ON (n, m) –GROUPS FOR $n > 2m$

RADOSLAV GALIC´

ABSTRACT. In this article a theorem about a $(2m, m)$ −group of Cupona-Dimovski is generalized.

1. Preliminaries

Definition 1.1. [1] Let $n \geq m+1$ and let $(Q; A)$ be an (n, m) −groupoid $(A: Q^n \to Q^m)$. We say that $(Q; A)$ is an (n, m) -group iff the following statements hold:

(i) For every $i, j \in \{1, \ldots, n-m+1\}, i < j$, the following law holds

$$
A(x_1^{i-1}, A(x_i^{i+n-1}), x_{i+n}^{2n-m}) = A(x_1^{j-1}, A(x_j^{j+n-1}), x_{j+n}^{2n-m})
$$

[:*i*, *j* > *–associative law*]; and

(ii) For every $i \in \{1, \ldots, n-m+1\}$ and for every $a_1^n \in Q$ there is exactly one $x_1^m \in Q^m$ such that the following equality holds

$$
A(a_1^{i-1}, x_1^m, a_i^{n-m}) = a_{n-m+1}^n.
$$

Also see [3].

Definition 1.2. [6] Let $n \geq 2m$ and let $(Q; A)$ be an (n, m) −groupoid. Let also e be a mapping of the set Q^{n-2m} into the set Q^m . Then, we say that e is a $\{1, n-m+1\}$ −neutral operation of the (n, m) −groupoid $(Q; A)$ iff for every sequence a_1^{n-2m} over Q and for every $x_1^m \in Q^m$ the following equalities hold

$$
A(x_1^m, a_1^{n-2m}, e(a_1^{n-2m})) = x_1^m \text{ and } A(e(a_1^{n-2m}), a_1^{n-2m}, x_1^m) = x_1^m.
$$

Remark. For $m = 1$ e is a $\{1, n\}$ -neutral operation of the n-groupoid $(Q; A)$ [5]. Cf. Chapter II in [8].

²⁰⁰⁰ Mathematics Subject Classification. Primary: 20N15.

Key words and phrases. (n, m) -group, $\{1, n - m + 1\}$ -neutral operation of the (n, m) −groupoid.

Proposition 1.3. [6] Let $(Q; A)$ be an (n, m) –groupoid and let $n \geq 2m$. Then there is at most one $\{1, n - m + 1\}$ – neutral operation of $(Q; A)$.

Proposition 1.4. [6] Every (n, m) −group $(n ≥ 2m)$ has a $\{1, n - m + 1\}$ − neutral operation.

Also see [7].

2. Auxiliary proposition

Proposition 2.1. [4] Let $(Q; A)$ be an (n, m) –group, e its $\{1, n - m + 1\}$ – neutral operation (1.2–1.4) and $n > 2m$. Then for every a_1^{n-2m} , $x_1^m \in Q$ and for all $j \in \{1, \ldots, n-2m+1\}$ the following equalities hold

$$
A(x_1^m, a_j^{n-2m}, \mathbf{e}(a_1^{n-2m}), a_1^{j-1}) = x_1^m \quad \text{and} \tag{1}
$$

$$
A(a_j^{n-2m}, \mathbf{e}(a_1^{n-2m}), a_1^{j-1}, x_1^m) = x_1^m.
$$
 (2)

Remark. For $m = 1$ see Proposition 1.1–IV in [8].

Main part of the proof.

$$
F(x_1^m, a_1^{n-2m}) \stackrel{def}{=} A(a_j^{n-2m}, \mathbf{e}(a_1^{n-2m}), a_1^{j-1}, x_1^m) \Rightarrow
$$

\n
$$
A(a_j^{n-2m}, \mathbf{e}(a_1^{n-2m}), a_1^{j-1}, F(x_1^m, a_1^{n-2m})) =
$$

\n
$$
A(a_j^{n-2m}, \mathbf{e}(a_1^{n-2m}), a_1^{j-1}, A(a_j^{n-2m}, \mathbf{e}(a_1^{n-2m}), a_1^{j-1}, x_1^m)) \stackrel{(i)}{\Longrightarrow}
$$

\n
$$
A(a_j^{n-2m}, \mathbf{e}(a_1^{n-2m}), a_1^{j-1}, F(x_1^m, a_1^{n-2m})) =
$$

\n
$$
A(a_j^{n-2m}, A(\mathbf{e}(a_1^{n-2m}), a_1^{n-2m}, \mathbf{e}(a_1^{n-2m})), a_1^{j-1}, x_1^m) \stackrel{12,1,4}{\Longrightarrow}
$$

\n
$$
A(a_j^{n-2m}, \mathbf{e}(a_1^{n-2m}), a_1^{j-1}, F(x_1^m, a_1^{n-2m})) =
$$

\n
$$
A(a_j^{n-2m}, \mathbf{e}(a_1^{n-2m}), a_1^{j-1}, x_1^m) \stackrel{(ii)}{\Longrightarrow} F(x_1^m, a_1^{n-2m}) = x_1^m.
$$

\nWhence, we obtain (2).

