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TAUBERIAN CONDITIONS FOR DOUBLE SEQUENCES
THAT ARE STATISTICALLY SUMMABLE BY WEIGHTED

MEANS

ÁRPÁD FEKETE

Abstract. The concept of statistical convergence of ordinary (single)
sequences was introduced by Fast in 1951. Basic properties of statistical
convergence were proved by Schönberg and Fridy. Móricz extended the
concept of statistical convergence from single to multiple sequences and
proved some basic results. Móricz and Orhan have recently proved nec-
essary and sufficient Tauberian conditions under which statistical con-
vergence follows from statistical summability by weighted means. We
extend this result from single to double sequences.

1. Introduction

In 1951 Fast [1] was the first mathematician who introduced an extension
of the usual concept of sequential limits which he called statistical conver-
gence. Schönberg [9] gave some properties of statistical convergence and
also studied the concept as a summability method. Both of these authors
noted that if a bounded sequence is statistically convergent to L then it
is Cesàro summable to L. Basic properties of statistical convergence were
proved by Fridy [2] too. Móricz extended in [5] the concept of statistical
convergence from single to multiple sequences and proved some basic re-
sults. Móricz and Orhan [6] have recently proved necessary and sufficient
Tauberian conditions under which statistical convergence follows from sta-
tistical summability (N, p) by weighted means. We extend this result from
single to double sequences.

A double sequence (xjk : j, k = 0, 1, 2, . . . ) of (real or complex) num-
bers is said to be statistically convergent to some number L, in symbol
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st–lim xjk = L, if for each ε > 0,

lim
m,n→∞

1
(m + 1)(n + 1)

|{j ≤ m and k ≤ n : |xjk − L| ≥ ε}| = 0. (1.1)

Let p := {pj}∞j=0, q := {qk}∞k=0 be two sequences of nonnegative numbers
(p0, q0 > 0) with the property that

Pm :=
m∑

j=0

pj →∞ as m →∞ and Qn :=
n∑

k=0

qk →∞ as n →∞. (1.2)

The weighted means of a given double sequence (xjk) are the (N, p, q) means
tmn, which are defined by

tmn =
1

PmQn

m∑
j=0

n∑
k=0

pjqkxjk, m, n = 0, 1, 2 . . . . (1.3)

We say that the sequence xjk is statistically summable (N, p, q) to L if
st–lim tmn = L, that is,

lim
M,N→∞

1
(M + 1)(N + 1)

|{m ≤ M and n ≤ N : |tmn − L| ≥ ε}| = 0.

(1.4)
Our goal is to find conditions under which st–lim tmn = L implies that

st–lim xjk = L.
The concepts of statistical limit inferior and limit superior of a sequence

of real numbers was introduced by Fridy and Orhan [3]. We recall that if
α := st–lim infk→∞ pk is finite, then for every α1 < α,

lim
n→∞

1
n + 1

|{k ≤ n : pk < α1}| = 0 (1.5)

and for every α2 > α,

lim
n→∞

1
n + 1

|{k ≤ n : pk < α2}| 6= 0. (1.6)

The latter statement means that either the limit does not exist, or the limit
exists and is greater than 0. If (1.5) is satisfied for every real number α1,
then we set st–limk→∞ pk = st–lim infk→∞ pk := +∞. If (1.6) is satisfied
for every real number α2, then we set st–lim infk→∞ pk := −∞.

The dual statement for β := st–lim supk→∞ pk can be formulated analo-
gously.

