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THE KONTOROVICH - LEBEDEV TRANSFORMATION
ON SOBOLEV TYPE SPACES

SEMYON B. YAKUBOVICH

Abstract. The Kontorovich-Lebedev transformation

(KLf)(x) =

∫ ∞

0

Kiτ (x)f(τ)dτ, x ∈ R+

is considered as an operator, which maps the weighted space Lp(R+;
ω(τ)dτ), 2 ≤ p ≤ ∞ into the Sobolev type space SN,α

p (R+) with the
finite norm

||u||
S

N,α
p (R+)

=

( N∑
k=0

∫ ∞

0

|Ak
xu|pxαkp−1dx

)1/p

< ∞,

where α = (α0, α1, . . . , αN ), αk ∈ R, k = 0, . . . , N , and Ax is the differ-
ential operator of the form

Axu = x2u(x)− x
d

dx

[
x

du

dx

]
,

and Ak
x means k-th iterate of Ax, A0

xu = u. Elementary properties for
the space SN,α

p (R+) are derived. Boundedness and inversion properties
for the Kontorovich-Lebedev transform are studied. In the Hilbert case
(p = 2) the isomorphism between these spaces is established for the
special type of weights and Plancherel’s type theorem is proved.

1. Introduction

The object of the present paper is to extend the theory of the Kontorovich-
Lebedev transformation [8], [11]

(KLf)(x) =
∫ ∞

0
Kiτ (x)f(τ) dτ, (1.1)

on the so-called Sobolev type spaces, which will be defined below. In the
following, x ∈ R+ ≡ (0,∞), Kiτ (x) is the modified Bessel function or the
Macdonald function (cf. [1], [8, p. 355]), and the pure imaginary subscript
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(an index) iτ is such that τ is restricted to R+. The function Kν(z) satisfies
the differential equation

z2d
2u

dz2
+ z

du

dz
− (z2 + ν2)u = 0. (1.2)

for which it is the solution that remains bounded as z tends to infinity on
the real line. The modified Bessel function has the asymptotic behaviour
(cf. [1], relations (9.6.8), (9.6.9), (9.7.2))

Kν(z) =
( π

2z

)1/2
e−z[1 +O(1/z)], z →∞, (1.3)

and near the origin

Kν(z) = O
(
z−|Re ν|

)
, z → 0, (1.4)

K0(z) = O(log z), z → 0. (1.5)

Meanwhile, when x is restricted to any compact subset of R+ and τ tends
to infinity we have the following asymptotic [11, p. 20]

Kiτ (x) =
(

2π
τ

)1/2

e−πτ/2 sin
(
π

4
+ τ log

2τ
x
− τ

)
[1 +O(1/τ)] , τ →∞.

(1.6)
The modified Bessel function can be represented by the integrals of the
Fourier and Mellin types [1], [8], [11]

Kν(x) =
∫ ∞

0
e−x cosh u cosh ν u du, (1.7)

Kν(x) =
1
2

(x
2

)ν
∫ ∞

0
e−t−x2

4t t−ν−1dt. (1.8)

Hence it is not difficult to show that for positive values of x and τ Kiτ (x) is
real-valued and infinitely times differentiable. We also note that the product
of the modified Bessel functions of different arguments can be represented
by the Macdonald formula [1], [6], [11]

Kiτ (x)Kiτ (y) =
1
2

∫ ∞

0
e
− 1

2

(
u x2+y2

xy
+xy

u

)
Kiτ (u)

du

u
. (1.9)

In this paper we deal with the Lebesgue weighted Lp(R+;ω(x)dx) spaces
with respect to the measure ω(x)dx with the norm

||f ||p =
(∫ ∞

0
|f(x)|pω(x)dx

)1/p

, 1 ≤ p <∞, (1.10)

||f ||∞ = ess sup |f(x)|. (1.11)
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In particular, we will use the spaces Lν,p ≡ Lp(R+;xνp−1dx), 1 ≤ p ≤
∞, ν ∈ R, which are related to the Mellin transforms pair [7], [8], [9]

fM(s) =
∫ ∞

0
f(x)xs−1dx, (1.12)

f(x) =
1

2πi

∫ ν+i∞

ν−i∞
fM(s)x−sds, s = ν + it, x > 0. (1.13)

The integrals (1.12)- (1.13) are convergent, in particular, in mean with re-
spect to the norm of the spaces L2(ν−i∞, ν+i∞; ds) and L2(R+;x2ν−1dx),
respectively. In addition, the Parseval equality of the form∫ ∞

0
|f(x)|2x2ν−1dx =

1
2π

∫ ∞

−∞
|fM(ν + it)|2dt (1.14)

holds true.
As it is proved in [12], [13], the Kontorovich-Lebedev operator (1.1) is an

isomorphism between the spaces L2(R+; [τ sinhπτ ]−1dτ) and L2(R+;x−1dx)
with the identity for the square of norms∫ ∞

0
|(KLf)(x)|2dx

x
=
π2

2

∫ ∞

0
|f(τ)|2 dτ

τ sinhπτ
, (1.15)

and the Plancherel equality of type∫ ∞

0
(KLf)(x)(KLg(x)

dx

x
=
π2

2

∫ ∞

0
f(τ)g(τ)

dτ

τ sinhπτ
, (1.16)

where f, g ∈ L2(R+; [τ sinhπτ ]−1dτ). We note that the convergence of the
integral (1.1) in this case is with respect to the norm (1.10) for the space
L2(R+;x−1dx).

However, our goal is to study the Kontorovich-Lebedev transformation in
the space SN,α

p (R+), 1 ≤ p <∞, which we call the Sobolev type space with
the finite norm

||u||
SN,α

p (R+)
=

(
N∑

k=0

∫ ∞

0
|Ak

xu|pxαkp−1dx

)1/p

<∞. (1.17)

Here α = (α0, α1, . . . , αN ), αk ∈ R, k = 0, . . . , N , and Ax is the differential
operator (1.2), which has eigenfunction Kν(x) with eigenvalue −ν2 and can
be written in the form

Axu = x2u(x)− x
d

dx

[
x
du

dx

]
, AxKν = −ν2Kν(x). (1.18)

As usual we denote by Ak
x the k-th iterate of Ax, A

0
xu = u. The differential

operator (1.18) was used for instance in [4], [16] in order to construct the
spaces of testing functions to consider the Kontorovich-Lebedev transform
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on distributions (see also in [10]). Recently (see [15]) it is involved to in-
vestigate the corresponding class of the Kontorovich-Lebedev convolution
integral equations.

In the sequel we will derive imbedding properties for the spaces SN,α
p (R+)

and we will find integral representations for the functions from SN,α
p (R+).

Finally we will study the boundedness and inversion properties for the
Kontorovich-Lebedev transformation as an operator from the weighted Lp-
space Lp(R+;ω(x)dx) into the space SN,α

p (R+). When p = 2, α = 0 we will
prove the Plancherel type theorem and we will establish an isomorphism for
the special type of weights between these spaces.

