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ON THE DUAL BASIS OF PROJECTIVE SEMIMODULES
AND ITS APPLICATIONS

R. P. DEORE AND K. B. PATIL

Abstract. The dual basis lemma for projective semimodule over a
semiring is proved. We show under which conditions the two categories
cs mod − R and S − cs mod of cancellative semimodules are equivalent
and how these equivalences are realized.

1. Introduction

Projective semimodules over semirings are characterized in [2]. Here we
generalize one of the classical tools from the theory of modules over rings
called the dual basis lemma, for projective semimodule over a semiring. We
define generator and progenerator semimodules over semirings and show
under which conditions the two categories csmod − R and S − csmod of
cancellative semimodules are equivalent and how such equivalences are real-
ized.

2. Results

Dual Basis Lemma. Let M be an R−semimodule. Then M is projective
if and only if there exists {mi}i∈I ⊂M and {fi}i∈I ⊂ HomR(M,R) (I some
index set) such that

a) for every m ∈M, fi(m) = 0 for all but finitely many i ∈ I and
b) for every m ∈M,

∑
i∈I

fi(m)mi = m.

The collection {mi, fi} is called a dual basis for M.

Proof. Let R(I) be a free R−semimodule and θ be a surjective R−homo-
morphism from R(I) to M where R(I) is the set of all functions from I to R
with finite support.

Since M is a projective semimodule, there exists an R− homomorphism
ψ : M → R(I) such that θψ = IdM . Let πi : R(I) → R be given by
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πi(f) = f(i) for all f ∈ R(I), then for any f in R(I) we have
∑
i∈I

πi(f)ei = f,

since
[ ∑

i∈I

πi(f)ei
]
(j) = πj(f) = f(j) where ei ∈ R(I) defined by

ei(j) =

{
1 if i = j

0 if i 6= j.

Now set mi = θ( ei ) and πiψ = fi. For m ∈ M clearly fi(m) = 0 , for all
but finitely many i.

Now, ∑
i∈I

fi(m )mi =
∑
i∈I

(πiψ)(m)mi

=
∑
i∈I

πi

(
ψ(m)

)
θ(ei)

= θ
( ∑

i∈I

πi

(
ψ(m)

)
(ei)

= θ
(
ψ(m)

)
= (θψ)(m)
= m, for all m ∈M.

Thus {mi, fi} forms a dual basis for M.
Conversely, suppose that {mi, fi} is a dual basis for R−semimodule M .

Define ψ : M → R(I) by ψ(m)(i) = fi(m) for all m ∈ M and θ : R(I) →
M by θ(f) =

∑
i∈I

f(i)mi for m ∈ M and f ∈ RI . Then θ and ψ are

R−homomorphisms of left R−semimodules and

(θψ)(m) = θ
(
ψ(m)

)
= θ

(
fi(m)

)
=

∑
i∈I

fi(m)mi

= m, for all m ∈M.

Let φ : L→ K be a surjective R−homomorphism of left R−semimodules
and α : M → K be an R−homomorphism. Since R(I) is projective, then
there exists an R−homomorphism β : R(I) → L such that φβ = αθ ⇒
φβψ = αθψ = α and βψ : M → L is a map having the property that we seek
in order to prove the first condition of projectiveness. Now let φ : L → K
be a steady R−homomorphism of left R−semimodules and α , α′ : M → L
be R−homomorphisms satisfying φα = φα′ which implies that φαθ = φα′θ.
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Since R(I) is projective, there exist R−homomorphisms β , β′ : R(I) → L
satisfying φβ = φβ′ and αθ + β = α′θ + β′. This implies φ(βψ) = φ(β′ψ)
and α+ βψ = αθψ + βψ = (αθ + β)ψ = (α′θ + β′)ψ = α′ + β′ψ.

Hence the second condition of projectiveness. �

Tensor product is as defined in [2]. Note that if M is a cancellative left
R−semimodule then R⊗M ∼= M.

