ON THE DUAL BASIS OF PROJECTIVE SEMIMODULES AND ITS APPLICATIONS

R. P. DEORE AND K. B. PATIL

Abstract. The dual basis lemma for projective semimodule over a semiring is proved. We show under which conditions the two categories $cs \, mod - R$ and $S - cs \, mod$ of cancellative semimodules are equivalent and how these equivalences are realized.

1. INTRODUCTION

Projective semimodules over semirings are characterized in [2]. Here we generalize one of the classical tools from the theory of modules over rings called the dual basis lemma, for projective semimodule over a semiring. We define generator and progenerator semimodules over semirings and show under which conditions the two categories cs mod $-R$ and $S - c$ s mod of cancellative semimodules are equivalent and how such equivalences are realized.

2. Results

Dual Basis Lemma. Let M be an R−semimodule. Then M is projective if and only if there exists $\{m_i\}_{i\in I} \subset M$ and $\{f_i\}_{i\in I} \subset \text{Hom}_R(M, R)$ (I some index set) such that

- a) for every $m \in M$, $f_i(m) = 0$ for all but finitely many $i \in I$ and
- b) for every $m \in M$, Σ i∈I $f_i(m) m_i = m.$

The collection $\{m_i, f_i\}$ is called a dual basis for M.

Proof. Let $R^{(I)}$ be a free R–semimodule and θ be a surjective R–homomorphism from $R^{(I)}$ to M where $R^{(I)}$ is the set of all functions from I to R with finite support.

Since M is a projective semimodule, there exists an $R-$ homomorphism $\psi : M \to R^{(I)}$ such that $\theta \psi = Id_M$. Let $\pi_i : R^{(I)} \to R$ be given by

²⁰⁰⁰ Mathematics Subject Classification. 16Y 60.

 $\pi_i(f) = f(i)$ for all $f \in R^{(I)}$, then for any f in $R^{(I)}$ we have \sum i∈I $\pi_i(f)e_i = f$, since $\lceil \sum$ i∈I $\pi_i(f)e_i](j) = \pi_j(f) = f(j)$ where $e_i \in R^{(I)}$ defined by

$$
e_i(j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}
$$

Now set $m_i = \theta(e_i)$ and $\pi_i \psi = f_i$. For $m \in M$ clearly $f_i(m) = 0$, for all but finitely many i.

Now,

$$
\sum_{i \in I} f_i(m) m_i = \sum_{i \in I} (\pi_i \psi)(m) m_i
$$

=
$$
\sum_{i \in I} \pi_i(\psi(m)) \theta(e_i)
$$

=
$$
\theta \left(\sum_{i \in I} \pi_i(\psi(m)) (e_i) \right)
$$

=
$$
\theta(\psi(m))
$$

=
$$
(\theta \psi)(m)
$$

= m, for all $m \in M$.

Thus $\{m_i, f_i\}$ forms a dual basis for M.

Conversely, suppose that $\{m_i, f_i\}$ is a dual basis for R-semimodule M. Define $\psi : M \to R^{(I)}$ by $\psi(m)(i) = f_i(m)$ for all $m \in M$ and $\theta : R^{(I)} \to$ M by $\theta(f) = \sum$ i∈I $f(i)m_i$ for $m \in M$ and $f \in R^I$. Then θ and ψ are R−homomorphisms of left R−semimodules and

$$
(\theta \psi)(m) = \theta(\psi(m))
$$

= $\theta(f_i(m))$
= $\sum_{i \in I} f_i(m)m_i$
= m, for all $m \in M$.

Let $\phi: L \to K$ be a surjective R-homomorphism of left R-semimodules and $\alpha : M \to K$ be an R-homomorphism. Since $R^{(I)}$ is projective, then there exists an R-homomorphism $\beta : R^{(I)} \to L$ such that $\phi \beta = \alpha \theta \Rightarrow$ $\phi\beta\psi = \alpha\theta\psi = \alpha$ and $\beta\psi : M \to L$ is a map having the property that we seek in order to prove the first condition of projectiveness. Now let $\phi: L \to K$ be a steady R-homomorphism of left R-semimodules and α , $\alpha' : M \to L$ be R–homomorphisms satisfying $\phi \alpha = \phi \alpha'$ which implies that $\phi \alpha \theta = \phi \alpha' \theta$.