2. Elementary properties for the space SN,α
p (R+)

Let ϕ(x) belong to the space C∞0 (R+) of infinitely differentiable functions
with a compact support on R+. Hence taking (1.18), we integrate by parts
for any twice continuously differentiable function u ∈ C2(R+) and we derive
the following equality∫ ∞

0
u(x)Axϕ

dx

x
=
∫ ∞

0
Axu ϕ(x)

dx

x
. (2.1)

Now if furthermore we suppose, that for any ϕ ∈ C∞0 (R+) and some locally
integrable function v ∈ Lloc(R+) it satisfies∫ ∞

0
u(x)Axϕ

dx

x
=
∫ ∞

0
v(x)ϕ(x)

dx

x

then subtracting these equalities we immediately obtain∫ ∞

0
[Axu− v(x)] ϕ(x)

dx

x
= 0. (2.2)

Consequently, via Du Bois-Reymond lemma we find that v(x) = Axu almost
everywhere in R+. Equality (2.2) is used to define the so-called generalized
derivative v(x) for the function u(x) in terms of the operator Ax. A k-th
generalized derivative can be easily defined from (2.1). Indeed, for any ϕ ∈
C∞0 (R+) we have that Axϕ ∈ C∞0 (R+) and we will call vk(x) ∈ Lloc(R+) a
k-th generalized derivative for u ∈ Lloc(R+) (vk(x) ≡ Ak

xu) if it satisfies the
equality ∫ ∞

0
u(x)Ak

xϕ
dx

x
=
∫ ∞

0
vk(x)ϕ(x)

dx

x
. (2.3)

Further, from the norm definition (1.17) and elementary inequalities it fol-
lows that there are positive constants C1, C2 such that

C1

N∑
k=0

(∫ ∞

0
|Ak

xu|pxαkp−1dx

)1/p

≤

(
N∑

k=0

∫ ∞

0
|Ak

xu|pxαkp−1dx

)1/p
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≤ C2

N∑
k=0

(∫ ∞

0
|Ak

xu|pxαkp−1dx

)1/p

. (2.4)

Hence by (1.10) we have the equivalence of norms

C1

N∑
k=0

||Ak
· u||Lp(R+;xαkp−1dx) ≤ ||u||SN,α

p (R+)
≤ C2

N∑
k=0

||Ak
· u||Lp(R+;xαkp−1dx).

(2.5)
In order to show that SN,α

p (R+), 1 ≤ p < ∞ is a Banach space we take a
fundamental sequence un(x), i.e. ||un− um||SN,α

p (R+)
→ 0, m, n→∞. This

will immediately imply that

||un − um||Lα0,p → 0,

||Ak
· un −Ak

· um||Lαk,p → 0, k = 1, . . . , N,

when m,n → ∞. Since spaces Lα,p, k = 0, 1, . . . , N are complete, there are
functions v0 ∈ Lα0,p, vk ∈ Lαk,p such that

||un − v0||Lα0,p → 0, (2.6)

||Ak
· un − vk||Lαk,p → 0, k = 1, . . . , N, (2.7)

when n→∞. If we show that vk is a k-th generalized derivative of v0 then
we prove that the sequence un converges to v0 ∈ SN,α

p (R+) with respect to
the norm (1.17). In fact, from (2.6), (2.7) for any ϕ ∈ C∞0 (R+) we have the
limit equalities

lim
n→∞

∫ ∞

0
un(x)ϕ(x)

dx

x
=
∫ ∞

0
v0(x) ϕ(x)

dx

x
,

lim
n→∞

∫ ∞

0
Ak

xun ϕ(x)
dx

x
=
∫ ∞

0
vk(x) ϕ(x)

dx

x
.

But on the other hand,

lim
n→∞

∫ ∞

0
Ak

xun ϕ(x)
dx

x
= lim

n→∞

∫ ∞

0
un(x) Ak

xϕ
dx

x
=
∫ ∞

0
v0(x) Ak

xϕ
dx

x
.

Therefore invoking (2.3) we get vk(x) = Ak
xv0 and we prove that SN,α

p (R+)
is a Banach space.

For the space S1,α
p (R+) we establish an imbedding theorem into Sobolev’s

weighted space 0W
1
p (R+;xγp−1dx) with the norm

||u||
0W 1

p (R+;xγp−1dx) =
(∫ ∞

0
|u′(x)|pxγp−1dx

)1/p

.

Indeed, we have the following result.
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Theorem 1. Let 1 < p <∞, α = (2− β,−β), β > 0. The imbedding

S1,α
p (R+) ⊂ 0W

1
p (R+;x(1−β)p−1dx)

is true.

Proof. Appealing to the classical Hardy’s inequality [2]∫ ∞

0
x−r

∣∣∣∣∫ x

0
f(t)dt

∣∣∣∣p dx ≤ const.
∫ ∞

0
xp−r |f(x)|p dx, (2.8)

where 1 < p < ∞, r > 1 we put f(x) = Axu/x, r = βp + 1, β > 0 and we
have the estimate(∫ ∞

0
|Axu|px−βp−1dx

)1/p

≥ const.
(∫ ∞

0
x−βp−1

∣∣∣∣∫ x

0

Atu

t
dt

∣∣∣∣p dx)1/p

= const.
(∫ ∞

0
x−βp−1

∣∣∣∣∫ x

0
tu(t)dt− xu′(x)

∣∣∣∣p dx)1/p

≥ const.
[(∫ ∞

0
xp(1−β)−1

∣∣u′(x)∣∣p dx)1/p

−
(∫ ∞

0
x−βp−1

∣∣∣∣∫ x

0
tu(t)dt

∣∣∣∣p dx)1/p ]
.

Thus we get(∫ ∞

0
xp(1−β)−1

∣∣u′(x)∣∣p dx)1/p

≤ const.
[(∫ ∞

0
|Axu|px−βp−1dx

)1/p

+
(∫ ∞

0
x−βp−1

∣∣∣∣∫ x

0
tu(t)dt

∣∣∣∣p dx)1/p ]
. (2.9)

Invoking again Hardy’s inequality (2.8) to estimate the latter term in (2.9)
it becomes(∫ ∞

0
x−βp−1

∣∣∣∣∫ x

0
tu(t)dt

∣∣∣∣p dx)1/p

≤ const.
(∫ ∞

0
xp(2−β)−1 |u(x)|p dx

)1/p

.

Combining with (2.9) and (1.17) we obtain(∫ ∞

0
xp(1−β)−1

∣∣u′(x)∣∣p dx)1/p

≤ const.
[(∫ ∞

0
|Axu|px−βp−1dx

)1/p

+
(∫ ∞

0
xp(2−β)−1 |u(x)|p dx

)1/p ]
≤ const.||u||

S1,α
p (R+)

,

where α = (2− β,−β), β > 0. Theorem 1 is proved. �

Our goal now is to derive integral representations for functions from the
space SN,α

p (R+). For this we will use a technique from [14]. Precisely,



KONTOROVICH - LEBEDEV TRANSFORM 217

let us introduce for any u(x) ∈ Lν,p, ν ∈ R and ε ∈ (0, π) the following
regularization operator

uε(x) =
x sin ε
π

∫ ∞

0

K1((x2 + y2 − 2xy cos ε)1/2)
(x2 + y2 − 2xy cos ε)1/2

u(y)dy, x > 0. (2.10)

We are ready to prove the Bochner type representation theorem.
We have

Theorem 2. Let u(x) ∈ Lν,p, 0 < ν < 1, 1 ≤ p <∞. Then

u(x) = lim
ε→0

uε(x), (2.11)

with respect to the norm in Lν,p. Besides, for 1 < p < ∞ the limit (2.11)
exists for almost all x > 0.

