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REPRESENTATION THEOREMS FOR INTEGRATED
SEMIGROUPS

RAMIZ VUGDALIĆ

Abstract. In this paper (S(t))t≥0 is an exponentially bounded inte-
grated semigroup on a Banach space X, with generator A. We present
some relations between an integrated semigroup and its generator A, or
its resolvent.

1. Introduction

The theory of integrated semigroups of operators on a Banach space
were introduced and developed during the last twenty years by Kellermann,
Arendt, Thieme, Hieber, Neubrander and many other mathematicians (for
example, see [1,2,4,5,6,8,10,12]). Representation theorems for C0− semi-
groups of operators on a Banach space are given and proved in [7]. Some of
these theorems were also proved by others authors (for example, see [3, 11]).
The motivation for further investigation is Hille’s first exponential formula
and the Laplace inversion formula for C0− semigroups.

2. Preliminaries from the theory of integrated semigroup and
some applications

The theory of α−times integrated semigroups (α ≥ 0) was introduced by
Hieber in [4, 5, 6]. Some results were obtained also in [9]. Denote by X a
Banach space with the norm ‖·‖; L(X) = L(X, X) is the space of bounded
linear operators from X into X.
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Definition 2.1. (in [9]) Let (S(t))t≥0 be a strongly continuous family of
operators in L(X) and α ∈ R+. Then, (S(t))t≥0 is called an α−times inte-
grated semigroup if S(0) = 0 and the following is true.

S(t)S(s) =
1

Γ(α)

[ t+s∫
t

(t + s− r)α−1 S(r) dr −
s∫

0

(t + s− r)α−1 S(r) dr

]
for every t, s ≥ 0. (S(t))t≥0 is called non-degenerate if S(t)x = 0 for all
t ≥ 0 implies x = 0. If there exist constants M ≥ 0 and ω ∈ R such that
‖S(t)‖ ≤ Meωt for all t ≥ 0, then (S(t))t≥0 is called an α−times integrated,
exponentially bounded semigroup.

Theorem 2.2. (in [9]) Let α ∈ R+; S : [0,∞) → L(X) be a strongly contin-
uous, exponentially bounded at infinity (i.e. it satisfied ‖S(t)‖ ≤ Meωt for

t ≥ 0 and some constants M ≥ 0 and ω ∈ R), and R(λ) = λα
∞∫
0

e−λtS(t)dt,

Re λ > ω. Then, R(λ), Re λ > ω, is a pseudoresolvent (i.e. the resolvent
equation R(λ)−R(µ) = (µ− λ)R(λ)R(µ)) if and only if for every t, s ≥ 0 :

S(t)S(s) =
1

Γ(α)

[ t+s∫
t

(t + s− r)α−1 S(r) dr −
s∫

0

(t + s− r)α−1 S(r) dr

]
.

Let (S(t))t≥0 be an α−times integrated semigroup, α ∈ R+. Let

R(λ, A) = λα

∞∫
0

e−λtS(t)dt, Re λ > ω.

Here we take the function λα for which 1α := 1. Then, by the resolvent
equation, Ker R(λ) is independent of Re λ > ω. Hence, by the uniqueness
theorem, R(λ) is injective if and only if (S(t))t≥0 is non-degenerate. In this
case there exists a unique operator A satisfying (ω,∞) ⊂ ρ(A) (ρ(A) is the
resolvent set of A) such that

R(λ) = (λI −A)−1 for all λ with Re λ > ω.

This operator is called the generator of (S(t))t≥0 .

Definition 2.3. (in [4, 5, 6, 9]) Let α ∈ R+. An operator A is the generator
of an α−times integrated, exponentially bounded semigroup (S(t))t≥0 if and
only if (a,∞) ⊂ ρ(A) for some a ∈ R and

R(λ, A)x = λα

∞∫
0

e−λtS(t)x dt, x ∈ X, Reλ > a.
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In [4] the author considered the initial value problem u′(t) = Au(t),
u(0) = u0, for a differential operator A with constant coefficients on the
function spaces X = Lp(Rn) (1 ≤ p ≤ ∞), C0(Rn), BUC(Rn) or Cb(Rn).
He asked whether the given operator A generates a C0−semigroup or an
integrated semigroup on X. In [6] it is proved that , under suitable hypothe-
ses, every homogeneous differential operator on Lp(Rn)N corresponding to
a system which is well-posed in L2(Rn)N , generates an α−times integrated
semigroup on Lp(Rn)N (1 < p < ∞) whenever α > n |1/2− 1/p| . For
some special systems of mathematical physics, such as the wave equation or
Maxwell’s equations, this constant can be improved to (n − 1) |1/2− 1/p| .
In [9] it is shown that suitable differential operators generate α−times inte-
grated semigroups for α ∈ (1/2, 1). In [2] local k−times integrated semigroup
(k ∈ N) is defined as a solution v ∈ C ([0, τ);D(A)) ∩ C1 ([0, τ);X) of the
(k+1)−times integrated Cauchy problem v′(t) = Av(t)+(tk/k!)x, v(0) = 0
(x ∈ X, τ > 0).