Since $R^{(I)}$ is projective, there exist R-homomorphisms β , β' : $R^{(I)} \to L$ satisfying $\phi\beta = \phi\beta'$ and $\alpha\theta + \beta = \alpha'\theta + \beta'$. This implies $\phi(\beta\psi) = \phi(\beta'\psi)$ and $\alpha + \beta \psi = \alpha \theta \psi + \beta \psi = (\alpha \theta + \beta) \psi = (\alpha' \theta + \beta') \psi = \alpha' + \beta' \psi$. Hence the second condition of projectiveness.

Tensor product is as defined in $[2]$. Note that if M is a cancellative left R−semimodule then $R \otimes M \cong M$.

Proposition 1. Let R be a cancellative semiring and M be a cancellative R−semimodule. Then $\text{Hom}_R(R, M) \cong M$.

Proposition 2. Let R be a commutative semiring and let A and B be Rsemialgebras. Let M be a finitely generated and projective A–semimodule and let N be a finitely generated and projective B−semimodule. Then

$$
\text{Hom}_{A}(M, M) \otimes \text{Hom}_{B}(N, N) \cong \text{Hom}_{A \otimes B}(M \otimes N, M \otimes N)
$$

where $\otimes = \otimes_R$.

Proof. Let $\{x_j, f_j\}$, $\{y_i, g_i\}$ be the dual bases for M and N respectively. Then for any m in M and n in N, $\sum_j f_j(m) x_j = m$ and $\sum_i g_i(n) y_i = n$. Define,

$$
\theta_j: M \otimes \text{Hom}_B(N, N) \to \text{Hom}_A(M, M) \otimes \text{Hom}_B(N, N)
$$

by

$$
\theta_j (a \otimes h) = f_j(\) a \otimes h
$$

and

$$
\pi_i: M \otimes N \to M \otimes \operatorname{Hom}_B(N,N)
$$

given by

$$
\pi_i\,\left(b_1\otimes b_2\right)=b_1\otimes g_i(\)\,b_2.
$$

Now define

$$
\psi: \operatorname{Hom}\nolimits_{A \otimes B}(M \otimes N, M \otimes N) \to \operatorname{Hom}\nolimits_A(M, M) \otimes \operatorname{Hom}\nolimits_B(N, N)
$$

by

$$
\psi(f) = \sum_{i,j} \theta_j(\pi_i[f(x_j \otimes y_i)])
$$

and

$$
\psi': \text{Hom}_{A}(M, M) \otimes \text{Hom}_{B}(N, N) \to \text{Hom}_{A \otimes B}(M \otimes N, M \otimes N)
$$

by

$$
\psi'(h_1\otimes h_2)=h_1\otimes h_2.
$$

Consider,

$$
\psi\psi'(h_1 \otimes h_2)(m \otimes n) = \psi(h_1 \otimes h_2)(m \otimes n)
$$

\n
$$
= \sum_{i,j} \theta_j(\pi_i[h_1 \otimes h_2(x_j \otimes y_i)])(m \otimes n)
$$

\n
$$
= \sum_{i,j} \theta_j(\pi_i[(h_1(x_j) \otimes h_2(y_i)])(m \otimes n))
$$

\n
$$
= \sum_{i,j} \theta_j(h_1(x_j) \otimes g_i(\)h_2(y_i))(m \otimes n)
$$

\n
$$
= (h_1 \otimes h_2) \Big(\sum_{i,j} f_j(m)x_j \otimes g_i(n)y_i \Big)
$$

\n
$$
= (h_1 \otimes h_2)(m \otimes n)
$$

\n
$$
\Rightarrow \psi\psi'(h_1 \otimes h_2)(m \otimes n) = (h_1 \otimes h_2)(m \otimes n).
$$

Clearly, $\psi' \psi(f) = f$. Hence ψ is a one-one onto homomorphism.