2. New results

First, we consider sequences (xjk) of real numbers and give one–sided
Tauberian conditions.
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Theorem 1. Let p := {pj}∞j=0, and q := {qk}∞k=0 be two sequences of non-
negative numbers such that p0 > 0, q0 > 0 and

st–lim inf
Pλm

Pm
> 1 and st–lim inf

Qλn

Qn
> 1 for every λ > 1, (2.1)

where λm := [λm], λn := [λn], and let (xjk) be a sequence of real numbers,
which is statistically summable (N, p, q) to a finite number L. Then (xjk)
is statistically convergent to the same L if and only if the following two
conditions hold: for every ε > 0,

inf
λ>1

lim sup
M,N→∞

1
(M + 1)(N + 1)

∣∣∣{m ≤ M and n ≤ N :

1
(Pλm − Pm)(Qλn −Qn)

λm∑
j=m+1

λn∑
k=n+1

pjqk(xjk − xmn) ≤ −ε
}∣∣∣ = 0 (2.2)

and

inf
0<λ<1

lim sup
M,N→∞

1
(M + 1)(N + 1)

∣∣∣{m ≤ M and n ≤ N :

1
(Pm − Pλm)(Qn −Qλn)

m∑
j=λm+1

n∑
k=λn+1

pjqk(xmn − xjk) ≤ −ε
}∣∣∣ = 0. (2.3)

Remark 1. Conditions (2.2) and (2.3) are independent of one another. We
show this but - by the simplicity - in one dimensional case and let pj ≡ 1.
Then (2.2) and (2.3) can be replaced by

inf
λ>1

lim sup
M→∞

1
M + 1

∣∣∣{m ≤ M :
1

λm −m

λm∑
j=m+1

(xj − xm) ≤ −ε
}∣∣∣ = 0, (2.2’)

and

inf
0<λ<1

lim sup
M→∞

1
M + 1

∣∣∣{m ≤ M :
1

m− λm

m∑
j=λm+1

(xm − xj) ≤ −ε
}∣∣∣ = 0.

(2.3’)
We construct a statistically not convergent sequence (xj) such that (xj) is
statistically summable to zero and condition (2.2’) is satisfied but (2.3’) is
violated. Let the sequence (xj) given by

xj :=


1 if l2 − l + 1 ≤ j ≤ l2,

−l if j = l2 + 1,

0 otherwise.
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Then xj = {1, −1, 1, 1, −2, 0, 1, 1, 1, −3, 0, 0, 1, 1, 1, 1, −4, . . . }.
It is clear that st–lim inf xj = 0 and st–lim sup xj = 1. Therefore xj is
not statistically convergent. It is easy to check that (xj) is statistically
summable to zero. (Even more is true, (xj) is (C,1) summable to zero.) On
the other hand, by virtue of Lemma 4 [see the one dimensional case], we
have for every λ > 1,

st–lim sup
1

λm −m

λm∑
j=m+1

(xj − xm)

= st–lim
1

λm −m

λm∑
j=m+1

xj − st–lim inf xm = 0,

while for every 0 < λ < 1,

st–lim sup
1

m− λm

m∑
j=λm+1

(xm − xj)

= st–lim sup xm − st–lim
1

m− λm

m∑
j=λm+1

xj = 1.

Remark 2. It is easy to check that conditions (2.1) imply (1.2).

Remark 3. If conditions (1.1), (1.4) and (2.1) hold, then we necessarily have

st–lim
1

(Pλm − Pm)(Qλn −Qn)

λm∑
j=m+1

λn∑
k=n+1

pjqk(xjk − xmn) = 0 (2.4)

for every λ > 1, and

st–lim
1

(Pm − Pλm)(Qn −Qλn)

m∑
j=λm+1

n∑
k=λn+1

pjqk(xmn − xjk) = 0 (2.5)

for every 0 < λ < 1.

Following Schmidt [8], we say that a double sequence (xjk) is statistically
slowly decreasing with respect to the first index if, for every ε > 0,

inf
λ>1

lim sup
M,N→∞

1
(M + 1)(N + 1)

∣∣{m ≤ M and n ≤ N :

min
m<j≤λm

(xjn − xmn) ≤ −ε
}∣∣ = 0. (2.6)
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We say that (xjk) is statistically slowly decreasing in the strong sense with
respect to the first index if (2.6) is satisfied with

min
m<j≤λm
n<k≤λn

(xjk − xmk) in place of min
m<j≤λm

(xjn − xmn). (2.6’)