3. Representation theorems for integrated semigroups

Here we give two results. The first theorem gives a representation formula
for once integrated semigroup. The motivation for this theorem is the well-
known Hille’s first exponential formula for C0−semigroups(see [7, Theorem
10.4.1.], [3, Theorem 1.2.2.], [11, Theorem 8.1.]). We need the following
lemma.

Lemma 3.1. (in [3]) For N > 0 and u ≥ 0 we have

e−u
∑

|k−u|>N

uk

k!
≤ u

N2
.

The proof of this lemma is given in [3, Lemma 1.2.1.(a)].

Theorem 3.2. Let (S(t))t≥0 be a once integrated, exponentially bounded
semigroup on a Banach space X with generator A. Then for x ∈ X and
t ≥ 0 we have

S(t)x = lim
h→0+

∞∑
n=1

1
n!

(
t

h

)n

An−1Sn(h)x (1)

with the limit existing uniformly with respect to t in any finite interval [0, T ] .
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Proof. It is known that for all x ∈ X and all t, s ≥ 0

S(t)S(s)x =

s∫
0

[S(t + r)x− S(r)x] dr

=

t+s∫
0

S(r)x dr −
t∫

0

S(r)x dr −
s∫

0

S(r)x dr

and A
t∫
0

S(r)xdr = S(t)x− tx. Therefore,

AS2(h)x = A

[ 2h∫
0

S(r)x dr − 2
∫ h

0
S(r)x dr

]
= S(2h)x− 2S(h)x.

Also,

A2S3(h)x = A
[
AS2(h)

]
S(h)x = AS(2h)S(h)x− 2AS2(h)x

= A

[ 3h∫
0

S(r)x dr −
2h∫
0

S(r)x dr −
h∫

0

S(r)x dr

]
− 2 [S(2h)x− 2S(h)x]

= S(3h)x− 3S(2h)x + 3S(h)x.

Induction implies that for every n ∈ N we have

An−1Sn(h)x =
n−1∑
k=0

(−1)k

(
n

k

)
S [(n− k)h]x.

Therefore,

∞∑
n=1

1
n!

(
t

h

)n

An−1Sn(h)x =
∞∑

n=1

1
n!

(
t

h

)n n−1∑
k=0

(−1)k

(
n

k

)
S [(n− k)h]x

=
[
1− t

h
+

1
2!

(
t

h

)2

− · · ·
]

︸ ︷︷ ︸
=e−

t
h

·

·
[

t

h
S(h)x +

1
2!

(
t

h

)2

S(2h)x +
1
3!

(
t

h

)3

S(3h)x + · · ·
]

= e−
t
h

∞∑
n=1

1
n!

(
t

h

)n

S(nh) x.
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Hence, we need to prove that

S(t)x = lim
h→0+

e−
t
h

∞∑
n=1

1
n!

(
t

h

)n

S(nh)x, x ∈ X. (2)

The family (S(t))t≥0 is exponentially bounded, i.e. there exist real constants
M and ω such that ‖S(t)‖ ≤ Meωt for all t ≥ 0. Thus, we have∥∥∥∥e−

t
h

∞∑
n=1

1
n!

(
t

h

)n

S(nh)
∥∥∥∥ ≤ Me−

t
h

∞∑
n=0

1
n!

(
t

h
eωh

)n

= Me
t
h(eωh−1).

By the inequality
t

h
≤ t

h
eωh ≤ t

h
+ t (eω − 1) (0 < h ≤ 1)

the norm of e−
t
h

∞∑
n=1

1
n!

(
t
h

)n
S(nh) is uniformly bounded by MeT (eω−1) for

0 ≤ t ≤ T and 0 < h ≤ 1. We have for every x ∈ X :∥∥∥∥S(t)x−e−
t
h

∞∑
n=1

1
n!

(
t

h

)n

S(nh)x
∥∥∥∥ = e−

t
h

∥∥∥∥ ∞∑
n=0

1
n!

(
t

h

)n

[S(t)x−S(nh)x]
∥∥∥∥

≤
∑

1
+

∑
2

where ∑
1

= e−
t
h

∑
|n− t

h |≤h−
2
3

1
n!

(
t

h

)n

‖S(t)x− S(nh)x‖

and ∑
2

= e−
t
h

∑
|n− t

h |>h−
2
3

1
n!

(
t

h

)n

‖S(t)x− S(nh)x‖ .

Hence, in
∑

1 we put natural numbers n such that
∣∣n− t

h

∣∣ ≤ h−
2
3 , in

∑
2

we put natural numbers n such that
∣∣n− t

h

∣∣ > h−
2
3 . Fix x ∈ X and T > 0.

Let
ε(δ) = sup {‖S(t)x− S(s)x‖ : 0 ≤ t, s ≤ T, |t− s| ≤ δ} .