For any R–semimodule M, consider the subset $I_R(M)$ of R consisting of the element of the form $\sum_{i=1}^{n} f_i(m_i)$ where the $f_i \in \text{Hom}_R(M, R)$ and the $m_i \in M$. The $I_R(M)$ is two–sided ideal in R so $I_R(M)$ is an ideal in R and is called the **trace ideal** of M. An R-semimodule M is an R−generator if $I_R(M) = R$. Thus M is an R−generator if and only if $\sum_{i=1}^{n} f_i(m_i) = 1.$ there exist $f_1, f_2, \ldots, f_n \in \text{Hom}_R(M, R)$ and $m_1, m_2, \ldots, m_n \in M$ with

An R -semimodule M is an R -progenerator if M is a finitely generated, projective and generator over R.

Proposition 3. Let R be a commutative semiring and let M and N be R−semimodules. Then

- i) $M \otimes_R N$ is finitely generated over R if both M and N are.
- ii) $M \otimes_R N$ is R−projective if both M and N are.
- iii) $M \otimes_R N$ is R−generator if both M and N are.

Henceforth we show that $\mathit{csmod-R}$ and $S\text{-}\mathit{csmod}$ are equivalent categories where S is chosen as the cancellative semiring of endomorphisms of some cancellative R −**progenerator**.

Let R be any cancellative semiring and let M be any cancellative R -semimodule. Define $M^* = \text{Hom}_R(M, R)$ and $S = \text{Hom}_R(M, M)$. Note that M^*, S are cancellative. Since R is a cancellative $(R - R)$ bisemimodule, M^* is a cancellative right R–semimodule under the operation $(f.r)m = f(m)r$.

Moreover M is a cancellative left S-semimodule with $s.m = s(m)$. Under this operation M is a cancellative left R–left S bisemimodule. Hence M^* becomes a cancellative right S–semimodule under the operation $(f.s)(m)$ =

 $f(s(m))$. M^{*} is a cancellative right R-right S-bisemimodule. We can form $M^* \otimes_R M$ and $M^* \otimes_S M$. Moreover $M^* \otimes_R M$ is a cancellative left S-right S−bisemimodule by virtue of M being a cancellative left $R-$ left $R-$ bisemimodule and M^* being a cancellative right R -right S bisemimodule. Similarly $M^* \otimes_S M$ is a cancellative left R-right R bisemimodule.

Let θ_R denote the map from $M^* \otimes_R M$ to $S = \text{Hom}_R(M, M)$ given by $[\theta_R \sum_i (f_i \otimes m_i)](m) = \sum_i f_i(m)m_i$. θ_R is both a left and a right S-semimodule homomorphism. Let θ_S denote the map from $M^* \otimes_S M$ to R given by $\theta_S(\sum_i f_i \otimes m_i) = \sum_i f_i(m_i)$. θ_S is a right and left R-semimodule homomorphism, whose image is the trace ideal $I_R(M)$.

Lemma 1. Let R be any cancellative semiring and M be any cancellative $R-semimodule.$ θ_R is onto iff M is finitely generated and projective. Moreover if θ_R is onto then it is one-one.

Proof. Suppose that M is finitely generated and projective. Therefore there exists a dual basis $f_1, f_2, \ldots, f_n \in M^*$ and $m_1, m_2, \ldots, m_n \in M$, such that $\theta_R[\sum_{i=1}^n (f_i g) \otimes m_i] = g$ for any g in $S = \text{Hom}_R(M, M)$. Hence θ_R is onto.

Conversely, assume that θ_R is onto. Then there exist $\sum_{i=1}^n f_i \otimes m_i \in$ $M^* \otimes_R M$ such that $\theta_R(\sum_{i=1}^n f_i \otimes m_i)$ is the identity map from M to M, that is, $\sum_{i=1}^{n} f_i(m)m_i = m$ for all $m \in M$.

Thus the set f_1, f_2, \ldots, f_n , and m_1, m_2, \ldots, m_n forms a finite dual basis for M . Therefore by the dual basis lemma, M is finitely generated and projective.

Now given that θ_R is onto, we know that M possesses a dual basis $f_1, f_2, \ldots, f_n \in M^*$ and $m_1, m_2, \ldots, m_n \in M$.