Proof. We first show that (2.10) is a bounded operator in Lν,p under con-
ditions of the theorem. To do this we make the substitution y = x(cos ε +
t sin ε) in the corresponding integral and it becomes

uε(x) =
x sin ε
π

∫ ∞

− cot ε

K1(x sin ε
√
t2 + 1)√

t2 + 1
u(x(cos ε+ t sin ε)) dt. (2.12)

Hence owing to the generalized Minkowski inequality and elementary in-
equality for the modified Bessel function xK1(x) ≤ 1, x ≥ 0 (see (1.7)) we
estimate the norm of the integral (2.12) as follows

||uε||Lν,p ≤
1
π

∫ ∞

− cot ε

dt

t2 + 1
||u(·(cos ε+ t sin ε))||Lν,p

=
1
π
||u||Lν,p

∫ ∞

− cot ε

(cos ε+ t sin ε)−ν

t2 + 1
dt

= ||u||Lν,p

sin ε
π

∫ ∞

0

cosh νξ
cosh ξ − cos ε

dξ, 0 < ν < 1,

where we have made the substitution eξ = cos ε+t sin ε in the latter integral.
However, via formula (2.4.6.6) in [5] we find accordingly,

sin ε
π

∫ ∞

0

cosh νξ
cosh ξ − cos ε

dξ =
sin(ν(π − ε))

sin νπ
≤ 1 +

sin νε
sin νπ

≤ 1 +
πν

sin νπ
= Cν , 0 < ν < 1.

Thus for all ε ∈ (0, π) we get

||uε||Lν,p ≤ Cν ||u||Lν,p . (2.13)

Further, by using the identity
1
π

∫ ∞

− cot ε

dt

t2 + 1
= 1− ε

π
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and denoting by

R(x, t, ε) = x sin ε
√
t2 + 1K1(x sin ε

√
t2 + 1) (2.14)

we find that

||uε−u||Lν,p ≤
1
π

∞∫
− cot ε

dt

t2 + 1

∣∣∣∣∣∣u(·(cos ε+t sin ε))R(·, t, ε)−
(
1− ε

π

)−1
u
∣∣∣∣∣∣

Lν,p

≤ 1
π

∞∫
− cot ε

dt

t2 + 1

∣∣∣∣∣∣[u(·(cos ε+ t sin ε))−
(
1− ε

π

)−1
u
]
R(·, t, ε)

∣∣∣∣∣∣
Lν,p

+
1

π − ε

∞∫
− cot ε

dt

t2 + 1
||u[R(·, t, ε)− 1]||Lν,p = I1(ε) + I2(ε).

But since [1]
d

dx
[xK1(x)] = −xK0(x),

and xK1(x) → 1, x→ 0 we obtain the following representation

R(x, t, ε)− 1 = −
∫ x sin ε(t2+1)1/2

0
yK0(y)dy.

Hence appealing again to the generalized Minkowski inequality we deduce

I2(ε) =
1

π − ε

∞∫
− cot ε

dt

t2 + 1

( ∞∫
0

xνp−1

(∫ x sin ε(t2+1)1/2

0
yK0(y)dy

)p

|u(x)|pdx

)1/p

≤ 1
π − ε

∞∫
− cot ε

dt

t2 + 1

∫ ∞

0
yK0(y)

(∫ ∞

y/(sin ε(t2+1)1/2)
xνp−1|u(x)|pdx

)1/p

dy

≤ 1
π − ε

∞∫
− cot ε

dt

∫ ∞

0
ξK0

(
ξ
√
t2 + 1

)( ∞∫
ξ

sin ε

xνp−1|u(x)|pdx
)1/p

dξ

=
1

π − ε

∫ ∞

− cot ε
dt

(∫ √
ε

0
+
∫ ∞

√
ε

)
ξK0

(
ξ
√
t2 + 1

)( ∞∫
ξ

sin ε

xνp−1|u(x)|pdx
)1/p

dξ

≤ 1
π − ε

∞∫
− cot ε

dt

∫ √
ε

0
ξK0

(
ξ
√
t2 + 1

)( ∞∫
ξ

sin ε

xνp−1|u(x)|pdx
)1/p

dξ
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+
1

π − ε

∞∫
− cot ε

dt

t2 + 1

∫ ∞

0
ξK0(ξ)dξ

(∫ ∞

1√
ε

xνp−1|u(x)|pdx
)1/p

≤ εν/2

π − ε
||u||Lν,p

∫ ∞

−∞
(t2 + 1)

ν
2
−1dt

∫ ∞

0
ξ1−νK0(ξ)dξ

+
π

π − ε

(∫ ∞

1√
ε

xνp−1|u(x)|pdx
)1/p

=
π

π − ε

(
εν/2Γ(1− ν)||u||Lν,p

+
(∫ ∞

1√
ε

xνp−1|u(x)|pdx
)1/p

)
→ 0, ε→ 0, 0 < ν < 1.

Concerning the integral I1 we first approximate u ∈ Lν,p(R+) by a
smooth function ϕ ∈ C∞0 (R+). This implies that there exists a function
ϕ ∈ C∞0 (R+) such that ||f − ϕ||Lν,p ≤ ε for any ε > 0. Hence since the
kernel (2.14) R(x, t, ε) ≤ 1 then in view of the representation

ϕ(x(cos ε+ t sin ε))− ϕ(x)

=
∫ cos ε+t sin ε

1

d

dy
[ϕ(xy)] dy =

∫ cos ε+t sin ε

1
xϕ′(xy)dy.