If
∣∣n− t

h

∣∣ ≤ h−
2
3 , then ‖S(t)x− S(nh)x‖ ≤ ε(h

1
3 ) and

∑
1 ≤ ε(h

1
3 ). Because

S(t)x is a strongly continuous function, ε(h
1
3 ) → 0 as h → 0+.

Therefore
∑

1 → 0 as h → 0+.
Let us estimate now

∑
2 .∑

2
≤ Me−

t
h ‖x‖

∑
|n− t

h |>h−
2
3

1
n!

(
t

h

)n (
eωt + eωhn

)
.
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By Lemma 3.1., e−
t
h

∑
|n− t

h |>h−
2
3

1
n!

(
t
h

)n ≤ t
hh

4
3 = th

1
3 , and

e−
t
h

∑
|n− t

h |>h−
2
3

1
n!

(
t

h
eωh

)n

≤ e−
t
h

∑
|n− t

h
eωh|> h

− 2
3

2

1
n!

(
t

h
eωh

)n

≤ 4et(eω−1)h
1
3 .

Therefore,
∑

2 → 0 as h → 0+. Hence, (2) holds, and also (1), uniformly
with respect to t in any finite interval [0, T ] . �

In [13] it is proved that for an α−times integrated semigroup S(t) (α ∈
R+) and any β > 0 the following holds

S(t)x = (C, β)− lim
ω→∞

1
2πi

γ+iω∫
γ−iω

eλt R(λ, A)x
λα

dλ.

(x ∈ X, t ≥ 0, γ > max(0, ω0)), where (C, β) − lim denotes the Cesàro-β
limit defined as in [7].

The next theorem shows that classical convergency holds for x ∈ D(A).

Theorem 3.3. Let (S(t))t≥0 be an α−times integrated, exponentially boun-
ded semigroup on a Banach space X (α ∈ R+), and let A be a generator of
(S(t))t≥0 . Let M ≥ 0 and ω0 ∈ R be constants such that ‖S(t)‖ ≤ Meω0t

for t ≥ 0. Then for all x ∈ X, t ≥ 0 and γ > max(0, ω0)

t∫
0

S(s)x ds = lim
ω→∞

1
2πi

γ+iω∫
γ−iω

eλt R(λ, A)x
λ1+α

dλ. (3)

Also, for all x ∈ D(A), t > 0 and γ > max(0, ω0)

S(t)x = lim
ω→∞

1
2πi

γ+iω∫
γ−iω

eλt R(λ, A)x
λα

dλ. (4)

Proof. Fix any γ > max(0, ω0), x ∈ X and t ≥ 0. Then

lim
ω→∞

1
2πi

γ+iω∫
γ−iω

eλt R(λ, A)x
λ1+α

dλ = lim
ω→∞

1
2πi

γ+iω∫
γ−iω

eλt

λ
dλ

∞∫
0

e−λsS(s)x ds.
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We interchange the order of integration and obtain the expression :

lim
ω→∞

1
2πi

∞∫
0

S(s)x ds

γ+iω∫
γ−iω

eλ(t−s)

λ
dλ =

=

t∫
0

S(s)x ds lim
ω→∞

1
2πi

γ+iω∫
γ−iω

eλ(t−s)

λ
dλ +

∞∫
t

S(s)x ds lim
ω→∞

1
2πi

γ+iω∫
γ−iω

eλ(t−s)

λ
dλ.

It is well-known that for γ > 0 it holds :

1
2πi

γ+i∞∫
γ−i∞

eλz

λ
dλ =

{
1, for z > 0
0, for z ≤ 0.

Therefore, the limit above equals
t∫
0

S(s)x ds. Hence, (3) holds.

It is known that for x ∈ D(A) and t ≥ 0 it holds :

S(t)x =
tα

Γ(α + 1)
x +

t∫
0

S(s)Axds.

Here Γ denote the Gamma-function. From (3) we have for γ > max(0, ω0) :

S(t)x =
tα

Γ(α + 1)
x + lim

ω→∞

1
2πi

γ+iω∫
γ−iω

eλt R(λ, A)Ax

λ1+α
dλ.

Because of R(λ, A)Ax = (λI −A)−1 (A− λI + λI) x = λR(λ, A)x − x,
we have :

S(t)x =
tα

Γ(α + 1)
x + lim

ω→∞

1
2πi

γ+iω∫
γ−iω

eλt λR(λ, A)x− x

λ1+α
dλ

=
[

tα

Γ(α + 1)
− lim

ω→∞

1
2πi

γ+iω∫
γ−iω

eλt

λ1+α
dλ

]
x + lim

ω→∞

1
2πi

γ+iω∫
γ−iω

eλt R(λ, A)x
λα

dλ.

For all t > 0

lim
ω→∞

1
2πi

γ+iω∫
γ−iω

eλt

λ1+α
dλ = L−1

[
1

λ1+α

]
=

tα

Γ(α + 1)
.

Here L−1 denote the inverse Laplace transform. Therefore, for t > 0 :
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S(t)x = lim
ω→∞

1
2πi

γ+iω∫
γ−iω

eλt R(λ, A)x
λα

dλ,

i.e. (4) holds. �
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