Proposition 1. Let R be a cancellative semiring and M be a cancellative
R−semimodule. Then HomR(R,M) ∼= M .

Proposition 2. Let R be a commutative semiring and let A and B be R-
semialgebras. Let M be a finitely generated and projective A−semimodule
and let N be a finitely generated and projective B−semimodule. Then

HomA(M,M)⊗HomB(N,N) ∼= HomA⊗B(M ⊗N,M ⊗N)

where ⊗ = ⊗R.

Proof. Let {xj , fj}, {yi, gi} be the dual bases for M and N respectively.
Then for any m in M and n in N ,

∑
j fj(m)xj = m and

∑
i gi(n) yi = n.

Define,

θj : M ⊗HomB(N,N) → HomA(M,M)⊗HomB(N,N)

by
θj (a⊗ h) = fj( ) a⊗ h

and
πi : M ⊗N →M ⊗HomB(N,N)

given by
πi (b1 ⊗ b2) = b1 ⊗ gi( ) b2.

Now define

ψ : HomA⊗B(M ⊗N,M ⊗N) → HomA(M,M)⊗HomB(N,N)

by

ψ(f) =
∑
i,j

θj(πi[f(xj ⊗ yi)])

and

ψ′ : HomA(M,M)⊗HomB(N,N) → HomA⊗B(M ⊗N,M ⊗N)

by
ψ′(h1 ⊗ h2) = h1 ⊗ h2.
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Consider,

ψψ′(h1 ⊗ h2)(m⊗ n) = ψ(h1 ⊗ h2)(m⊗ n)

=
∑
i,j

θj(πi[h1 ⊗ h2(xj ⊗ yi)])(m⊗ n)

=
∑
i,j

θj(πi[(h1(xj)⊗ h2(yi)])(m⊗ n))

=
∑
i,j

θj(h1(xj)⊗ gi( )h2(yi))(m⊗ n)

= (h1 ⊗ h2)
( ∑

i,j

fj(m)xj ⊗ gi(n)yi

)
= (h1 ⊗ h2)(m⊗ n)

⇒ ψψ′(h1 ⊗ h2)(m⊗ n) = (h1 ⊗ h2)(m⊗ n).

Clearly, ψ′ψ(f) = f . Hence ψ is a one–one onto homomorphism. �

For any R−semimodule M, consider the subset IR(M) of R consisting
of the element of the form

∑n
i=1 fi(mi) where the fi ∈ HomR(M,R) and

the mi ∈ M. The IR(M) is two–sided ideal in R so IR(M) is an ideal
in R and is called the trace ideal of M. An R−semimodule M is an
R−generator if IR(M) = R. Thus M is an R−generator if and only if
there exist f1, f2, . . . , fn ∈ HomR(M,R) and m1,m2, . . . ,mn ∈ M with∑n

i=1 fi(mi) = 1.
An R−semimoduleM is an R−progenerator ifM is a finitely generated,

projective and generator over R.

Proposition 3. Let R be a commutative semiring and let M and N be
R−semimodules. Then

i) M ⊗R N is finitely generated over R if both M and N are.
ii) M ⊗R N is R−projective if both Mand N are.
iii) M ⊗R N is R−generator if both M and N are.

Henceforth we show that csmod-R and S-csmod are equivalent cate-
gories where S is chosen as the cancellative semiring of endomorphisms of
some cancellative R−progenerator.

Let R be any cancellative semiring and let M be any cancellative R−se-
mimodule. Define M∗ = HomR(M,R) and S = HomR(M,M). Note that
M∗, S are cancellative. Since R is a cancellative (R−R) bisemimodule, M∗

is a cancellative right R−semimodule under the operation (f.r)m = f(m)r.
Moreover M is a cancellative left S-semimodule with s.m = s(m). Under

this operation M is a cancellative left R−left S bisemimodule. Hence M∗

becomes a cancellative right S−semimodule under the operation (f.s)(m) =
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f(s(m)). M∗ is a cancellative right R−right S−bisemimodule. We can form
M∗⊗RM and M∗⊗S M . Moreover M∗⊗RM is a cancellative left S−right
S−bisemimodule by virtue of M being a cancellative left R−left R−bisemi-
module and M∗ being a cancellative right R−right S bisemimodule. Simi-
larly M∗ ⊗S M is a cancellative left R−right R bisemimodule.