In a similar manner we have

I1(ε) ≤
1
π

∞∫
− cot ε

dt

t2 + 1
||u(·(cos ε+ t sin ε))− ϕ(·(cos ε+ t sin ε))||Lν,p

+
1
π

∞∫
− cot ε

dt

t2 + 1

∣∣∣∣∣∣∣∣ϕ(·(cos ε+ t sin ε))−
(

1− ε

π

)−1

u

∣∣∣∣∣∣∣∣
Lν,p

≤ ||u− ϕ||Lν,p

1
π

∞∫
− cot ε

(cos ε+ t sin ε)−νdt

t2 + 1
+

1
π

∞∫
− cot ε

dt

t2 + 1

∣∣∣∣∣∣∣∣ϕ− π

π − ε
u

∣∣∣∣∣∣∣∣
Lν,p

+||ϕ′||L1+ν,p

1
π

∞∫
− cot ε

dt

t2 + 1

∣∣∣∣∫ cos ε+t sin ε

1
y−ν−1dy

∣∣∣∣
≤ (Cν + 1)||u− ϕ||Lν,p +

ε

π
||u||ν,p +

||ϕ′||L1+ν,p

πν

∞∫
− cot ε

|1− (cos ε+ t sin ε)−ν |
t2 + 1

dt.
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The latter integral we treat by making the substitution eξ = cos ε + t sin ε.
Then it takes the form

∞∫
− cot ε

|1− (cos ε+ t sin ε)−ν |
t2 + 1

dt = sin ε
∫ ∞

0

sinh νξ
cosh ξ − cos ε

dξ

= sin ε
(∫ 1

0
+
∫ ∞

1

)
sinh νξ

cosh ξ − cos ε
dξ ≤ sin ε

(
log(cosh ξ − cos ε) |10

+
∫ ∞

1

sinh νξ
cosh ξ − 1

dξ

)
≤ sin ε

[
log
(
2−1 sin−2 ε

2

)
+Aν

]
,

where

Aν = 1 +
∫ ∞

1

sinh νξ
cosh ξ − 1

dξ, 0 < ν < 1.

Thus we immediately obtain that limε→0 I1(ε) = 0. Therefore by virtue of
the above estimates limε→0 ||uε − u||Lν,p = 0 and relation (2.11) is proved.

In order to verify the convergence almost everywhere we use the fact
that any sequence of functions {ϕn} ∈ C∞0 (R+) which converges to u in
Lν,p-norm contains a subsequence {ϕnk

} convergent almost everywhere, i.e.
limk→∞ ϕnk

(x) = u(x) for almost all x > 0. Then we find

|uε(x)− u(x)| ≤ 1
π

∞∫
− cot ε

∣∣∣∣u(x(cos ε+ t sin ε))R(x, t, ε)−
(

1− ε

π

)−1

u(x)
∣∣∣∣ dt

t2 + 1

≤ 1
π

∞∫
− cot ε

|u(x(cos ε+ t sin ε))− ϕnk
(x(cos ε+ t sin ε))| dt

t2 + 1

+
1
π

∞∫
− cot ε

|ϕnk
(x(cos ε+ t sin ε))− ϕnk

(x)| dt

t2 + 1

+
1
π

∞∫
− cot ε

∣∣∣∣ϕnk
(x)R(x, t, ε)−

(
1− ε

π

)−1

u(x)
∣∣∣∣ dt

t2 + 1

= J1ε(x) + J2ε(x) + J3ε(x).

But,

J3ε(x) ≤
1
π

∞∫
− cot ε

∣∣∣∣ϕnk
(x)−

(
1− ε

π

)−1

u(x)
∣∣∣∣ dt

t2 + 1
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+
1

π − ε

∞∫
− cot ε

|u(x) [R(x, t, ε)− 1]| dt

t2 + 1

≤ |ϕnk
(x)− u(x)|+ ε

π
|u(x)|+ |u(x)|

π − ε

∞∫
− cot ε

∣∣∣∣∫ x sin ε(t2+1)1/2

0
yK0(y)dy

∣∣∣∣ dt

t2 + 1

≤ |ϕnk
(x)− u(x)|+ ε

π
|u(x)|+ |u(x)|ενxν

π − ε

∞∫
−∞

(t2 + 1)ν/2−1dt

∞∫
0

y1−νK0(y)dy

= |ϕnk
(x)− u(x)|+ ε

π
|u(x)|+ πΓ(1− ν)ενxν

π − ε
|u(x)| → 0, 0 < ν < 1,

when ε→ 0, k > k0 for almost all x > 0. Similarly,

J2ε(x) =
1
π

∞∫
− cot ε

∣∣∣∣∫ cos ε+t sin ε

1
xϕ′nk

(xy)dy
∣∣∣∣ dt

t2 + 1

≤ x

πν
sup
y≥0

y1+ν |ϕ′nk
(xy)|

∞∫
− cot ε

∣∣1− (cos ε+ t sin ε)−ν
∣∣ dt

t2 + 1

≤ sin ε
[
log
(

2−1 sin−2 ε

2

)
+Aν

]
x

πν
sup
y≥0

y1+ν |ϕ′nk
(xy)|,

which tends to zero almost for all x > 0 when ε→ 0. Meantime, by taking
1 < p < ∞, q = p

p−1 for any ε > 0 such that ||u − ϕnk
||Lν,p < ε for k > k0

we have

J1ε(x) ≤
x−ν ||u− ϕnk

||Lν,p

π sin1/p ε

( ∞∫
− cot ε

(cos ε+ t sin ε)q(1−ν)−1dt

(t2 + 1)q

)1/q

< x−νε sin ε
(∫ ∞

0

ξq(1−ν)−1dξ

(ξ2 − 2ξ cos ε+ 1)q

)1/q

.

But the latter integral can be treated in terms of the Legendre functions [1]
appealing to relation (2.2.9.7) from [5]. This gives the value∫ ∞

0

ξq(1−ν)−1dξ

(ξ2 − 2ξ cos ε+ 1)q
=

=
(

sin ε
2

)1/2−q

Γ(q + 1/2)
Γ(q(1− ν))Γ(q(1 + ν))

Γ(2q)
P

1/2−q
−1/2−qν(− cos ε).
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When ε→ 0+ we have∫ ∞

0

ξq(1−ν)−1dξ

(ξ2 − 2ξ cos ε+ 1)q
∼
√
π

Γ(q − 1/2)
Γ(q)

ε1−2q.

Thus
J1ε(x) < const. x−νε1/q → 0, ε→ 0, x > 0

and we prove Theorem 2. �

Appealing to Theorem 2 we will approximate functions from SN,α
p (R+)

by regularization operator (2.10). Indeed we have

Corollary 1. Operator (2.10) is defined on functions from SN,α
p (R+) with

α = (α0, α1, . . . , αN ), 0 < αk < 1, k = 0, 1, . . . , N and 1 ≤ p <∞. Besides

u(x) = lim
ε→0

uε(x), (2.15)

with respect to the norm in SN,α
p (R+).

Proof. Indeed, taking some function u ∈ SN,α
p (R+) we then choose a se-

quence {ϕn} ∈ C∞0 (R+), which converges to u. This immediately implies
(see (2.6), (2.7)) that Ak

xϕn → Ak
xu, n → ∞ with respect to the norm in

Lαk,p, k = 0, 1, . . . , N , respectively.
Defining by

ϕε,n(x) =
x sin ε
π

∫ ∞

0

K1((x2 + y2 − 2xy cos ε)1/2)
(x2 + y2 − 2xy cos ε)1/2

ϕn(y)dy, x > 0, (2.16)

we employ the relation (2.16.51.8) in [6]∫ ∞

0
τ sinh((π − ε)τ)Kiτ (x)Kiτ (y)dτ

=
π

2
xy sin ε

K1((x2 + y2 − 2xy cos ε)1/2)
(x2 + y2 − 2xy cos ε)1/2

, x, y > 0, 0 < ε ≤ π

and we substitute it in (2.16). Changing the order of integration by the
Fubini theorem we find

ϕε,n(x) =
2
π2

∫ ∞

0
τ sinh((π − ε)τ)Kiτ (x)

∫ ∞

0
Kiτ (y)ϕn(y)

dy

y
dτ.

