SARAJEVO JOURNAL OF MATHEMATICS Vol.1 (14) (2005), 243–250

REPRESENTATION THEOREMS FOR INTEGRATED SEMIGROUPS

RAMIZ VUGDALIC´

ABSTRACT. In this paper $(S(t))_{t\geq0}$ is an exponentially bounded integrated semigroup on a Banach space X , with generator A . We present some relations between an integrated semigroup and its generator A, or its resolvent.

1. INTRODUCTION

The theory of integrated semigroups of operators on a Banach space were introduced and developed during the last twenty years by Kellermann, Arendt, Thieme, Hieber, Neubrander and many other mathematicians (for example, see $[1,2,4,5,6,8,10,12]$. Representation theorems for C_0 – semigroups of operators on a Banach space are given and proved in [7]. Some of these theorems were also proved by others authors (for example, see [3, 11]). The motivation for further investigation is Hille's first exponential formula and the Laplace inversion formula for C_0 − semigroups.

2. Preliminaries from the theory of integrated semigroup and some applications

The theory of α –times integrated semigroups ($\alpha \geq 0$) was introduced by Hieber in [4, 5, 6]. Some results were obtained also in [9]. Denote by X a Banach space with the norm $\|\cdot\|$; $L(X) = L(X, X)$ is the space of bounded linear operators from X into X .

²⁰⁰⁰ Mathematics Subject Classification. 47D60, 47D62.

Key words and phrases. Linear operator on a Banach space, C_0 – semigroup, exponentially bounded integrated semigroup.

244 RAMIZ VUGDALIC´

Definition 2.1. (in [9]) Let $(S(t))_{t\geq0}$ be a strongly continuous family of operators in $L(X)$ and $\alpha \in \mathbb{R}^+$. Then, $(S(t))_{t\geq 0}$ is called an α -times integrated semigroup if $S(0) = 0$ and the following is true.

$$
S(t)S(s) = \frac{1}{\Gamma(\alpha)} \left[\int\limits_t^{t+s} (t+s-r)^{\alpha-1} S(r) dr - \int\limits_0^s (t+s-r)^{\alpha-1} S(r) dr \right]
$$

for every $t, s \geq 0$. $(S(t))_{t \geq 0}$ is called non-degenerate if $S(t)x = 0$ for all $t \geq 0$ implies $x = 0$. If there exist constants $M \geq 0$ and $\omega \in \mathbb{R}$ such that $||S(t)|| \le Me^{\omega t}$ for all $t \ge 0$, then $(S(t))_{t \ge 0}$ is called an α -times integrated, exponentially bounded semigroup.

Theorem 2.2. (in [9]) Let $\alpha \in \mathbb{R}^+$; $S : [0, \infty) \to L(X)$ be a strongly continuous, exponentially bounded at infinity (i.e. it satisfied $||S(t)|| \le Me^{\omega t}$ for $t \geq 0$ and some constants $M \geq 0$ and $\omega \in \mathbb{R}$), and $R(\lambda) = \lambda^{\alpha} \int_{0}^{\infty}$ 0 $e^{-\lambda t}S(t)dt,$

 $\text{Re }\lambda > \omega$. Then, $R(\lambda)$, $\text{Re }\lambda > \omega$, is a pseudoresolvent (i.e. the resolvent equation $R(\lambda) - R(\mu) = (\mu - \lambda)R(\lambda)R(\mu)$ if and only if for every $t, s \geq 0$:

$$
S(t)S(s) = \frac{1}{\Gamma(\alpha)} \left[\int_{t}^{t+s} (t+s-r)^{\alpha-1} S(r) dr - \int_{0}^{s} (t+s-r)^{\alpha-1} S(r) dr \right].
$$

Let $(S(t))_{t\geq 0}$ be an α -times integrated semigroup, $\alpha \in \mathbb{R}^+$. Let

$$
R(\lambda, A) = \lambda^{\alpha} \int_{0}^{\infty} e^{-\lambda t} S(t) dt, \text{ Re }\lambda > \omega.
$$

Here we take the function λ^{α} for which $1^{\alpha} := 1$. Then, by the resolvent equation, Ker $R(\lambda)$ is independent of Re $\lambda > \omega$. Hence, by the uniqueness theorem, $R(\lambda)$ is injective if and only if $(S(t))_{t\geq0}$ is non-degenerate. In this case there exists a unique operator A satisfying $(\omega, \infty) \subset \rho(A)$ ($\rho(A)$) is the resolvent set of A) such that

$$
R(\lambda) = (\lambda I - A)^{-1} \text{ for all } \lambda \text{ with } \text{Re}\,\lambda > \omega.
$$

This operator is called the generator of $(S(t))_{t\geq 0}$.