We claim that θ_R is one–one. Let $\sum_j g_j \otimes n_j$, $\sum_k h_k \otimes p_k \in M^* \otimes_R M$ satisfy

$$
\theta_R\Big(\sum_j g_j\otimes n_j\Big)(m)=\theta_R\Big(\sum_k h_k\otimes p_k\Big)(m),\ \forall m\in M.
$$

Then

$$
\sum_{j} g_j(m) n_j = \sum_{k} h_k(m) p_k.
$$

Now

$$
\sum_{j} g_j \otimes n_j = \sum_{j} g_j \otimes \left(\sum_{i} f_i(n_j) \right) m_i
$$

$$
= \sum_{i,j} g_j f_i(n_j) \otimes m_i.
$$

But

$$
\sum_j (g_j f_i(n_j))(m) = \sum_j (g_j(f_i(n_j)(m))
$$

$$
= \sum_{j} (g_j(m) f_i(n_j))
$$

= $f_i \Big(\sum_j g_j(m)(n_j) \Big)$
= $f_i \Big(\sum_k h_k(m)(p_k) \Big)$
= $\sum_k h_k(m) f_i(p_k)$
= $\sum_k (h_k f_i(p_k))(m).$

Therefore

$$
\left[\sum_{j} g_j f_i(n_j)\right](m) = \left[\sum_{k} h_k f_i(p_k)\right](m), \ \forall m \in M
$$

$$
\Rightarrow \sum_{j} g_j f_i(n_j) = \sum_{k} h_k f_i(p_k)
$$

$$
\Rightarrow \sum_{i,j} g_j f_i(n_j) \otimes m_i = \sum_{i,k} h_k f_i(p_k) \otimes m_i
$$

$$
\Rightarrow \sum_{j} g_j \otimes n_j = \sum_{k} h_k \otimes p_k.
$$

Thus

$$
\theta_R\Big(\sum_j g_j \otimes n_j\Big) = \theta_R\Big(\sum_k h_k \otimes p_k\Big) \Rightarrow \sum_j g_j \otimes n_j = \sum_k h_k \otimes p_k.
$$

Hence θ_R is one-one.

Lemma 2. Let R be any cancellative semiring, M be any cancellative $R-semimodule$ and $S = \text{Hom}_R(M, M)$ be a cancellative semiring. θ_S is onto if and only if M is a generator. Moreover if θ_S is onto then it is one–one.

Proof. Since the image of θ_S is equal to $I_R(M)$, θ_S is onto if and only if $I_R(M) = R$, that is M is a generator over R.

Suppose θ_S is onto. We claim that θ_S is one-one. Let Σ j $h_j\otimes n_j, \, \sum$ k $g_k \otimes$

 $p_k \in M^{\ast} \otimes_S M$ satisfy

$$
\theta_S\Big(\sum_j h_j\otimes n_j\Big)=\theta_S\Big(\sum_k g_k\otimes p_k\Big).
$$

Then

$$
\sum_j h_j(n_j) = \sum_k g_k(p_k).
$$

Since θ_S is onto, there exist $f_1, f_2, \ldots, f_n \in M^*$ and $m_1, m_2, \ldots, m_n \in M$ with

$$
\sum_i f_i(m_i) = 1.
$$

Now

$$
\sum_{j} h_j \otimes n_j = \sum_{j} h_j \otimes \left(\sum_{i} f_i(m_i) \right) n_j
$$

=
$$
\sum_{i,j} h_j \otimes \theta_R(f_i \otimes n_j)(m_i)
$$

=
$$
\sum_{i} \left(\sum_{j} h_j \theta_R(f_i \otimes n_j) \right) \otimes m_i.
$$

Note that for every i and every $m \in M$,

$$
\left[\sum_{j} h_{j} \theta_{R}(f_{i} \otimes n_{j})\right](m) = \sum_{j} h_{j}\left(f_{i}(m) n_{j}\right)
$$

$$
= f_{i}(m) \left(\sum_{j} h_{j}(n_{j})\right)
$$

$$
= f_{i}(m) \left(\sum_{k} g_{k}(p_{k})\right)
$$

$$
= \sum_{k} g_{k}\left(f_{i}(m)p_{k}\right)
$$

$$
= \left[\sum_{k} g_{k} \theta_{R}(f_{i} \otimes p_{k})\right](m).
$$

Therefore

$$
\Big[\sum_j h_j \theta_R(f_i \otimes n_j)\Big](m) = \Big[\sum_k g_k \theta_R(f_i \otimes p_k)\Big](m), \ \forall m \in M.
$$