3. Result

Theorem 3.1. Let $n > 2m, m > 1$, $(Q; A)$ be an (n, m) –group and e its ${1, n - m + 1}$ – neutral operation (1.2-1.4). Then for all $i \in \{0, 1, ..., m\}$ for all $t \in \{1, \ldots, n-2m+1\}$, for every $x_1^m \in Q^m$ and for every sequence a_1^{n-2m} over Q the following equality holds

$$
A(x_1^i, a_1^{n-2m}, e(a_1^{n-2m}), a_1^{t-1}, x_{i+1}^m) = x_1^m.
$$

Remark. Theorem 3.1 for $n = 2m$ $(m > 1)$ is proved in [2]. Also see [3].

Main part of the proof.

1) Instead of $e(a_1^{n-2m})$ we write

$$
\overline{\mathbf{e}_j(a_1^{n-2m})} \mid_{j=1}^m
$$

where $\mathbf{e}_j : Q^{n-2m} \to Q$.

2)

$$
A(x_1^i, a_t^{n-2m}, e(a_1^{n-2m}), a_1^{t-1}, x_{i+1}^m)^{(2)} =
$$
\n
$$
A(a_1^{n-2m}, e(a_1^{n-2m}), A(x_1^i, a_t^{n-2m}, e(a_1^{n-2m}), a_1^{t-1}, x_{i+1}^m)) =
$$
\n
$$
A(a_1^{n-2m}, \overline{e_j(a_1^{n-2m})} |_{j=1}^m, A(x_1^i, a_t^{n-2m}, e(a_1^{n-2m}), a_1^{t-1}, x_{i+1}^m)) =
$$
\n
$$
A(a_1^{n-2m}, \overline{e_j(a_1^{n-2m})} |_{j=1}^i, \overline{e_j(a_1^{n-2m})} |_{j=i+1}^m,
$$
\n
$$
A(x_1^i, a_t^{n-2m}, e(a_1^{n-2m}), a_1^{t-1}, x_{i+1}^m)) =
$$
\n
$$
A(a_1^{n-2m}, \overline{e_j(a_1^{n-2m})} |_{j=1}^i, A(\overline{e_j(a_1^{n-2m})} |_{j=i+1}^m,
$$
\n
$$
x_1^i, a_t^{n-2m}, e(a_1^{n-2m}), a_1^{t-1}), x_{i+1}^m) =
$$
\n
$$
A(a_1^{n-2m}, \overline{e_j(a_1^{n-2m})} |_{j=1}^i, \overline{e_j(a_1^{n-2m})} |_{j=i+1}^m, x_1^i, x_{i+1}^m) =
$$
\n
$$
A(a_1^{n-2m}, \overline{e_j(a_1^{n-2m})} |_{j=1}^m, x_1^m) =
$$
\n
$$
A(a_1^{n-2m}, e(a_1^{n-2m}), x_1^m)^{(2)} = x_1^m, 0 < i < m.
$$

 \Box

REFERENCES

- [1] G. Čupona, Vector valued semigroups, Semigroup Forum 26 (1983), 65-74.
- [2] \acute{G} . Čupona and D. Dimovski, On a class of vector valued groups, Proceedings of the Conf. "Algebra and Logic", Zagreb 1984, 29–37.
- [3] G. Čupona, N. Celakoski, S. Markovski and D. Dimovski, Vector valued groupoids, semigroups and groups, in: Vector valued semigroups and groups, (B. Popov, G. Čupona and N. Celakoski, eds.), Skopje 1988, $1-78$.
- [4] R. Galić and A. Katić, On neutral operations of (n, m) −groups, 2004, notes.
- [5] J. Ušan, Neutral operations of n−groupoids, (Russian), Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 18 (2) (1988), 117–126.
- [6] J. Ušan, Neutral operations of (n, m) −groupoids, (Russian), Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 19 (2) (1989), 125–137.
- [7] J. Ušan, *Note on* (n, m) −groups, Math. Moravica, 3 (1999), 127–139.
- [8] J. Ušan, *n*-groups in the light of the neutral operations, Math. Moravica, Special Vol., (2003), monograph.

174 RADOSLAV GALIC´

(Received: March 30, 2005) Faculty of Electrical Engineering University of Osijek Kneza Trpimira 2B, HR - 31000 Osijek Croatia