(δ, ε,m) < βn+1 and so we have f(δ, ε,m) < α.

On the other hand, if we have f(δ, ε,m) < α then there exists an n < ω
with f(δ, ε,m) < βn and so there exists n < ω with (δ, ε,m) < βn so
f−1(δ, ε,m) < βn+1 < α.

To show that C is closed, suppose sup(C ∩ δ) = δ and thus, δ is a limit
ordinal. Let 〈βξ : ξ < ξ∗〉 be a sequence increasing to δ such that βξ ∈ C
for all ξ < ξ∗. So for all α, γ < δ and l < 2, there exists ξ < ξ∗ such that
α, γ < βξ. Thus, f(α, γ, l) < βξ < δ as βξ ∈ C. If α, γ < δ and l < 2 are
such that f−1(α, γ, l) is defined, then similarly, we can find a βξ < δ such
that α, γ < βξ. Again, f−1(α, γ, l) < βξ < δ as βξ ∈ C.

Now we will show that D is unbounded in λ. So given α0 < λ we define
αn+1 > α0 by induction such that αω = sup{αn : n < ω} ∈ D. To that
end, assume αn is defined and let αn+1 = sup{β : (∃i ∈ {1, 2})(∃α, γ < αn)
(∃l < 2)(∃ε,m)(∃z ≥Ai (α, γ, l), (β, ε,m))rkAi(α, γ, l) = rkAi(β, ε,m)} + 1.
By our assumptions on Aλ, we know that αn+1 < λ. Namely, for each α
the set Bα = {β : (∃i ∈ {1, 2})(∃ε,m, γ, l) rkAi(β, ε,m) = rkAi(α, γ, l) and
∃z ≥Ai (α, γ, l), (β, ε,m)} has size < λ, so αn+1 = sup

⋃
α<αn

Bα is < λ.
Let i ∈ {1, 2} be given. For αω as defined above, let α, γ < αω and

β, ε,m, l be such that rkAi(α, γ, l) = rkAi(β, ε,m) and there exists z ≥Ai

(α, γ, l), (β, ε,m). Then there exists n < ω such that α, γ < αn and hence
β, ε < αn+1 < αω.

To show that D is closed, let δ = sup(D∩δ) and we will show that δ ∈ D.
Given α, γ < δ and β, ε,m, l such that there exists z ≥Ai (α, γ, l), (β, ε,m)
and rkAi(α, γ, l) = rkAi(β, ε,m), we will show that β, ε < δ. There exists
η < δ such that η ∈ D and α, γ < η as δ is a limit. Since η ∈ D we can
conclude that β, ε < η < δ. �

If we define N(E) to be {δ ∈ S : cδ ⊆∗ E} then we have that S\N(E) ∈ I
by definition of I. This is because these are exactly the δ ∈ S for which the
club E witnesses that cδ 6⊆∗ E.

Now we need to show that for all δ ∈ N(E), we have φ(A1, δ) ⊆ φ(A2, δ).
This implies that φ(A1) ⊆ φ(A2) modulo I as required.

Let δ ∈ N(E) and we will show that for each x ∈ A1 we have φ(A1, x, δ) ∈
φ(A2, δ). In fact, we will demonstrate that φ(A1, x, δ) = φ(A2, f(x), δ) mod-
ulo Fin and this will suffice as clearly φ(A2, f(x), δ) ∈ φ(A2, δ).

So for each x ∈ A1, we will first consider n ∈ φ(A1, x, δ) and show that
n ∈ φ(A2, f(x), δ). We may assume that αδ

n+1, α
δ
n ∈ E as this is the case

for all but finitely many n. By the definition of φ, we have that there

exists y ≤A1 x such that y ∈ Aαδ
n+1

1 \ Aαδ
n

1 . By the definition of E, we have
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that f(y) must also be in A
αδ

n+1

2 \ Aαδ
n

2 . Because of the order preservation
in the embedding, it is the case that f(y) ≤A2 f(x). This shows that
n ∈ φ(A2, f(x), δ).

In the other direction, we will now consider n ∈ φ(A2, f(x), δ) for x ∈
A1. Again we may assume that αδ

n+1, α
δ
n ∈ E. In this case there exists

w ≤A2 f(x) such that w ∈ Aαδ
n+1

2 \Aαδ
n

2 . Since w ≤A2 f(x) we have that the
rkA2(w) ≤ rkA2(f(x)) = rkA1(x) by the rank preservation of the embedding.
Hence, there exists z ≤A1 x such that rkA1(z) = rkA2(w). This means that
f(z) ≤A2 f(x) by the order preservation of the embedding and therefore,

rkA2(f(z)) = rkA1(z) = rkA2(w). This shows that since w ∈ A
αδ

n+1

2 , also

f(z) ∈ Aαδ
n+1

2 by the definition of D.

Now suppose that f(z) ∈ A
αδ

n
2 and we will arrive at a contradiction.

There exists a ≥A2 w, f(z) namely a = f(x), and we know that rkA2(w) =
rkA1(z). Now by the definition of D we have w ∈ A

αδ
n

2 , which contradicts
our assumptions on w.