Meantime, we apply the operator Ak
x, k = 0, 1 . . . , N (1.18) through both

sides of the latter integral. Then via its uniform convergence with respect
to x ∈ (x0, X0) ⊂ R+ and by using the equalities (see (1.18)) Ak

xKiτ (x) =
τ2kKiτ (x), (2.1) we come out with

Ak
xϕε,n =

2
π2

∫ ∞

0
τ sinh((π − ε)τ)Kiτ (x)

∫ ∞

0
τ2kKiτ (y)ϕn(y)

dy

y
dτ
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=
2
π2

∫ ∞

0
τ sinh((π − ε)τ)Kiτ (x)

∫ ∞

0
Kiτ (y)Ak

yϕn
dy

y
dτ.

This is equivalent to

Ak
xϕε,n =

x sin ε
π

∫ ∞

0

K1((x2 + y2 − 2xy cos ε)1/2)
(x2 + y2 − 2xy cos ε)1/2

Ak
yϕndy.

Hence

Ak
xϕε,n−(Ak

xu)ε =
x sin ε
π

∫ ∞

0

K1((x2 + y2 − 2xy cos ε)1/2)
(x2 + y2 − 2xy cos ε)1/2

[
Ak

yϕn −Ak
yu
]
dy

and due to (2.13) we have that limn→∞Ak
xϕε,n = (Ak

xu)ε with respect to the
norm in Lαk,p for each ε ∈ (0, π). By Theorem 2 we derive that∣∣∣∣∣∣(Ak

· u)ε −Ak
· u
∣∣∣∣∣∣

Lαk,p

→ 0, ε→ 0, k = 0, 1, . . . , N.

If we show that almost for all x > 0 (Ak
xu)ε = Ak

xuε, k = 0, 1, 2, . . . , N then
via (2.5) we complete the proof of Corollary 1. When k = 0 it is defined
by (2.10). At the same time according to Du Bois-Reymond lemma it is
sufficient to show that for any ψ ∈ C∞0 (R+)∫ ∞

0

[
(Ak

xu)ε −Ak
xuε

] ψ(x)
x

dx = 0. (2.17)

We have∫ ∞

0

[
(Ak

xu)ε −Ak
xuε

] ψ(x)
x

dx =
∫ ∞

0

[
(Ak

xu)ε −Ak
xϕε,n

] ψ(x)
x

dx

+
∫ ∞

0

[
Ak

xϕε,n −Ak
xuε

] ψ(x)
x

dx =
∫ ∞

0

[
(Ak

xu)ε −Ak
xϕε,n

] ψ(x)
x

dx

+
∫ ∞

0
[ϕε,n − uε]

Ak
xψ

x
dx.

Now as it is easily seen the right-hand side of the last equality is less than
an arbitrary δ > 0 when n → ∞. Thus we prove (2.17) and we complete
the proof of Corollary 1. �

3. The Kontorovich - Lebedev transformation in SN,α
2 (R+)

Our goal in this section is to establish the boundedness of the Kontorovich-
Lebedev transformation (1.1) as an operator KL : L2(R+;ωα(τ)dτ) →
SN,α

2 (R+), where the measure ωα(τ)dτ will be defined below. Finally, we
will prove the Plancherel theorem and an analog of the Parseval equality
(1.16) when αk = 0, k = 0, 1, . . . , N .
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We begin with the use of the following inequality for the transformation
(1.1), which is proved in [13]∫ ∞

0
|(KLf)(x)|2 x2ν−1dx ≤ π3/22−2ν−1

Γ(2ν + 1/2)

∫ ∞

0
|f(τ)|2|Γ(2ν + iτ)|2dτ, ν > 0.

(3.1)
It gives the boundedness for the Kontorovich-Lebedev transformation as
an operator KL : L2(R+; |Γ(2ν + iτ)|2dτ) → Lν,2. Moreover, when ν →
0+ it attains equality (1.15) where the measure (see in [1]) |Γ(iτ)|2 =
π [τ sinhπτ ]−1.

Let f ∈ L2(R+;ωα(τ)dτ), where the weighted function ωα(τ) is defined
by

ωα(τ) = π3/2
N∑

k=0

2−2αk−1τ4k|Γ(2αk + iτ)|2

Γ(2αk + 1/2)
, αk > 0, k = 0, 1, . . . , N. (3.2)

Considering a sequence {fn}∞n=1, where

fn(τ) =

{
f(τ), if τ ∈

[
1
n , n

]
,

0, if τ /∈
[

1
n , n

]
,

and using the asymptotic formula (1.6) with Schwarz’s inequality we find
that integral (1.1) for (KLfn) exists as a Lebesgue integral for any n. More-
over, since Kiτ (z) is analytic in the right half-plane Rez > 0 (cf. in (1.7))
and integral (1.1) is uniformly convergent on every compact set of R+, we
may repeatedly differentiate under the integral sign to obtain

Ak
xKLfn =

∫ n

1/n
Ak

xKiτ (x)f(τ)dτ =
∫ n

1/n
τ2kKiτ (x)f(τ)dτ, k = 0, 1, . . . , N.

(3.3)
Hence, invoking (3.1), (1.17) we deduce

||KLfn||SN,α
2 (R+)

=
( N∑

k=0

∫ ∞

0
|Ak

xKLfn|2x2αk−1dx

)1/2

≤
(∫ n

1/n
|f(τ)|2ωα(τ)dτ

)1/2

= ||fn||L2(R+;ωα(τ)dτ). (3.4)

Meanwhile, we easily see that ||f − fn||L2(R+;ωα(τ)dτ) → 0, when n → ∞.
Moreover, from (3.4) we have

||KLfn −KLfm||SN,α
2 (R+)

≤ ||fn − fm||L2(R+;ωα(τ)dτ) → 0, n,m→∞.

Therefore the sequence {KLfn} converges to a function g(x) ∈ SN,α
2 (R+),

which we call the Kontorovich-Lebedev transformation (KLf)(x) of f . Thus
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integral (1.1) can be continuously extended on the whole space L2(R+;
ωα(τ)dτ). It is understood as a limit

g(x) ≡ (KLf)(x) = lim
n→∞

∫ n

1/n
Kiτ (x)f(τ)dτ (3.5)

with respect to the norm (1.17) and it represents a bounded operator KL :
L2(R+;ωα(τ)dτ) → SN,α

2 (R+). Indeed, we pass to the limit through in-
equality (3.4) when n→∞ to obtain

||KLf ||
SN,α

2 (R+)
≤ ||f ||L2(R+;ωα(τ)dτ).