Analogously, we say that (xjk) is statistically slowly decreasing with re-
spect to the second index if, for every ε > 0,

inf
λ>1

lim sup
M,N→∞

1
(M + 1)(N + 1)

∣∣{m ≤ M and n ≤ N :

min
n<k≤λn

(xmk − xmn) ≤ −ε
}∣∣ = 0; (2.7)

and (xjk) is said to enjoy this property in the strong sense if (2.7) is satisfied
with

min
m<j≤λm
n<k≤λn

(xjk − xjn) in place of min
n<k≤λn

(xmk − xmn). (2.7’)

Remark 4. It is not difficult to check that (2.6) implies

inf
0<λ<1

lim sup
M,N→∞

1
(M + 1)(N + 1)

∣∣{m ≤ M and

n ≤ N : min
λm<j≤m

(xmn − xjn) ≤ −ε
}∣∣ = 0,

and vice versa. The same equivalence hold in the case of (2.7) and in the
cases where (2.6) and (2.7) are meant in the strong sense (that is, in the cases
when (2.6) is modified by (2.6’), and (2.7) is modified by (2.7’)). Taking into
account that for the expression in (2.2), we have

1
(Pλm − Pm)(Qλn −Qn)

λm∑
j=m+1

λn∑
k=n+1

pjqk(xjk − xmn)

≥ min
m<j≤λm
n<k≤λn

(xjk − xmk) + min
n<k≤λn

(xmk − xmn)

and an analogous one for the corresponding expression in (2.3). The follow-
ing corollary is an immediate consequence of Theorem 1.

Corollary 1. Let p := {pj}∞j=0, and q := {qk}∞k=0 be two sequences of
nonnegative numbers such that p0 > 0, q0 > 0 and conditions in (2.1)
are satisfied, and let (xjk) be a statistically slowly decreasing sequence with
respect to both indices and, in addition, in the strong sense with respect to
one of the indices. Then

st–lim tmn = L implies st–lim xjk = L.
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Second, we consider sequences (xjk) of complex numbers and give two–
sided Tauberian conditions.

Theorem 2. Let p := {pj}∞j=0, and q := {qk}∞k=0 be two sequences of non-
negative numbers such that p0 > 0, q0 > 0 and conditions in (2.1) are
satisfied. Let (xjk) be a sequence of complex numbers which is statistically
summable (N, p, q) to L. Then (xjk) is statistically convergent to the same
L if and only if one of the following two conditions holds: for every ε > 0,
either

inf
λ>1

lim sup
M,N→∞

1
(M + 1)(N + 1)

∣∣∣{m ≤ M and

n ≤ N :
∣∣∣ 1
(Pλm − Pm)(Qλn −Qn)

λm∑
j=m+1

λn∑
k=n+1

pjqk(xjk − xmn)
∣∣∣ ≥ ε

}∣∣∣ = 0

(2.8)
or

inf
0<λ<1

lim sup
M,N→∞

1
(M + 1)(N + 1)

∣∣∣{m ≤ M and

n≤ N :
∣∣∣ 1
(Pm −Pλm)(Qn −Qλn)

m∑
j=λm+1

n∑
k=λn+1

pjqk(xmn−xjk)
∣∣∣≥ ε

}∣∣∣ = 0.

(2.9)

Remark 5. Again even more is true: If conditions (1.1), (1.4) and (2.1) are
satisfied, then we necessarily have (2.4) for every λ > 1, and (2.5) for every
0 < λ < 1.

Following Hardy [4], a double sequence (xjk) of complex numbers is said
to be statistically slowly oscillating with respect to the first index if, for
every ε > 0,

inf
λ>1

lim sup
M,N→∞

1
(M + 1)(N + 1)

∣∣{m ≤ M and

n ≤ N : max
m<j≤λm

|(xjn − xmn)| ≥ ε
}∣∣ = 0. (2.10)

We say that (xjk) is statistically slowly oscillating in the strong sense with
respect to the first index if (2.10) is satisfied with

max
m<j≤λm
n<k≤λn

|(xjk − xmk)| in place of max
m<j≤λm

|(xjn − xmn)|.