Let θR denote the map from M∗ ⊗R M to S = HomR(M,M) given by
[θR

∑
i (fi ⊗mi)](m) =

∑
i fi(m)mi. θR is both a left and a right S−semi-

module homomorphism. Let θS denote the map from M∗ ⊗S M to R given
by θS(

∑
i fi ⊗mi) =

∑
i fi(mi). θS is a right and left R−semimodule homo-

morphism, whose image is the trace ideal IR(M).

Lemma 1. Let R be any cancellative semiring and M be any cancellative
R−semimodule. θR is onto iff M is finitely generated and projective. More-
over if θR is onto then it is one–one.

Proof. Suppose that M is finitely generated and projective. Therefore there
exists a dual basis f1, f2, . . . , fn ∈ M∗ and m1,m2, . . . ,mn ∈ M , such that
θR[

∑n
i=1 (fig)⊗mi] = g for any g in S = HomR(M,M). Hence θR is onto.

Conversely, assume that θR is onto. Then there exist
∑n

i=1 fi ⊗mi ∈
M∗ ⊗R M such that θR(

∑n
i=1 fi ⊗mi) is the identity map from M to M ,

that is,
∑n

i=1 fi(m)mi = m for all m ∈M .
Thus the set f1, f2, . . . , fn, and m1,m2, . . . ,mn forms a finite dual basis

for M . Therefore by the dual basis lemma, M is finitely generated and
projective.

Now given that θR is onto, we know that M possesses a dual basis
f1, f2, . . . , fn ∈M∗ and m1,m2, . . . ,mn ∈M .

We claim that θR is one–one. Let
∑

j gj ⊗ nj ,
∑

k hk ⊗ pk ∈M∗ ⊗R M
satisfy

θR

( ∑
j

gj ⊗ nj

)
(m) = θR

( ∑
k

hk ⊗ pk

)
(m), ∀m ∈M.

Then ∑
j

gj(m)nj =
∑

k

hk(m)pk.

Now ∑
j

gj ⊗ nj =
∑

j

gj ⊗
( ∑

i

fi(nj)
)
mi

=
∑
i,j

gjfi(nj)⊗mi.

But ∑
j

(
gjfi(nj)

)
(m) =

∑
j

(
gj(fi(nj)(m)

)
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=
∑

j

(gj(m)fi(nj))

= fi

( ∑
j

gj(m)(nj)
)

= fi

( ∑
k

hk(m)(pk)
)

=
∑

k

hk(m)fi(pk)

=
∑

k

(
hkfi(pk)

)
(m).

Therefore [ ∑
j

gjfi(nj)
]
(m) =

[ ∑
k

hkfi(pk)
]
(m), ∀m ∈M

⇒
∑

j

gjfi(nj) =
∑

k

hkfi(pk)

⇒
∑
i,j

gjfi(nj)⊗mi =
∑
i,k

hkfi(pk)⊗mi

⇒
∑

j

gj ⊗ nj =
∑

k

hk ⊗ pk.

Thus

θR

( ∑
j

gj ⊗ nj

)
= θR

( ∑
k

hk ⊗ pk

)
⇒

∑
j

gj ⊗ nj =
∑

k

hk ⊗ pk.

Hence θR is one-one. �

Lemma 2. Let R be any cancellative semiring, M be any cancellative
R−semimodule and S = HomR(M,M) be a cancellative semiring. θS is
onto if and only if M is a generator. Moreover if θS is onto then it is
one–one.