So we can conclude that f(z) ∈ Aαδ
n+1

2 \ Aαδ
n

2 and thus, z ∈ Aαδ
n+1

1 \ Aαδ
n

1 .
This z witnesses that n ∈ φ(A1, x, δ). �

This concludes the proof that φ is a homomorphism. We will now see
that it is surjective as well.

Lemma 3.9. Given any B ∈ (P)λ, there exists an A ∈ Aλ such that φ(A) =
[B]I .

Proof. We begin by decomposing the elements of B into the corresponding
subsets of ω and then we will construct A to match.

List the members of B by 〈Bα : α < λ〉 so that Bα ∈ P. For all δ ∈ S
let Bδ = 〈Xδ,α : α < α∗(δ)〉 for some α∗(δ) ≤ λ, that is, Xδ,α ∈ P̄(ω) and
∅ ∈ Xδ,α. Then we shall list the members ofXδ,α (that is, the representatives
of the Fin equivalence classes) increasingly as 〈βδ,α

n : n < ω〉 so that each
βδ,α

n ⊆ ω.
For the WFPO (A,≤A), let the universe A = L∪R where L = λ×λ×{0}

and R = λ× λ× {1}. Let h be a bijection from λ× λ into λ.
We shall define the relations ≤A on A in the following way. For every

δ ∈ S and γ < α∗(δ), find a sequence 〈eδ,γn : n < ω〉 in R such that for
each n < ω we have eδ,γn = (h(δ, γ), dδ,γ

n , 1) and dδ,γ
n = αδ

βδ,γ
n

. In particular

note that the min{α < δ : eδ,γn ∈ Aα} = αδ
βδ,γ

n
+ 1. Connect each eδ,γn to

x = (δ, γ, 0) ∈ L, by making eδ,γn ≤A x for all n < ω. These will be the only
relations on A.
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This is clearly transitive, so A is a poset. One can show that A ∈ Aλ

as |A| = λ and there are no chains of size > 2 in A, so it is well-founded.
The other conditions on A ∈ Aλ follow as each point has a maximum of ℵ0

points less than it and a maximum of one point greater than it. Also, the
universe of A is λ × λ × 2. So we can now explore what φ(A) is. We will
show that φ(A) = [B]I for A defined as above.

There exists a club subset E ⊆ λ such that for all α ∈ E it holds that
for all δ, γ we have δ, γ < α iff h(δ, γ) < α. Namely, E = {α < λ : h is a
bijection from α × α into α}. This can be shown to be a club by a proof
very similar to that of Claim 3.8.

Suppose that δ ∈ N(E) (recall the definition of N(E) given in the proof
of Lemma 3.7) and let γ < α∗δ be given. For x = (δ, γ, 0) ∈ L, we will show
that φ(A, x, δ) = Xδ,γ :

φ(A, x, δ) = [{n < ω : A[x] ∩Aαδ
n 6= A[x] ∩Aαδ

n+1}]Fin

= [{n < ω : (∃m < ω) eδ,γm ≤A x and eδ,γm ∈ Aαδ
n+1 \Aαδ

n}]Fin

= [{βδ,γ
n : n < ω}]Fin

= Xδ,γ .

If γ ∈ [α∗δ , δ) then for x = (δ, γ, 0) we have A[x] = ∅ so φ(A, x, δ) = ∅. For
all x ∈ R the point x has at most one element comparable to it (and that
would be greater than x) so we have A[x] = ∅ for all x ∈ R so φ(A, x, δ) = ∅.

Then for all δ ∈ N(E) we have

φ(A, δ) = {φ(A, x, δ) : x ∈ A} = {Xδ,γ : γ < λ} ∪ {∅} = Bδ

as ∅ ∈ Bδ.
If δ 6∈ N(E) then for each x we have φ(A, x, δ) = ∅. Hence φ(A, δ) = {∅}.

Hence, φ(A) = [{φ(A, δ) : δ < λ}]I = B because S \N(E) ∈ I. �

This completes the proof of Lemma 3.9. We have shown that φ is a
surjective homomorphism, also completing the proof of Theorem 3.4. �

The existence of such a homomorphism proves the following result by
Lemma 3.3.

Theorem 3.10. The complexity of Aλ for λ ∈ (ℵ1, 2ℵ0) a regular cardinal
under well-founded partial order embeddings is at least 2ℵ0.

Note that because the surjection argument only involves posets of rank 2,
we have also shown that the complexity of rank 2 posets of size λ ∈ (ℵ1, 2ℵ0)
a regular cardinal is at least 2ℵ0 . However, if we restricted our argument
only to posets of rank 2, then we would have showed that posets of rank 2
do not have a small universal family which consists of posets of rank 2. This
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does not suffice for our class of well-founded partial orders as there could be
a more general poset that embeds all posets of rank 2.