So,

$$
\left[\sum_{j} h_{j} \theta_{R}(f_{i} \otimes n_{j})\right] = \left[\sum_{k} g_{k} \theta_{R}(f_{i} \otimes p_{k})\right]
$$

\n
$$
\Rightarrow \left[\sum_{i,j} h_{j} \theta_{R}(f_{i} \otimes n_{j})\right] \otimes m_{i} = \left[\sum_{i,k} g_{k} \theta_{R}(f_{i} \otimes p_{k})\right] \otimes m_{i}
$$

\n
$$
\Rightarrow \sum_{j} h_{j} \otimes n_{j} = \sum_{k} g_{k} \otimes p_{k}.
$$

Thus

$$
\theta_S\Big(\sum_j h_j \otimes n_j\Big) = \theta_S\Big(\sum_k g_k \otimes p_k\Big)
$$

$$
\Rightarrow \sum_j h_j \otimes n_j = \sum_k g_k \otimes p_k.
$$

Hence θ_S is one–one.

For any cancellative left R -semimodule M , we have seen that M is a left R−left S cancellative bisemimodule and $M^* = \text{Hom}_R(M, R)$ is a right R– right S cancellative bisemimodule where $S = \text{Hom}_R(M, M)$ is a cancellative semiring. Therefore for any cancellative right R-semimodule L, $L \otimes_R M$ has the structure of a left cancellative S−semimodule, while for any cancellative left S-semimodule N, $M^* \otimes_S N$ has the structure of a cancellative right R−semimodule.

Then

$$
(\) \otimes_R M : cs \bmod{-R} \to S - cs \bmod{}
$$

and

 $M^* \otimes_S () : S - cs \mod \rightarrow cs \mod -R$

are functors.

Theorem 4. Let R be any cancellative semiring, M be any cancellative left R−semimodule and left R progenerator. Consider the cancellative semiring $S = \text{Hom}_R(M, M)$ and the cancellative semimodule $M^* = \text{Hom}_R(M, R)$. Then the functors

$$
() \otimes_R M : cs \mod -R \to S - cs \mod,
$$

$$
M^* \otimes_S () : S - cs \mod \to cs \mod -R
$$

are inverse equivalences.

Proof. Let $L \in cs \mod -R$. Then we have

$$
M^* \otimes_S (L \otimes_R M) \cong M^* \otimes_S (M \otimes_{R^0} L)
$$

\n
$$
\cong (M^* \otimes_S M) \otimes_{R^0} L
$$

\n
$$
\cong (R \otimes_{R^0} L)
$$

\n
$$
\cong L \otimes_R R \cong L.
$$

Similarly for any cancellative left S -semimodule N ,

$$
(M^* \otimes_S N) \otimes_R M \cong (N \otimes_{S^0} M^*) \otimes_R M
$$

\n
$$
\cong N \otimes_{S^0} (M^* \otimes_R M)
$$

\n
$$
\cong N \otimes_{S^0} S
$$

\n
$$
\cong S \otimes_S N \cong N.
$$

Hence the functors are inverse equivalences. $\hfill \Box$

Acknowledgement. The authors would like to thank the referee and editor in chief for useful suggestions for the improvement of the article.

REFERENCES

- [1] F. De Mayer and E. Ingrahm, Separable Algebras over Commutative Rings, V-181, Springer - Verlag, New York, 1971.
- [2] J. S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Sciences, (Pitman Monographs and Surveys in Pure and Applied Mathematics) 54, Harlow: Longman Scientific and Technical (1992).

(Received: November 12, 2004) R. P. Deore (Revised: June 21, 2005) Department of Mathematics

North Maharashtra University Jalgaon–425001, M.S. (India) E-mail: rpdeore123@yahoo.com

K.B. Patil Department of Mathematics Jaihind College Dhule–424002, M.S. (India)