Definition 2.3. (in [4, 5, 6, 9]) Let $\alpha \in \mathbb{R}^+$. An operator A is the generator of an α -times integrated, exponentially bounded semigroup $(S(t))_{t\geq0}$ if and only if $(a, \infty) \subset \rho(A)$ for some $a \in \mathbb{R}$ and

$$
R(\lambda, A)x = \lambda^{\alpha} \int_{0}^{\infty} e^{-\lambda t} S(t)x dt, \quad x \in X, \ Re \lambda > a.
$$

In [4] the author considered the initial value problem $u'(t) = Au(t)$, $u(0) = u_0$, for a differential operator A with constant coefficients on the function spaces $X = L^p(\mathbb{R}^n)$ $(1 \leq p \leq \infty)$, $C_0(\mathbb{R}^n)$, $BUC(\mathbb{R}^n)$ or $C_b(\mathbb{R}^n)$. He asked whether the given operator A generates a C_0 -semigroup or an integrated semigroup on X . In [6] it is proved that, under suitable hypotheses, every homogeneous differential operator on $L^p(\mathbb{R}^n)^N$ corresponding to a system which is well-posed in $L^2(\mathbb{R}^n)^N$, generates an α -times integrated semigroup on $L^p(\mathbb{R}^n)^N$ $(1 \leq p \leq \infty)$ whenever $\alpha > n |1/2 - 1/p|$. For some special systems of mathematical physics, such as the wave equation or Maxwell's equations, this constant can be improved to $(n-1)|1/2-1/p|$. In [9] it is shown that suitable differential operators generate α −times integrated semigroups for $\alpha \in (1/2, 1)$. In [2] local k–times integrated semigroup $(k \in \mathbb{N})$ is defined as a solution $v \in C([0, \tau); D(A)) \cap C^{1}([0, \tau); X)$ of the $(k+1)$ −times integrated Cauchy problem $v'(t) = Av(t) + (t^k/k!)x, v(0) = 0$ $(x \in X, \tau > 0).$

3. Representation theorems for integrated semigroups

Here we give two results. The first theorem gives a representation formula for once integrated semigroup. The motivation for this theorem is the wellknown Hille's first exponential formula for C_0 −semigroups(see [7, Theorem 10.4.1.], [3, Theorem 1.2.2.], [11, Theorem 8.1.]). We need the following lemma.

Lemma 3.1. (in [3]) For $N > 0$ and $u \ge 0$ we have

$$
e^{-u} \sum_{|k-u|>N} \frac{u^k}{k!} \le \frac{u}{N^2}.
$$

The proof of this lemma is given in [3, Lemma 1.2.1.(a)].

Theorem 3.2. Let $(S(t))_{t\geq0}$ be a once integrated, exponentially bounded semigroup on a Banach space X with generator A. Then for $x \in X$ and $t > 0$ we have

$$
S(t)x = \lim_{h \to 0^+} \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{t}{h}\right)^n A^{n-1} S^n(h)x
$$
 (1)

with the limit existing uniformly with respect to t in any finite interval $[0, T]$.