The statistically slow oscillation property with respect to the second index
is defined analogously.
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Remark 6. Similarly to Remark 4, condition (2.10) is equivalent to the fol-
lowing one: for every ε > 0,

inf
0<λ<1

lim sup
M,N→∞

1
(M + 1)(N + 1)

∣∣{m ≤ M and

n ≤ N : max
λm<j≤m

|(xmn − xjn)| ≥ ε
}∣∣ = 0,

and an analogous equivalence holds in the strong sense, as well.

Corollary 2. Let p := {pj}∞j=0, and q := {qk}∞k=0 be two sequences of
nonnegative numbers such that p0 > 0, q0 > 0 and conditions in (2.1)
are satisfied, and let (xjk) be a statistically slowly oscillating sequence with
respect to both indices and, in addition, in the strong sense with respect to
one of the indices. Then

st–lim tmn = L implies st–lim xjk = L.

In the special case of summability (C, 1, 1) when pj ≡ 1 and qk ≡ 1, our
theorems and corollaries were proved in [7].

3. Proofs

Lemma 1. If Pm and Qn are nondecreasing sequences of positive numbers,
then conditions in (2.1) are equivalent with

st–lim inf
Pm

Pλm

> 1 and st–lim inf
Qn

Qλn

> 1 for every 0 < λ < 1.

Proof. The proof is the same as in [6, Lemma 1]. �

Lemma 2. Let p := {pj}∞j=0, and q := {qk}∞k=0 be two sequences of nonneg-
ative numbers such that p0 > 0, q0 > 0 and conditions in (2.1) are satisfied,
and let (xjk) be a sequence of complex numbers which is statistically sum-
mable (N, p, q) to a finite number L. Then for every λ > 0,

st–lim tλm, λn = L. (3.1)

Proof. Case λ > 1. For each M ≥ 1, N ≥ 1 and ε > 0, we have

{m ≤ M, n ≤ N : |tλm, λn − L| ≥ ε} ⊆ {m ≤ λM , n ≤ λN : |tmn − L| ≥ ε},

whence we find

1
(M + 1)(N + 1)

∣∣{m ≤ M, n ≤ N : |tλm, λn − L| ≥ ε
}∣∣

≤ λ2

(λM + 1)(λN + 1)

∣∣{m ≤ λM , n ≤ λN : |tmn − L| ≥ ε
}∣∣,
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since λM+1
M+1 ≤ λM+1

M+1 < λ and a similar inequality holds for λN+1
N+1 . Since

st–lim tmn = L, therefore the left term of this inequality tends to zero, that
is st–lim tλm, λn = L.

Case 0 < λ < 1. We claim that the same term tjk cannot occur more than
(1 + 1

λ)2 times in the sequence tλm, λn . In fact, for fixed k let p and q some
integers such that

j = λp = λp+1 = · · · = λp+q−1 < λp+q

or equivalently,

j ≤ λp < λ(p + 1) < · · · < λ(p + q − 1) < j + 1 ≤ λ(p + q),

then
j + λ(q − 1) ≤ λ(p + q − 1) < j + 1,

whence it follows that λ(q − 1) < 1, that is q < 1 + 1
λ .

Similarly for fixed j we can prove that tjk cannot occur more than (1+ 1
λ)

times in the sequence tλm, λn . Consequently,
1

(M + 1)(N + 1)

∣∣{m ≤ M, n ≤ N : |tλm, λn − L| ≥ ε
}∣∣

≤ (1 +
1
λ

)2
λM + 1
M + 1

λN + 1
N + 1

1
(λM + 1)(λN + 1)

∣∣{m ≤ λM , n ≤ λN :

|tmn − L| ≥ ε
}∣∣

≤ (λ + 1)2

λ2
2λ2 1

(λM + 1)(λN + 1)

∣∣{m ≤ λM , n ≤ λN :

|tmn − L| ≥ ε
}∣∣ → 0, as M, N →∞.