The case α = 0 corresponds to the Plancherel type theorem, which will
establish an isometric isomorphism between the corresponding L2- spaces.
Indeed, in this case we easily have from (3.2) that

ω0(τ) =
π2

2
1− τ4(N+1)

(1− τ4)τ sinhπτ
. (3.6)

Theorem 3. Let f ∈ L2(R+;ω0(τ)dτ), where the weighted function ω0 is
defined by (3.6). Then the integral (3.5) for the Kontorovich-Lebedev trans-
form converges to (KLf)(x) with respect to the norm in the space SN,0

2 (R+);
and

fn(τ) =
2
π2
τ sinhπτ

∫ n

1/n
Kiτ (x)(KLf)(x)

dx

x
(3.7)

converges in the mean to f(τ) with respect to the norm in L2(R+;ω0(τ)dτ).
Moreover, the following Plancherel identity is true

N∑
k=0

∫ ∞

0
Ak

xKLf A
k
xKLh

dx

x
=
π2

2

∫ ∞

0
f(τ)h(τ)

1− τ4(N+1)

1− τ4

dτ

τ sinhπτ
,

(3.8)
where f, h ∈ L2(R+;ω0(τ)dτ). In particular,

||KLf ||2
SN,0

2 (R+)
= ||f ||2L2(R+;ω0(τ)dτ)

that is
N∑

k=0

∫ ∞

0
|Ak

xKLf |2
dx

x
=
π2

2

∫ ∞

0
|f(τ)|2 1− τ4(N+1)

1− τ4

dτ

τ sinhπτ
. (3.9)

Finally, for almost all τ and x from R+ the reciprocal formulas take place

(KLf)(x) = g(x) =
d

dx

∫ ∞

0

∫ x

0
Kiτ (y)f(τ)dy dτ, (3.10)

f(τ) =
2
π2

(1− τ4) sinhπτ
1− τ4(N+1)

d

dτ

∫ ∞

0

∫ τ

0
yKiy(x)

1− y4(N+1)

1− y4
(KLf)(x)

dy dx

x
.

(3.11)
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Remark 1. When N = 0 we immediately obtain Plancherel identities (1.15),
(1.16). Relations (3.10), (3.11) become then reciprocal formulas for the
Kontorovich-Lebedev transformation in L2- space with respect to the weight
π2

2 [τ sinhπτ ]−1 (see [11], [12]).

Proof of Theorem 3. Let f ∈ L2(R+;ω0(τ)dτ). Taking a sequence as in
(3.3), which converges to f we find that τ2kfn(τ) ∈ L2

(
R+; π2

2 [τ sinhπτ ]−1

dτ
)

for all k = 0, 1, . . . , N . Hence from (3.3) via Parseval’s equality (1.15)
we obtain∫ ∞

0
|Ak

xKLfn|2
dx

x
=
π2

2

∫ ∞

0
|fn(τ)|2 τ4k−1

sinhπτ
dτ, k = 0, 1, . . . , N.

Making elementary summations we immediately arrive at the equality (3.9)
for fn. Moreover passing to the limit we get that (3.9) is true for any
f ∈ L2(R+;ω0(τ)dτ). Further, taking x > 0 we easily have∫ x

0
(KLfn)(y)dy =

∫ ∞

0

∫ x

0
Kiτ (y)fn(τ)dy dτ.

Hence we prove that

lim
n→∞

∫ x

0
(KLfn)(y)dy =

∫ x

0
(KLf)(y)dy =

∫ ∞

0

∫ x

0
Kiτ (y)f(τ)dy dτ.

(3.12)
The latter integral with respect to τ in (3.12) is absolutely convergent and
therefore exists in Lebesgue’s sense. Indeed, with Schwarz’s inequality we
derive (cf. in [11], [12], see (1.6))∫ ∞

0

∣∣∣∣∫ x

0
Kiτ (y)dy

∣∣∣∣|f(τ)|dτ

≤ ||f ||L2(R+;ω0(τ)dτ)

(∫ ∞

0

∣∣∣∣∫ x

0
Kiτ (y)dy

∣∣∣∣2 dτ

ω0(τ)

)1/2

<∞.

Consequently,∣∣∣∣∫ x

0
[(KLfn)(y)−(KLf)(y)] dy

∣∣∣∣ ≤ const.||f−fn||L2(R+;ω0(τ)dτ) → 0, n→∞

and we prove (3.12). Differentiating with respect to x almost for all x > 0
we arrive at (3.10).

In the meantime with the parallelogram identity we easily derive from
(3.9) the Parseval equality (3.8). In particular, putting

h(y) =

{
y, if y ∈ [0, τ ],
0, if y ∈ (τ,∞),
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we have that h ∈ L2(R+;ω0(τ)dτ). Further, we find for the sequence {fn}
that

N∑
k=0

∫ ∞

0
Ak

xKLfn A
k
x

∫ τ

0
yKiy(x)dy

dx

x
=
π2

2

∫ τ

0
fn(y)

1− y4(N+1)

1− y4

dy

sinhπy
.

(3.13)
On the other hand we show that the left-hand side of (3.13) is equal to

N∑
k=0

∫ ∞

0
Ak

xKLfn A
k
x

∫ τ

0
yKiy(x)dy

dx

x

=
∫ ∞

0
(KLfn)(x)

∫ τ

0

1− y4(N+1)

1− y4
Kiy(x)y dy

dx

x
. (3.14)

Indeed, via (1.18) (k = 1, 2, . . . , N) we have∫ ∞

0
Ak

xKLfnA
k
x

∫ τ

0
yKiy(x)dy

dx

x
=
∫ ∞

0
AxKLψk−1,n

∫ τ

0
y2k+1Kiy(x)dy

dx

x
,

where ψk,n(τ) = τ2kfn(τ) and the relation KLψk,n(x) = AxKLψk−1,n holds.
Then we use (2.1) and we integrate by parts to obtain∫ ∞

0
AxKLψk−1,n

∫ τ

0
y2k+1Kiy(x)dy

dx

x

=
∫ ∞

0
KLψk−1,n(x)

∫ τ

0
y2k+3Kiy(x)dy

dx

x
,

where the integrated terms are vanishing due to the following limit equalities

lim
x→{0∞}

x
d

dx
[KLψk−1,n(x)]

∫ τ

0
y2k+1Kiy(x)dy = 0, (3.15)

lim
x→{0∞}

KLψk−1,n(x)x
d

dx

∫ τ

0
y2k+1Kiy(x)dy = 0, (3.16)

for all k = 1, 2, . . . , N . To verify (3.15), (3.16) when x → ∞ we appeal to
the relation [1]

x
d

dx
Kµ(x) = µKµ(x)− xKµ+1(x) (3.17)

and we employ the asymptotic formula (1.3). In the case x→ 0 we employ
the definition of the Macdonald function Kµ(x) through the modified Bessel
function Iµ(x) [1]

Kµ(x) =
π

2 sinπµ
[I−µ(x)− Iµ(x)] , (3.18)
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where

Iµ(x) =
∞∑

m=0

(x/2)2m+µ

k!Γ(m+ µ+ 1)
=

eµ log x

2µΓ(µ+ 1)
+

∞∑
m=1

(x/2)2m+µ

m!Γ(m+ µ+ 1)
. (3.19)

Hence putting µ = iy we substitute the right-hand side of the latter equality
(3.19) into (3.18) and then we use this expression together with relation
(3.17) to treat integrals with respect to y in (3.15), (3.16). Namely, with
the integration by parts we derive the following asymptotic relations∫ τ

0
y2k+1Kiy(x)dy = O

(
1

log x

)
+ o(x2), x→ 0,

x
d

dx

∫ τ

0
y2k+1Kiy(x)dy =

∫ τ

0
y2k+1 [iyKiy(x)− xKiy+1(x)] dy

= O

(
1

log x

)
+ o(x2), x→ 0.