 $Proof.$ It is known that for all $x\in X$ and all $t,\,s\geq 0$

$$
S(t)S(s)x = \int_{0}^{s} [S(t+r)x - S(r)x] dr
$$

=
$$
\int_{0}^{t+s} S(r)x dr - \int_{0}^{t} S(r)x dr - \int_{0}^{s} S(r)x dr
$$

and $A \int_0^t$ 0 $S(r)xdr = S(t)x - tx$. Therefore,

$$
AS^{2}(h)x = A \left[\int_{0}^{2h} S(r)x dr - 2 \int_{0}^{h} S(r)x dr \right] = S(2h)x - 2S(h)x.
$$

Also,

$$
A^{2}S^{3}(h)x = A [AS^{2}(h)] S(h)x = AS(2h)S(h)x - 2AS^{2}(h)x
$$

= $A \left[\int_{0}^{3h} S(r)x dr - \int_{0}^{2h} S(r)x dr - \int_{0}^{h} S(r)x dr \right] - 2 [S(2h)x - 2S(h)x]$
= $S(3h)x - 3S(2h)x + 3S(h)x$.

Induction implies that for every $n \in \mathbb{N}$ we have

$$
A^{n-1}S^{n}(h)x = \sum_{k=0}^{n-1} (-1)^{k} {n \choose k} S [(n-k)h] x.
$$

Therefore,

$$
\sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{t}{h}\right)^n A^{n-1} S^n(h) x = \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{t}{h}\right)^n \sum_{k=0}^{n-1} (-1)^k {n \choose k} S[(n-k)h] x
$$

=
$$
\underbrace{\left[1 - \frac{t}{h} + \frac{1}{2!} \left(\frac{t}{h}\right)^2 - \cdots \right]}_{=e^{-\frac{t}{h}}} \cdot \left[\frac{t}{h} S(h) x + \frac{1}{2!} \left(\frac{t}{h}\right)^2 S(2h) x + \frac{1}{3!} \left(\frac{t}{h}\right)^3 S(3h) x + \cdots \right]}
$$

=
$$
e^{-\frac{t}{h}} \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{t}{h}\right)^n S(nh) x.
$$

Hence, we need to prove that

$$
S(t)x = \lim_{h \to 0^+} e^{-\frac{t}{h}} \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{t}{h}\right)^n S(nh)x, \ \ x \in X. \tag{2}
$$

The family $(S(t))_{t\geq0}$ is exponentially bounded, i.e. there exist real constants M and ω such that $||S(t)|| \le Me^{\omega t}$ for all $t \ge 0$. Thus, we have

$$
\left\|e^{-\frac{t}{h}}\sum_{n=1}^{\infty}\frac{1}{n!}\left(\frac{t}{h}\right)^{n}S(nh)\right\|\leq Me^{-\frac{t}{h}}\sum_{n=0}^{\infty}\frac{1}{n!}\left(\frac{t}{h}e^{\omega h}\right)^{n}=Me^{\frac{t}{h}\left(e^{\omega h}-1\right)}.
$$

By the inequality

$$
\frac{t}{h} \le \frac{t}{h} e^{\omega h} \le \frac{t}{h} + t (e^{\omega} - 1) \quad (0 < h \le 1)
$$

the norm of $e^{-\frac{t}{h}} \sum_{n=1}^{\infty}$ $n=1$ 1 $\frac{1}{n!}$ $\left(\frac{t}{h}\right)$ $\frac{t}{h}$)ⁿ S(nh) is uniformly bounded by $Me^{T(e^{\omega}-1)}$ for $0 \leq t \leq T$ and $0 < h \leq 1$. We have for every $x \in X$:

$$
\left\| S(t)x - e^{-\frac{t}{h}} \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{t}{h} \right)^n S(nh)x \right\| = e^{-\frac{t}{h}} \left\| \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{t}{h} \right)^n [S(t)x - S(nh)x] \right\|
$$

$$
\leq \sum_{n=1}^{\infty} \left\| \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{n=0}^{\infty} S(t)x - S(nh)x \right) \right\|
$$

where

$$
\sum_{n=1}^{\infty} = e^{-\frac{t}{h}} \sum_{\substack{n=\frac{t}{h} \leq h^{-\frac{2}{3}}}} \frac{1}{n!} \left(\frac{t}{h}\right)^n \|S(t)x - S(nh)x\|
$$

and

$$
\sum_{2} = e^{-\frac{t}{h}} \sum_{\substack{|n - \frac{t}{h}| > h^{-\frac{2}{3}}}} \frac{1}{n!} \left(\frac{t}{h}\right)^{n} \|S(t)x - S(nh)x\|.
$$