We used that
(λM + 1)(λN + 1)
(M + 1)(N + 1)

≤ 2λ2.

Therefore st–lim tλm, λn = L.
�

The next two representations are very important in the proof of Theorems
1 and 2.

Lemma 3. If λ > 1, then

1
(Pλm − Pm)(Qλn −Qn)

λm∑
j=m+1

λn∑
k=n+1

pjqkxjk

= tλm, λn +
Pm

Pλm − Pm
(tλm, λn − tm, λn) +

Qn

Qλn −Qn
(tλm, λn − tλm, n)
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+
PmQn

(Pλm − Pm)(Qλn −Qn)
(tλm, λn − tm, λn − tλm, n + tmn). (3.2)

If 0 < λ < 1, then

1
(Pm − Pλm)(Qn −Qλn)

m∑
j=λm+1

n∑
k=λn+1

pjqkxjk =

= tmn +
Pλm

Pm − Pλm

(tmn − tλm, n) +
Qλn

Qn −Qλn

(tmn − tm, λn)

+
PλmQλn

(Pm − Pλm)(Qn −Qλn)
(tmn − tλm, n − tm, λn + tλm, λn). (3.3)

Proof. Case λ > 1. By definition

λm∑
j=m+1

λn∑
k=n+1

pjqkxjk =

= PλmQλntλm, λn − PλmQntλm, n − PmQλntm, λn + PmQntmn.

Using this, a simple rearranging gives that

1
(Pλm − Pm)(Qλn −Qn)

λm∑
j=m+1

λn∑
k=n+1

pjqkxjk

= tλm, λn +
1

(Pλm − Pm)(Qλn −Qn)
{
(PλmQn − PmQn)(tλm, λn − tλm, n)

+ (PmQλn− PmQn)(tλm, λn− tm, λn)+PmQn(tλm, λn−tm, λn−tλm, n+ tmn)
}

= tλm, λn +
Qn

Qλn −Qn
(tλm, λn − tλm, n) +

Pm

Pλm − Pm
(tλm, λn − tm, λn)

+
PmQn

(Pλm − Pm)(Qλn −Qn)
(tλm, λn − tm, λn − tλm, n + tmn).

The proof of (3.3) is similar to that of (3.2). �

Lemma 4. Let p := {pj}∞j=0, and q := {qk}∞k=0 be two sequences of nonneg-
ative numbers such that p0 > 0, q0 > 0 and conditions in (2.1) are satisfied,
and let (xjk) be a sequence of complex numbers which is statistically sum-
mable (N, p, q) to a finite number L. Then for every λ > 1,

st–lim
1

(Pλm − Pm)(Qλn −Qn)

λm∑
j=m+1

λn∑
k=n+1

pjqkxjk = L, (3.4)
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and for every 0 < λ < 1,

st–lim
1

(Pm − Pλm)(Qn −Qλn)

m∑
j=λm+1

n∑
k=λn+1

pjqkxjk = L. (3.5)

Proof. Case λ > 1. We use representation (3.2) and the fact that

st–lim sup
Pm

Pλm − Pm
= st–lim sup

1
Pλm
Pm

− 1
=

1

st–lim inf Pλm
Pm

− 1
< ∞,

(3.6)
due to (2.1). Similarly, we have

st–lim sup
Qn

Qλn −Qn
< ∞. (3.7)

Now (3.4) follows from the statistical summability (N, p, q) of (xjk) and
from Lemma 2.
Case 0 < λ < 1. We use representation (3.3). Since by Lemma 1, we have

st–lim sup
Pλm

Pm − Pλm

=
1

st–lim inf Pm
Pλm

− 1
< ∞ (3.8)

and

st–lim sup
Qλn

Qn −Qλn

< ∞, (3.9)

(3.5) follows again from the statistical summability (N, p, q) of (xjk) and
from Lemma 2. �

Proof of Theorem 1. Necessity. Assume that (xjk) is both statistically
convergent and statistically summable (N, p, q) of (xjk) to the same number.
In case λ > 1 applying Lemma 4 we get

st–lim
1

(Pλm − Pm)(Qλn −Qn)

λm∑
j=m+1

λn∑
k=n+1

pjqk(xjk − xmn)

= st–lim
1

(Pλm − Pm)(Qλn −Qn)

λm∑
j=m+1

λn∑
k=n+1

pjqkxjk − st–lim xmn

= L− L = 0 as m,n →∞.