Thus it tends to zero, when x→ 0. Meanwhile since

KLψk−1,n(x) =
∫ n

1/n
τ2(k−1)Kiτ (x)f(τ)dτ =

∫ n

1/n

τ2(k−1)

2iτ+1
f(τ)

× Γ(iτ)e−iτ log xdτ +
∫ n

1/n

τ2(k−1)

21−iτ
f(τ)Γ(−iτ)eiτ log xdτ + o(x2), x→ 0,

we have that KLψk−1,n(x) → 0, x → 0 via the Riemann- Lebesgue lemma
for the Fourier transform of integrable function. In a similar manner we get
that x d

dx [KLψk−1,n(x)] → 0, x → 0 and therefore relations (3.15), (3.16)
are verified. Continuing this process of elimination of the operator Ax we
come out with∫ ∞

0
KLψk−1,n(x)

∫ τ

0
y2k+3Kiy(x)dy

dx

x

=
∫ ∞

0
KLψk−2,n(x)

∫ τ

0
y2k+5Kiy(x)dy

dx

x

= · · · =
∫ ∞

0
KLψ0,n(x)

∫ τ

0
y4k+1Kiy(x)dy

dx

x

=
∫ ∞

0
(KLfn)(x)

∫ τ

0
y4k+1Kiy(x)dy

dx

x
.

Hence making elementary summations we establish (3.14). Combining with
(3.13) we find ∫ ∞

0
(KLfn)(x)

∫ τ

0

1− y4(N+1)

1− y4
Kiy(x)y dy

dx

x
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=
π2

2

∫ τ

0
fn(y)

1− y4(N+1)

1− y4

dy

sinhπy
. (3.20)

Passing to the limit through (3.20) when n → ∞ and differentiating with
respect to τ we arrive at the reciprocal formula (3.11), where the correspond-
ing integral exists in the Lebesgue sense, since it is not difficult to show (cf.
(3.15), (3.16)) that for each τ > 0∫ τ

0
yKiy(x)

1− y4(N+1)

1− y4
dy =

{
O(K0(x)), if x ≥ x0 > 0,

O
(

1
log x

)
, if x→ 0,

and therefore it belongs to L0,2.
Conversely, let g(x) ∈ SN,0

2 (R+) be an arbitrary function. Taking a
sequence {ϕn}∞n=1 ∈ C∞0 (R+), which converges to g with respect to the
norm in SN,0

2 (R+) and denoting In the least segment which contains the
support of the function ϕn we observe that the corresponding formula (3.11)
will take the form

sn(τ) =
2
π2

(1− τ4) sinhπτ
1− τ4(N+1)

d

dτ

∫
In

∫ τ

0
yKiy(x)

1− y4(N+1)

1− y4
ϕn(x)

dy dx

x
.

(3.21)
Differentiating under the integral sign in (3.21) with respect to τ , which is
indeed possible, we obtain

sn(τ) =
2
π2
τ sinhπτ

∫
In

Kiτ (x)ϕn(x)
dx

x
. (3.22)

But returning to Corollary 1 in Section 2 we see that functions ϕn and their
generalized derivatives Ak

xϕn may be represented in terms of the regular-
ization operator (2.10). Hence as a consequence of this fact we have the
expansions

Ak
xϕε,n(x) =

2
π2

∫ ∞

0
τ sinh((π − ε)τ)Kiτ (x)

∫
In

Kiτ (y)Ayϕn(y)
dy

y
dτ,

(3.23)
where Ak

xϕε,n → Ak
xϕn, ε → 0 with respect to the norm in the space SN,α

2
(R+) via Corollary 1 for all k = 0, 1, . . . , N. However, via Lemma 2.5 from
[11] with (1.18), (3.22) we can pass to the limit in (3.23) when ε → 0
pointwisely for all x > 0 to get

Ak
xϕn(x) =

2
π2

∫ ∞

0
τ sinhπτKiτ (x)

∫
In

Kiτ (y)Ayϕn(y)
dy

y
dτ

=
2
π2

∫ ∞

0
τ2k+1 sinhπτKiτ (x)

∫
In

Kiτ (y)ϕn(y)
dy

y
dτ
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=
∫ ∞

0
τ2kKiτ (x)sn(τ)dτ.

Thus we obtain thatAk
xϕn(x) = (KLdk,n)(x), where dk,n(τ) = τ2ksn(τ), k =

0, 1, . . . , N . In particular, we have ϕn(x) = (KLsn)(x). Further, via Corol-
lary 2.1 from [11] functions Ak

xϕn(x), dk,n(τ) satisfy the Parseval equality
(1.15) for the Kontorovich-Lebedev transform. Making elementary summa-
tions we derive then equality (3.9), which is written in the form

N∑
k=0

∫ ∞

0
|Ak

xϕn|2
dx

x
=
π2

2

∫ ∞

0
|sn(τ)|2 1− τ4(N+1)

1− τ4

dτ

τ sinhπτ
. (3.24)

Hence for m,n→∞ we find

||sm − sn||2L2(R+;ω0(τ)dτ) = ||ϕm − ϕn||2SN,0
2 (R+)

→ 0.

Therefore the Cauchy sequence {sn} converges to a function s(τ) ∈ L2(R+;
ω0(τ)dτ). Passing to the limit through (3.24) when n → ∞ we derive the
corresponding identity (3.9) for functions s(τ) and its Kontorovich-Lebedev
transform g(x), which can be written by formula (3.10). In a similar manner
we write (3.11) for this pair. In particular, defining

gn(x) =

{
g(x), if x ∈

[
1
n , n

]
,

0, if x /∈
[

1
n , n

]
,

and differentiating with respect to τ we write it in the form (3.7), namely

rn(τ) =
2
π2
τ sinhπτ

∫ n

1/n
Kiτ (x)g(x)

dx

x
, (3.25)

where rn(τ) is convergent to r(τ) when n→∞ due to (3.24). We will finally
prove that r(τ) = s(τ) almost for all τ ∈ R+. Indeed, integrating through
equalities (3.22), (3.25) with respect to τ we obtain∫ τ

0
sn(y)dy =

2
π2

∫ ∞

0

∫ τ

0
y sinhπyKiy(x)ϕn(x)

dy dx

x
, (3.26)∫ τ

0
rn(y)dy =

2
π2

∫ ∞

0

∫ τ

0
y sinhπyKiy(x)gn(x)

dy dx

x
, (3.27)

where we change the order of integration by Fubini’s theorem. In a similar
manner as above we verify that for each τ > 0 the function∫ τ

0
y sinhπyKiy(x)dy ∈ L0,2.

