ON THE DUAL BASIS OF PROJECTIVE SEMIMODULES AND ITS APPLICATIONS

R. P. DEORE AND K. B. PATIL

ABSTRACT. The dual basis lemma for projective semimodule over a semiring is proved. We show under which conditions the two categories $cs \mod -R$ and $S - cs \mod of$ cancellative semimodules are equivalent and how these equivalences are realized.

1. INTRODUCTION

Projective semimodules over semirings are characterized in [2]. Here we generalize one of the classical tools from the theory of modules over rings called the dual basis lemma, for projective semimodule over a semiring. We define generator and progenerator semimodules over semirings and show under which conditions the two categories $cs \mod -R$ and $S - cs \mod of$ cancellative semimodules are equivalent and how such equivalences are realized.

2. Results

Dual Basis Lemma. Let M be an R-semimodule. Then M is projective if and only if there exists $\{m_i\}_{i\in I} \subset M$ and $\{f_i\}_{i\in I} \subset \operatorname{Hom}_R(M, R)$ (I some index set) such that

- a) for every $m \in M$, $f_i(m) = 0$ for all but finitely many $i \in I$ and b) for every $m \in M$, $\sum_{i \in I} f_i(m) m_i = m$.

The collection $\{m_i, f_i\}$ is called a dual basis for M.

Proof. Let $R^{(I)}$ be a free R-semimodule and θ be a surjective R-homomorphism from $R^{(I)}$ to M where $R^{(I)}$ is the set of all functions from I to Rwith finite support.

Since M is a projective semimodule, there exists an R- homomorphism $\psi : M \to R^{(I)}$ such that $\theta \psi = Id_M$. Let $\pi_i : R^{(I)} \to R$ be given by

²⁰⁰⁰ Mathematics Subject Classification. 16Y 60.

 $\pi_i(f) = f(i)$ for all $f \in R^{(I)}$, then for any f in $R^{(I)}$ we have $\sum_{i \in I} \pi_i(f)e_i = f$, since $\left[\sum_{i \in I} \pi_i(f)e_i\right](j) = \pi_j(f) = f(j)$ where $e_i \in R^{(I)}$ defined by

$$e_i(j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Now set $m_i = \theta(e_i)$ and $\pi_i \psi = f_i$. For $m \in M$ clearly $f_i(m) = 0$, for all but finitely many i.

Now,

$$\sum_{i \in I} f_i(m) m_i = \sum_{i \in I} (\pi_i \psi)(m) m_i$$
$$= \sum_{i \in I} \pi_i (\psi(m)) \theta(e_i)$$
$$= \theta \left(\sum_{i \in I} \pi_i (\psi(m)) \right)(e_i)$$
$$= \theta (\psi(m))$$
$$= (\theta \psi)(m)$$
$$= m, \text{ for all } m \in M.$$

Thus $\{m_i, f_i\}$ forms a dual basis for M.

Conversely, suppose that $\{m_i, f_i\}$ is a dual basis for R-semimodule M. Define $\psi : M \to R^{(I)}$ by $\psi(m)(i) = f_i(m)$ for all $m \in M$ and $\theta : R^{(I)} \to M$ by $\theta(f) = \sum_{i \in I} f(i)m_i$ for $m \in M$ and $f \in R^I$. Then θ and ψ are R-homomorphisms of left R-semimodules and

$$(\theta\psi)(m) = \theta(\psi(m))$$

= $\theta(f_i(m))$
= $\sum_{i \in I} f_i(m)m_i$
= m , for all $m \in M$.

Let $\phi: L \to K$ be a surjective R-homomorphism of left R-semimodules and $\alpha: M \to K$ be an R-homomorphism. Since $R^{(I)}$ is projective, then there exists an R-homomorphism $\beta: R^{(I)} \to L$ such that $\phi\beta = \alpha\theta \Rightarrow$ $\phi\beta\psi = \alpha\theta\psi = \alpha$ and $\beta\psi: M \to L$ is a map having the property that we seek in order to prove the first condition of projectiveness. Now let $\phi: L \to K$ be a steady R-homomorphism of left R-semimodules and $\alpha, \alpha': M \to L$ be R-homomorphisms satisfying $\phi\alpha = \phi\alpha'$ which implies that $\phi\alpha\theta = \phi\alpha'\theta$.