This proves (2.4). Similarly, Lemma 4 yields (2.5) for every 0 < λ < 1.
Sufficiency. Assume that st–lim tmn = L and conditions (2.1)-(2.3) are
satisfied. In order to prove that st–lim xjk = L, it suffices to prove that

st–lim(xmn − tmn) = 0. (3.10)
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Case λ > 1. By Lemma 3, we have

xmn − tλm, λn =
Pm

Pλm − Pm
(tλm, λn − tm, λn) +

Qn

Qλn −Qn
(tλm, λn − tλm, n)

+
PmQn

(Pλm − Pm)(Qλn −Qn)
(tλm, λn − tm, λn − tλm, n + tmn)

− 1
(Pλm − Pm)(Qλn −Qn)

λm∑
j=m+1

λn∑
k=n+1

pjqk(xjk − xmn) (3.11)

whence, for any ε > 0,

{m ≤ M, n ≤ N : xmn − tλm,λn ≥ ε} ⊆{
m ≤ M,n ≤ N :

Pm

Pλm − Pm
(tλm,λn − tm,λn) +

Qn

Qλn −Qn
(tλm,λn − tλm,n)

+
PmQn

(Pλm − Pm)(Qλn −Qn)
(tλm, λn − tm, λn − tλm, n + tmn) ≥ ε

2

}
∪

{
m ≤ M, n ≤ N :

1
(Pλm − Pm)(Qλn −Qn)

λm∑
j=m+1

λn∑
k=n+1

pjqk(xjk − xmn)

≤ − ε

2

}
=: AMN (ε) ∪ BMN (ε), say. (3.12)

By virtue of Lemma 2 and (3.6), (3.7), for every ε > 0, we have

lim
M,N→∞

1
(M + 1)(N + 1)

|AMN (ε)| = 0. (3.13)

On the other hand, given any δ > 0, by (2.2) there exists some λ > 1 such
that

lim sup
M,N→∞

1
(M + 1)(N + 1)

|BMN (ε)| ≤ δ. (3.14)

Combining (3.12)-(3.14) gives

lim sup
M,N→∞

1
(M + 1)(N + 1)

|{m ≤ M, n ≤ N : xmn − tλm, λn ≥ ε}| ≤ δ.

Since δ > 0 is arbitrary, for every ε > 0, we have

lim sup
M,N→∞

1
(M + 1)(N + 1)

|{m ≤ M, n ≤ N : xmn− tλm, λn ≥ ε}| = 0. (3.15)

Applying Lemma 2 gives

lim
M,N→∞

1
(M + 1)(N + 1)

|{m ≤ M, n ≤ N : xmn − tmn ≥ ε}| = 0. (3.16)
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Case 0 < λ < 1. By (3.3), we have

xmn − tmn =
Pλm

Pm − Pλm

(tmn − tλm, n) +
Qλn

Qn −Qλn

(tmn − tm, λn)

+
PλmQλn

(Pm − Pλm)(Qn −Qλn)
(tmn − tλm, n − tm, λn + tλm, λn)

+
1

(Pm − Pλm)(Qn −Qλn)

m∑
j=λm+1

n∑
k=λn+1

pjqk(xmn − xjk),

(3.17)

whence for any ε > 0

{m ≤ M, n ≤ N : xmn − tmn ≤ −ε} ⊆{
m ≤ M, n ≤ N :

Pλm

Pm − Pλm

(tmn − tλm, n) +
Qλn

Qn −Qλn

(tmn − tm, λn)

+
PλmQλn

(Pm − Pλm)(Qn −Qλn)
(tmn − tλm, n − tm, λn + tλm, λn) ≤ − ε

2

}
∪

{
m ≤ M,n ≤ N :

1
(Pm − Pλm)(Qn −Qλn)

·

m∑
j=λm+1

n∑
k=λn+1

pjqk(xmn − xjk) ≤ − ε

2

}
.