Proof. Since the image of θS is equal to IR(M), θS is onto if and only if
IR(M) = R, that is M is a generator over R.

Suppose θS is onto. We claim that θS is one-one. Let
∑
j
hj ⊗ nj ,

∑
k

gk ⊗

pk ∈M∗ ⊗S M satisfy

θS

( ∑
j

hj ⊗ nj

)
= θS

( ∑
k

gk ⊗ pk

)
.
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Then ∑
j

hj(nj) =
∑

k

gk(pk).

Since θS is onto, there exist f1, f2 . . . , fn ∈ M∗ and m1,m2, . . . ,mn ∈ M
with ∑

i

fi(mi) = 1.

Now ∑
j

hj ⊗ nj =
∑

j

hj ⊗
( ∑

i

fi(mi)
)
nj

=
∑
i,j

hj ⊗ θR(fi ⊗ nj)(mi)

=
∑

i

( ∑
j

hjθR(fi ⊗ nj)
)
⊗mi.

Note that for every i and every m ∈M ,[ ∑
j

hjθR(fi ⊗ nj)
]
(m) =

∑
j

hj

(
fi(m)nj

)
= fi(m)

( ∑
j

hj(nj)
)

= fi(m)
( ∑

k

gk(pk)
)

=
∑

k

gk

(
fi(m)pk

)
=

[ ∑
k

gkθR(fi ⊗ pk)
]
(m).

Therefore[ ∑
j

hjθR(fi ⊗ nj)
]
(m) =

[ ∑
k

gkθR(fi ⊗ pk)
]
(m), ∀m ∈M.

So, [ ∑
j

hjθR(fi ⊗ nj)
]

=
[ ∑

k

gkθR(fi ⊗ pk)
]

⇒
[ ∑

i ,j

hjθR(fi ⊗ nj)
]
⊗mi =

[ ∑
i,k

gkθR(fi ⊗ pk)
]
⊗mi

⇒
∑

j

hj ⊗ nj =
∑

k

gk ⊗ pk.
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Thus

θS

( ∑
j

hj ⊗ nj

)
= θS

( ∑
k

gk ⊗ pk

)
⇒

∑
j

hj ⊗ nj =
∑

k

gk ⊗ pk.

Hence θS is one–one. �

For any cancellative left R−semimodule M, we have seen that M is a left
R−left S cancellative bisemimodule and M∗ = HomR(M,R) is a right R–
right S cancellative bisemimodule where S = HomR(M,M) is a cancellative
semiring. Therefore for any cancellative right R−semimodule L, L⊗RM has
the structure of a left cancellative S−semimodule, while for any cancellative
left S−semimodule N , M∗ ⊗S N has the structure of a cancellative right
R−semimodule.

Then
( )⊗R M : cs mod −R→ S − csmod

and
M∗ ⊗S ( ) : S − csmod → cs mod −R

are functors.

Theorem 4. Let R be any cancellative semiring, M be any cancellative left
R−semimodule and left R progenerator. Consider the cancellative semiring
S = HomR(M,M) and the cancellative semimodule M∗ = HomR(M,R).
Then the functors

( )⊗R M : cs mod −R→ S − csmod,

M∗ ⊗S ( ) : S − csmod → cs mod −R
are inverse equivalences.

Proof. Let L ∈ cs mod −R. Then we have

M∗ ⊗S (L⊗R M) ∼= M∗ ⊗S (M ⊗R0 L)
∼= (M∗ ⊗S M)⊗R0 L

∼= (R⊗R0 L)
∼= L⊗R R ∼= L.

Similarly for any cancellative left S−semimodule N ,

(M∗ ⊗S N)⊗R M ∼= (N ⊗S0 M∗)⊗R M

∼= N ⊗S0 (M∗ ⊗R M)
∼= N ⊗S0 S
∼= S ⊗S N ∼= N.
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Hence the functors are inverse equivalences. �
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