Since $R^{(I)}$ is projective, there exist *R*-homomorphisms β , $\beta' : R^{(I)} \to L$ satisfying $\phi\beta = \phi\beta'$ and $\alpha\theta + \beta = \alpha'\theta + \beta'$. This implies $\phi(\beta\psi) = \phi(\beta'\psi)$ and $\alpha + \beta \psi = \alpha \theta \psi + \beta \psi = (\alpha \theta + \beta)\psi = (\alpha' \theta + \beta')\psi = \alpha' + \beta' \psi.$ Hence the second condition of projectiveness.

Tensor product is as defined in [2]. Note that if M is a cancellative left R-semimodule then $R \otimes M \cong M$.

Proposition 1. Let R be a cancellative semiring and M be a cancellative R-semimodule. Then $\operatorname{Hom}_{R}(R, M) \cong M$.

Proposition 2. Let R be a commutative semiring and let A and B be Rsemialgebras. Let M be a finitely generated and projective A-semimodule and let N be a finitely generated and projective B-semimodule. Then

$$\operatorname{Hom}_A(M, M) \otimes \operatorname{Hom}_B(N, N) \cong \operatorname{Hom}_{A \otimes B}(M \otimes N, M \otimes N)$$

where $\otimes = \otimes_R$.

Proof. Let $\{x_j, f_j\}$, $\{y_i, g_i\}$ be the dual bases for M and N respectively. Then for any m in M and n in N, $\sum_j f_j(m) x_j = m$ and $\sum_i g_i(n) y_i = n$. Define,

$$\theta_j: M \otimes \operatorname{Hom}_B(N, N) \to \operatorname{Hom}_A(M, M) \otimes \operatorname{Hom}_B(N, N)$$

by

$$\theta_i (a \otimes h) = f_i(\) a \otimes h$$

and

$$\pi_i: M \otimes N \to M \otimes \operatorname{Hom}_B(N, N)$$

given by

$$\pi_i \ (b_1 \otimes b_2) = b_1 \otimes g_i(\) \ b_2 .$$

Now define

$$\psi : \operatorname{Hom}_{A \otimes B}(M \otimes N, M \otimes N) \to \operatorname{Hom}_{A}(M, M) \otimes \operatorname{Hom}_{B}(N, N)$$

by

$$\psi(f) = \sum_{i,j} \theta_j(\pi_i[f(x_j \otimes y_i)])$$

and

$$\psi' : \operatorname{Hom}_A(M, M) \otimes \operatorname{Hom}_B(N, N) \to \operatorname{Hom}_{A \otimes B}(M \otimes N, M \otimes N)$$

by

$$\psi'(h_1 \otimes h_2) = h_1 \otimes h_2.$$

Consider,

$$\begin{split} \psi\psi'(h_1\otimes h_2)(m\otimes n) &= \psi(h_1\otimes h_2)(m\otimes n) \\ &= \sum_{i,j} \theta_j(\pi_i[h_1\otimes h_2(x_j\otimes y_i)])(m\otimes n) \\ &= \sum_{i,j} \theta_j(\pi_i[(h_1(x_j)\otimes h_2(y_i)])(m\otimes n)) \\ &= \sum_{i,j} \theta_j(h_1(x_j)\otimes g_i(\)h_2(y_i))(m\otimes n) \\ &= (h_1\otimes h_2)\Big(\sum_{i,j} f_j(m)x_j\otimes g_i(n)y_i\Big) \\ &= (h_1\otimes h_2)(m\otimes n) \\ &\Rightarrow \psi\psi'(h_1\otimes h_2)(m\otimes n) = (h_1\otimes h_2)(m\otimes n) \end{split}$$

Clearly, $\psi'\psi(f) = f$. Hence ψ is a one-one onto homomorphism.