The theorem above works for regular cardinals λ. Now we will extend
the complexity result to some singular cardinals. We will keep the notation
and definitions of I, r, φ,Φ as in the previous proof for regular cardinals.
Now we will need a couple more facts and definitions. We will define a class
of subsets of well-founded partial orders which have a certain continuity
property in the homomorphism Φ. Here, λ will remain a regular cardinal.

Lemma 3.11. Let Φ be as in Lemma 3.3. If A ∈ Aλ and A =
⋃

α<α∗ Aα

is an increasing union where α∗ < λ and each Aα is a sub-poset of A for
α < α∗ then

Φ(A) ⊆
⋃

α<α∗

Φ(Aα).

Proof. Suppose B ∈ Φ(A) and we will demonstrate the existence of an
α < α∗ such that B ∈ Φ(Aα).

For every α < α∗ there is a set Xα ∈ I such that for every δ ∈ λ \ Xα

and every x ∈ Aα we have φ(Aα, x, δ) = φ(A, f(x), δ) by Lemma 3.7. For
all x ∈ Aα we have f(x) = x so for δ as above,

φ(Aα, x, δ) = φ(A, x, δ).

Let X =
⋃

α<α∗ Xα. Because I is λ-complete by Lemma 3.6 and because
α∗ < λ, we deduce that X ∈ I.

Since B ∈ Φ(A), the set Y := {δ < λ : B ∈ φ(A, δ)} /∈ I and in particular,
is non-empty. For every δ ∈ Y , pick xδ such that φ(A, xδ, δ) = B and choose
some αδ < α∗ such that xδ ∈ Aαδ

.
Since Y /∈ I, this implies that Y is not the union of < λ sets which are

all in I since I is λ-complete. For each α < α∗ let Yα = {δ ∈ Y : αδ = α}.
We know that Y =

⋃
α<α∗ Yα so there is an α < α∗ such that Yα /∈ I. Fix

this α. Now it follows that for every δ ∈ Yα \X it holds that

φ(Aα, xδ, δ) = φ(A, xδ, δ) = B

by the definition of X. Since Yα 6∈ I, we conclude that B ∈ Φ(Aα). �

The following covering lemma can be found in [3].

Lemma 3.12. Suppose µ is a fixed point of first order (i.e. µ = ℵµ), but not
of second order, (i.e. |{γ < µ : γ is a fixed point of first order}| = σ < µ)
and further suppose max{σ, cf(µ)} < λ < µ. Then the minimal size of a
family D ⊆ [µ]<λ+

, where D satisfies the property that for all X ∈ [µ]<λ+

there are < λ members of D whose union covers X, is µ.



UNIVERSALITY RESULTS FOR WELL-FOUNDED POSETS 159

The theorem below is the singular cardinal version of the construction
lemma proved for regular cardinals. In contrast to the regular cardinal ver-
sion, this one will be proved specifically for our well-founded partial orders.
The preservation in the homomorphism for regular cardinals will suffice to
prove the complexity theorem for singular cardinals.

We will find a regular cardinal below our singular that has the surjective
homomorphism defined above and then use a combinatorial argument with
the covering lemma to show that this contradicts the existence of any small
universal family. Note that the existence of a cardinal µ as in Theorem 3.13
strongly violates CH.

Theorem 3.13. If µ < 2ℵ0 satisfies the requirements in Lemma 3.12 and
cf(µ) ≥ ℵ1, then the complexity of (Aµ,�) is ≥ 2ℵ0.

Proof. Let µ be as in the statement of the theorem and let λ ∈ (cf(µ), µ) be
any regular cardinal. Suppose for contradiction that κ < 2ℵ0 and for every
α < κ we are given Aα ∈ Aµ so that {Aα : α < κ} forms a universal family
for Aµ. We will demonstrate the existence of A ∈ Aλ which does not embed
into any Aα for α < κ.

By the covering Lemma 3.12 above, for every α < κ, there is a family
Fα ⊆ [Aα]λ with |Fα| = µ with the property that for all X ∈ [Aα]λ there is
an F ∈ [Fα]<λ so that X ⊆

⋃
F .

Fix a homomorphism Φ as in Lemma 3.3 for λ. Then if we set D :=
{Φ(F) : F ∈

⋃
α<κFα} we know that D size κ × µ < 2ℵ0 . Thus, for

Φ(F) ∈ D we have |
⋃
D| < 2ℵ0 . So we can find a set B ∈ P such that

B 6⊆
⋃
D. Using the surjectivity of Φ, we can fix a well-founded partial

order A ∈ Aλ such that Φ(A) = B.
Suppose to the contrary that A embeds into Aα for some α < κ. Without

loss of generality say A � A0. By the covering property of F0 stated in
its definition we can find a subset F ∈ [F0]<λ such that A �

⋃
F . There-

fore, note that Φ(
⋃
F) ⊆

⋃
F∈F Φ(F ) by the continuity property proved in

Lemma 3.11. Thus, we have

B = Φ(A) ⊆ Φ(
⋃
F) ⊆

⋃
F∈F

Φ(F ) ⊆
⋃
D,

contradicting the choice of B. �
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