By virtue of Lemma 2, (2.3) and (3.8), (3.9), for every ε > 0, we conclude

lim
M,N→∞

1
(M + 1)(N + 1)

|{m ≤ M, n ≤ N : xmn − tmn ≤ −ε}| = 0. (3.18)

Combining (3.16) and (3.18) yields for every ε > 0,

lim
M,N→∞

1
(M + 1)(N + 1)

|{m ≤ M, n ≤ N : |xmn − tmn| ≥ ε}| = 0.

This proves (3.10) and the proof of Theorem 1 is complete. �

Proof of Theorem 2. Necessity. Assume that (xjk) is both statistically
convergent and statistically summable (N, p, q) of (xjk) to the same number.
Applying Lemma 4 yields (2.4) for every λ > 1 and (2.5) for every 0 < λ < 1.
Sufficiency. Assume that st–lim tmn = L and one of the conditions (2.8)
and (2.9) is satisfied. In order to prove that (xjk) is statistically convergent
to the same number, again it is enough to prove (3.10).

Let ε > 0 be given. In case λ > 1, by (3.11) we have

{m ≤ M, n ≤ N : |xmn − tλm, λn | ≥ ε} ⊆
{

m ≤ M, n ≤ N :
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Pλm − Pm
(tλm, λn − tm, λn) +

Qn

Qλn −Qn
(tλm, λn − tλm, n)

+
PmQn

(Pλm − Pm)(Qλn −Qn)
(tλm, λn − tm, λn − tλm, n + tmn)

∣∣∣ ≥ ε

2

}
∪

{
m ≤ M, n ≤ N :

1
(Pλm − Pm)(Qλn −Qn)

∣∣∣ λm∑
j=m+1

λn∑
k=n+1

pjqk(xjk − xmn)
∣∣∣

≥ ε

2

}
:= A

(1)
MN (ε) ∪ B

(1)
MN (ε). (3.19)

Given δ > 0, by (2.8) there exist some λ > 1 such that

lim sup
M,N→∞

1
(M + 1)(N + 1)

|B(1)
MN (ε)| ≤ δ.

In case 0 < λ < 1, by (3.17) we have

{m ≤ M, n ≤ N : |xmn − tmn| ≤ ε} ⊆
{

m ≤ M, n ≤ N :∣∣∣ Pλm

Pm − Pλm

(tmn − tλm, n) +
Qλn

Qn −Qλn

(tmn − tm, λn)

+
PλmQλn

(Pm − Pλm)(Qn −Qλn)
(tmn − tλm, n − tm, λn + tλm, λn)

∣∣∣ ≥ ε

2

}
∪

{
m ≤ M,n ≤ N :

1
(Pm−Pλm)(Qn−Qλn)

∣∣∣ m∑
j=λm+1

n∑
k=λn+1

pjqk(xmn−xjk)
∣∣∣

≥ ε

2

}
:= A

(2)
MN (ε) ∪ B

(2)
MN (ε). (3.20)

Given δ > 0, by (2.9) there exist some 0 < λ < 1 such that

lim sup
M,N→∞

1
(M + 1)(N + 1)

|B(2)
MN (ε)| ≤ δ.

By (3.19), (3.20) and Lemma 2, in either case we conclude that

lim sup
M,N→∞

1
(M + 1)(N + 1)

|{m ≤ M, n ≤ N : |xmn − tmn| ≥ ε}| ≤ δ.

Since δ > 0 is arbitrary, it follows that for every ε > 0,

lim
M,N→∞

1
(M + 1)(N + 1)

|{m ≤ M, n ≤ N : |xmn − tmn| ≥ ε}| = 0.

This proves (3.10) and the proof of Theorem 2 is complete. �
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