For any R-semimodule M, consider the subset $I_R(M)$ of R consisting of the element of the form $\sum_{i=1}^n f_i(m_i)$ where the $f_i \in \operatorname{Hom}_R(M, R)$ and the $m_i \in M$. The $I_R(M)$ is two-sided ideal in R so $I_R(M)$ is an ideal in R and is called the **trace ideal** of M. An R-semimodule M is an R-generator if $I_R(M) = R$. Thus M is an R-generator if and only if there exist $f_1, f_2, \ldots, f_n \in \operatorname{Hom}_R(M, R)$ and $m_1, m_2, \ldots, m_n \in M$ with $\sum_{i=1}^n f_i(m_i) = 1$.

An R-semimodule M is an R-progenerator if M is a finitely generated, projective and generator over R.

Proposition 3. Let R be a commutative semiring and let M and N be R-semimodules. Then

- i) $M \otimes_R N$ is finitely generated over R if both M and N are.
- ii) $M \otimes_R N$ is R-projective if both M and N are.
- iii) $M \otimes_R N$ is R-generator if both M and N are.

Henceforth we show that csmod-R and S-csmod are equivalent categories where S is chosen as the cancellative semiring of endomorphisms of some cancellative R-progenerator.

Let R be any cancellative semiring and let M be any cancellative R-semimodule. Define $M^* = \operatorname{Hom}_R(M, R)$ and $S = \operatorname{Hom}_R(M, M)$. Note that M^*, S are cancellative. Since R is a cancellative (R-R) bisemimodule, M^* is a cancellative right R-semimodule under the operation (f.r)m = f(m)r.

Moreover M is a cancellative left S-semimodule with s.m = s(m). Under this operation M is a cancellative left R-left S bisemimodule. Hence M^* becomes a cancellative right S-semimodule under the operation (f.s)(m) =

164

f(s(m)). M^* is a cancellative right R-right S-bisemimodule. We can form $M^* \otimes_R M$ and $M^* \otimes_S M$. Moreover $M^* \otimes_R M$ is a cancellative left S-right S-bisemimodule by virtue of M being a cancellative left R-left R-bisemimodule and M^* being a cancellative right R-right S bisemimodule. Similarly $M^* \otimes_S M$ is a cancellative left R-right R bisemimodule.

Let θ_R denote the map from $M^* \otimes_R M$ to $S = \text{Hom}_R(M, M)$ given by $[\theta_R \sum_i (f_i \otimes m_i)](m) = \sum_i f_i(m)m_i$. θ_R is both a left and a right *S*-semimodule homomorphism. Let θ_S denote the map from $M^* \otimes_S M$ to *R* given by $\theta_S(\sum_i f_i \otimes m_i) = \sum_i f_i(m_i)$. θ_S is a right and left *R*-semimodule homomorphism, whose image is the trace ideal $I_R(M)$.

Lemma 1. Let R be any cancellative semiring and M be any cancellative R-semimodule. θ_R is onto iff M is finitely generated and projective. Moreover if θ_R is onto then it is one-one.

Proof. Suppose that M is finitely generated and projective. Therefore there exists a dual basis $f_1, f_2, \ldots, f_n \in M^*$ and $m_1, m_2, \ldots, m_n \in M$, such that $\theta_R[\sum_{i=1}^n (f_i g) \otimes m_i] = g$ for any g in $S = \operatorname{Hom}_R(M, M)$. Hence θ_R is onto.

Conversely, assume that θ_R is onto. Then there exist $\sum_{i=1}^n f_i \otimes m_i \in M^* \otimes_R M$ such that $\theta_R(\sum_{i=1}^n f_i \otimes m_i)$ is the identity map from M to M, that is, $\sum_{i=1}^n f_i(m)m_i = m$ for all $m \in M$.

Thus the set f_1, f_2, \ldots, f_n , and m_1, m_2, \ldots, m_n forms a finite dual basis for M. Therefore by the dual basis lemma, M is finitely generated and projective.

Now given that θ_R is onto, we know that M possesses a dual basis $f_1, f_2, \ldots, f_n \in M^*$ and $m_1, m_2, \ldots, m_n \in M$.