Therefore with the Schwarz inequality we show that integrals with respect
to x in (3.26), (3.27) exist in a Lebesgue sense. Further, due to the following
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imbedding

L2(R+;ω0(τ)dτ) ⊆ L2

(
R+; [τ sinhπτ ]−1 dτ

)
⊂ L1 ([0, τ ])

we have that rn, r, sn, s ∈ L1 ([0, τ ]) and left-hand sides of (3.26), (3.27) rep-
resent continuous functionals. Moreover taking into account the convergence
gn → g, n→∞ by virtue of (1.18) and since

||g − gn||2SN,0
2 (R+)

=
N∑

k=0

(∫ ∞

n
+
∫ 1/n

0

)
|Ak

xg|2
dx

x
→ 0, n→∞

one can pass to the limit through (3.26), (3.27) similar to (3.12) to derive∫ τ

0
s(y)dy =

2
π2

∫ ∞

0

∫ τ

0
y sinhπyKiy(x)g(x)

dy dx

x
,∫ τ

0
r(y)dy =

2
π2

∫ ∞

0

∫ τ

0
y sinhπyKiy(x)g(x)

dy dx

x
.

Finally equating left-hand sides of latter equalities and differentiating with
respect to τ we conclude that r(τ) = s(τ) almost everywhere on R+. The-
orem 3 is proved. �

4. On the boundedness in SN,α
p (R+), p ≥ 2

In this final section we will interpolate the norm of the Kontorovich-
Lebedev transformation (1.1) as an operator KL : Lp(R+; ρp,α(τ)dτ) →
SN,α

p (R+), where 2 ≤ p ≤ ∞. The weighted function ρp,α(τ) will be in-
dicated below. In the case p = ∞ we understand the norm in the space
SN,α
∞ (R+) as (see (1.17))

||u||
SN,α
∞ (R+)

= lim
p→∞

( N∑
k=0

∫ ∞

0
|Ak

xu|pxαkp−1dx

)1/p

. (4.1)

From the equivalence of norms (2.5) we immediately derive that

C1

N∑
k=0

||Ak
· u||Lαk,∞ ≤ ||u||

SN,α
∞ (R+)

≤ C2

N∑
k=0

||Ak
· u||Lαk,∞ , (4.2)

where the norm in Lν,∞ is defined by (see (1.10), (1.11))

||f ||Lν,∞ = ess sup |xνf(x)| = lim
p→∞

(∫ ∞

0
|f(x)|pxνp−1dx

)1/p

. (4.3)

We begin to derive an inequality for the modulus of the modified Bessel
function |Kiτ (x)|. We will apply it below to estimate the Lν,∞-norm for
the (KLf)(x). Indeed, taking the Macdonald formula (1.9), we employ the
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Schwarz inequality and invoke (1.8) with relation (2.16.33.2) from [6] to
obtain

K2
iτ (x) =

1
2

∫ ∞

0
e−u−x2

2uKiτ (u)
du

u

≤ 1
2

(∫ ∞

0
e−2u−x2

u u−2ν−1du

)1/2(∫ ∞

0
K2

iτ (u)u
2ν−1du

)1/2

= π1/42(ν−3)/2x−νK
1/2
2ν

(
2
√

2x
)( Γ(ν)

Γ(ν + 1/2)

)1/2

|Γ(ν + iτ)|, ν > 0.

(4.4)

Hence we get

|Kiτ (x)| ≤ π1/82(ν−3)/4

(
Γ(ν)

Γ(ν + 1/2)

)1/4

|Γ(ν + iτ)|1/2x−ν/2K
1/4
2ν

(
2
√

2x
)
.

Invoking inequality xβKβ(x) ≤ 2β−1Γ(β), β > 0 (see (1.8)) we derive an
inequality

xν |Kiτ (x)| ≤ 2(2ν−5)/4Γ1/2(ν)|Γ(ν + iτ)|1/2, x, ν > 0. (4.5)

Thus from (1.1), (1.11), (4.5) we find that

xν |(KLf)(x)| ≤ ||f ||∞xν

∫ ∞

0
|Kiτ (x)|dτ

≤ 2(2ν−5)/4Γ1/2(ν)||f ||∞
∫ ∞

0
|Γ(ν + iτ)|1/2dτ = Cν ||f ||∞,

where Cν > 0 is a constant

Cν = 2(2ν−5)/4Γ1/2(ν)
∫ ∞

0
|Γ(ν + iτ)|1/2dτ, ν > 0.

Therefore via (4.3) we obtain that the Kontorovich-Lebedev transformation
is a bounded operator KL : L∞(R+; dτ) → Lν,∞ of type (∞,∞) and

||KLf ||Lν,∞ ≤ Cν ||f ||∞. (4.6)

But inequality (3.1) says that this operator is of type (2, 2) too. Conse-
quently, by the Riesz-Thorin convexity theorem [3] the Kontorovich-Lebedev
transformation is of type (p, p), where 2 ≤ p ≤ ∞ i.e. maps the space
Lp(R+; |Γ(2ν + iτ)|2dτ) into Lν,p. Moreover for 2 ≤ p <∞ we arrive at the
inequality∫ ∞

0
|(KLf)(x)|p xνp−1dx ≤ Bp,ν

∫ ∞

0
|f(τ)|p|Γ(2ν + iτ)|2dτ, ν > 0, (4.7)
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where we denoted by Bp,ν the constant

Bp,ν = π3/22−(3−p/2)ν−5p/4+3/2 Γp/2−1(ν)
Γ(2ν + 1/2)

(∫ ∞

0
|Γ(ν + iµ)|1/2dµ

)p−2

.

Hence by the same method as in previous section we prove an analog of the
inequality (3.4). Thus we obtain

||KLf ||
SN,α

p (R+)
≤ ||f ||Lp(R+;ρp,α(τ)dτ), (4.8)

where

ρp,α(τ) =
N∑

k=0

Bp,αk
τ2kp|Γ(2αk + iτ)|2, αk > 0, k = 0, 1, . . . , N.

In particular, we have ρ2,α(τ) = ωα(τ) (see (3.2)). So the boundedness of the
Kontorovich-Lebedev transformation (1.1) is proved. Finally we show that
for all x > 0 it exists as a Lebesgue integral for any f ∈ Lp(R+; ρp,α(τ)dτ),
p > 2. Indeed, it will immediately follow from the inequality∫ ∞

0
|Kiτ (x)f(τ)| dτ ≤ ||f ||Lp(R+;|Γ(2ν+iτ)|2dτ)

×
(∫ ∞

0
|Kiτ (x)|q |Γ(2ν + iτ)|−2q/pdτ

)1/q

, q =
p

p− 1
,

and from the convergence of the latter integral with respect to τ . This is
easily seen from (1.6) and the Stirling asymptotic formula for gamma-functi-

ons [1] since the integrand behaves as O
(
e
πτq

(
1
p
− 1

2

)
τ

q
p
(1−4ν)− q

2

)
, τ → +∞.
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