We claim that θ_R is one-one. Let $\sum_j g_j \otimes n_j$, $\sum_k h_k \otimes p_k \in M^* \otimes_R M$ satisfy

$$\theta_R\Big(\sum_j g_j \otimes n_j\Big)(m) = \theta_R\Big(\sum_k h_k \otimes p_k\Big)(m), \ \forall m \in M.$$

Then

$$\sum_{j} g_j(m) n_j = \sum_{k} h_k(m) p_k.$$

Now

$$\sum_{j} g_{j} \otimes n_{j} = \sum_{j} g_{j} \otimes \left(\sum_{i} f_{i}(n_{j})\right) m_{i}$$
$$= \sum_{i,j} g_{j} f_{i}(n_{j}) \otimes m_{i}.$$

But

$$\sum_{j} (g_j f_i(n_j))(m) = \sum_{j} (g_j (f_i(n_j)(m)))$$

$$= \sum_{j} (g_j(m)f_i(n_j))$$
$$= f_i \Big(\sum_{j} g_j(m)(n_j)\Big)$$
$$= f_i \Big(\sum_{k} h_k(m)(p_k)\Big)$$
$$= \sum_{k} h_k(m)f_i(p_k)$$
$$= \sum_{k} (h_k f_i(p_k))(m).$$

Therefore

$$\left[\sum_{j} g_{j} f_{i}(n_{j})\right](m) = \left[\sum_{k} h_{k} f_{i}(p_{k})\right](m), \ \forall m \in M$$
$$\Rightarrow \sum_{j} g_{j} f_{i}(n_{j}) = \sum_{k} h_{k} f_{i}(p_{k})$$
$$\Rightarrow \sum_{i,j} g_{j} f_{i}(n_{j}) \otimes m_{i} = \sum_{i,k} h_{k} f_{i}(p_{k}) \otimes m_{i}$$
$$\Rightarrow \sum_{j} g_{j} \otimes n_{j} = \sum_{k} h_{k} \otimes p_{k}.$$

Thus

$$\theta_R \Big(\sum_j g_j \otimes n_j \Big) = \theta_R \Big(\sum_k h_k \otimes p_k \Big)$$
$$\Rightarrow \sum_j g_j \otimes n_j = \sum_k h_k \otimes p_k.$$

Hence θ_R is one-one.

Lemma 2. Let R be any cancellative semiring, M be any cancellative R-semimodule and $S = \operatorname{Hom}_R(M, M)$ be a cancellative semiring. θ_S is onto if and only if M is a generator. Moreover if θ_S is onto then it is one-one.

Proof. Since the image of θ_S is equal to $I_R(M)$, θ_S is onto if and only if $I_R(M) = R$, that is M is a generator over R.

Suppose θ_S is onto. We claim that θ_S is one-one. Let $\sum_j h_j \otimes n_j$, $\sum_k g_k \otimes p_k \in M^* \otimes_S M$ satisfy

fy
$$\theta_S\Big(\sum_j h_j \otimes n_j\Big) = \theta_S\Big(\sum_k g_k \otimes p_k\Big).$$

Then

$$\sum_{j} h_j(n_j) = \sum_{k} g_k(p_k).$$

Since θ_S is onto, there exist $f_1, f_2 \dots, f_n \in M^*$ and $m_1, m_2, \dots, m_n \in M$ with

$$\sum_{i} f_i(m_i) = 1.$$

Now

$$\sum_{j} h_{j} \otimes n_{j} = \sum_{j} h_{j} \otimes \left(\sum_{i} f_{i}(m_{i})\right) n_{j}$$
$$= \sum_{i,j} h_{j} \otimes \theta_{R}(f_{i} \otimes n_{j})(m_{i})$$
$$= \sum_{i} \left(\sum_{j} h_{j} \theta_{R}(f_{i} \otimes n_{j})\right) \otimes m_{i}.$$

Note that for every i and every $m \in M$,

$$\left[\sum_{j} h_{j} \theta_{R}(f_{i} \otimes n_{j})\right](m) = \sum_{j} h_{j} \left(f_{i}(m)n_{j}\right)$$
$$= f_{i}(m) \left(\sum_{j} h_{j}(n_{j})\right)$$
$$= f_{i}(m) \left(\sum_{k} g_{k}(p_{k})\right)$$
$$= \sum_{k} g_{k} \left(f_{i}(m)p_{k}\right)$$
$$= \left[\sum_{k} g_{k} \theta_{R}(f_{i} \otimes p_{k})\right](m).$$

Therefore

$$\Big[\sum_{j} h_{j} \theta_{R}(f_{i} \otimes n_{j})\Big](m) = \Big[\sum_{k} g_{k} \theta_{R}(f_{i} \otimes p_{k})\Big](m), \ \forall m \in M.$$

So,

$$\left[\sum_{j} h_{j} \theta_{R}(f_{i} \otimes n_{j})\right] = \left[\sum_{k} g_{k} \theta_{R}(f_{i} \otimes p_{k})\right]$$

$$\Rightarrow \left[\sum_{i,j} h_{j} \theta_{R}(f_{i} \otimes n_{j})\right] \otimes m_{i} = \left[\sum_{i,k} g_{k} \theta_{R}(f_{i} \otimes p_{k})\right] \otimes m_{i}$$

$$\Rightarrow \sum_{j} h_{j} \otimes n_{j} = \sum_{k} g_{k} \otimes p_{k}.$$

Thus

$$\theta_S \Big(\sum_j h_j \otimes n_j \Big) = \theta_S \Big(\sum_k g_k \otimes p_k \Big)$$

$$\Rightarrow \sum_j h_j \otimes n_j = \sum_k g_k \otimes p_k.$$

Hence θ_S is one-one.

For any cancellative left R-semimodule M, we have seen that M is a left R-left S cancellative bisemimodule and $M^* = \operatorname{Hom}_R(M, R)$ is a right R-right S cancellative bisemimodule where $S = \operatorname{Hom}_R(M, M)$ is a cancellative semiring. Therefore for any cancellative right R-semimodule L, $L \otimes_R M$ has the structure of a left cancellative S-semimodule, while for any cancellative left S-semimodule N, $M^* \otimes_S N$ has the structure of a cancellative right R-semimodule.

Then

$$() \otimes_R M : cs \mod -R \to S - cs \mod$$

and

 $M^* \otimes_S (): S - cs \mod \to cs \mod -R$

are functors.

Theorem 4. Let R be any cancellative semiring, M be any cancellative left R-semimodule and left R progenerator. Consider the cancellative semiring $S = \operatorname{Hom}_R(M, M)$ and the cancellative semimodule $M^* = \operatorname{Hom}_R(M, R)$. Then the functors

$$() \otimes_R M : cs \mod -R \to S - cs \mod,$$
$$M^* \otimes_S () : S - cs \mod -R$$

are inverse equivalences.

Proof. Let $L \in cs \mod -R$. Then we have

$$M^* \otimes_S (L \otimes_R M) \cong M^* \otimes_S (M \otimes_{R^0} L)$$
$$\cong (M^* \otimes_S M) \otimes_{R^0} L$$
$$\cong (R \otimes_{R^0} L)$$
$$\cong L \otimes_R R \cong L.$$

Similarly for any cancellative left S-semimodule N,

$$(M^* \otimes_S N) \otimes_R M \cong (N \otimes_{S^0} M^*) \otimes_R M$$
$$\cong N \otimes_{S^0} (M^* \otimes_R M)$$
$$\cong N \otimes_{S^0} S$$
$$\cong S \otimes_S N \cong N.$$

Hence the functors are inverse equivalences.

Acknowledgement. The authors would like to thank the referee and editor in chief for useful suggestions for the improvement of the article.

References

- F. De Mayer and E. Ingrahm, Separable Algebras over Commutative Rings, V-181, Springer - Verlag, New York, 1971.
- [2] J. S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Sciences, (Pitman Monographs and Surveys in Pure and Applied Mathematics) 54, Harlow: Longman Scientific and Technical (1992).

(Received: November 12, 2004) (Revised: June 21, 2005) R. P. Deore Department of Mathematics North Maharashtra University Jalgaon–425001, M.S. (India) E-mail: rpdeore123@yahoo.com

K.B. Patil Department of Mathematics Jaihind College Dhule–424002, M.S. (India)