Hence, in \sum_1 we put natural numbers *n* such that $\left|n-\frac{t}{h}\right|$ $\left| \frac{t}{h} \right| \leq h^{-\frac{2}{3}}, \text{ in } \sum_{2}$ we put natural numbers *n* such that $\left|n-\frac{t}{h}\right|$ $\left| \frac{t}{h} \right| > h^{-\frac{2}{3}}$. Fix $x \in X$ and $T > 0$. Let

$$
\varepsilon(\delta) = \sup \{ \|S(t)x - S(s)x\| : 0 \le t, s \le T, |t - s| \le \delta \}.
$$

If $|n - \frac{t}{h}| \le h^{-\frac{2}{3}}$, then $||S(t)x - S(nh)x|| \le \varepsilon(h^{\frac{1}{3}})$ and $\sum_{1} \le \varepsilon(h^{\frac{1}{3}})$. Because $S(t)x$ is a strongly continuous function, $\varepsilon(h^{\frac{1}{3}}) \to 0$ as $h \to 0^+$.

Therefore $\sum_1 \to 0$ as $h \to 0^+$. Let us estimate now Σ_2 .

$$
\sum_2 \leq Me^{-\frac{t}{h}} \|x\| \sum_{\substack{n-\frac{t}{h} > h^{-\frac{2}{3}}}} \frac{1}{n!} \left(\frac{t}{h}\right)^n \left(e^{\omega t} + e^{\omega h n}\right).
$$

248 RAMIZ VUGDALIC´

By Lemma 3.1., $e^{-\frac{t}{h}}$ Σ $\left|n - \frac{t}{h}\right| > h^{-\frac{2}{3}}$ 1 $\frac{1}{n!}$ $\left(\frac{t}{h}\right)$ $\left(\frac{t}{h}\right)^n \leq \frac{t}{h}$ $\frac{t}{h}h^{\frac{4}{3}} = th^{\frac{1}{3}},$ and

$$
e^{-\frac{t}{h}} \sum_{|n-\frac{t}{h}|>h^{-\frac{2}{3}}} \frac{1}{n!} \left(\frac{t}{h}e^{\omega h}\right)^n \leq e^{-\frac{t}{h}} \sum_{\substack{|n-\frac{t}{h}e^{\omega h}|>h^{-\frac{2}{3}}\\1\leq 4e^{t(e^{\omega}-1)}h^{\frac{1}{3}}.}} \frac{1}{n!} \left(\frac{t}{h}e^{\omega h}\right)^n
$$

Therefore, $\Sigma_2 \rightarrow 0$ as $h \rightarrow 0^+$. Hence, (2) holds, and also (1), uniformly with respect to t in any finite interval $[0, T]$.

In [13] it is proved that for an α -times integrated semigroup $S(t)$ ($\alpha \in$ \mathbb{R}^+) and any $\beta > 0$ the following holds

$$
S(t)x = (C, \beta) - \lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\gamma - i\omega}^{\gamma + i\omega} e^{\lambda t} \frac{R(\lambda, A)x}{\lambda^{\alpha}} d\lambda.
$$

 $(x \in X, t \geq 0, \gamma > \max(0, \omega_0)),$ where (C, β) – lim denotes the Cesaro- β limit defined as in [7].

The next theorem shows that classical convergency holds for $x \in D(A)$.

Theorem 3.3. Let $(S(t))_{t\geq0}$ be an α -times integrated, exponentially bounded semigroup on a Banach space X $(\alpha \in \mathbb{R}^+)$, and let A be a generator of $(S(t))_{t\geq 0}$. Let $M \geq 0$ and $\omega_0 \in \mathbb{R}$ be constants such that $||S(t)|| \leq Me^{\omega_0 t}$ for $t \geq 0$. Then for all $x \in X$, $t \geq 0$ and $\gamma > \max(0, \omega_0)$

$$
\int_{0}^{t} S(s)x \, ds = \lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\gamma - i\omega}^{\gamma + i\omega} e^{\lambda t} \frac{R(\lambda, A)x}{\lambda^{1 + \alpha}} d\lambda. \tag{3}
$$

Also, for all $x \in D(A)$, $t > 0$ and $\gamma > \max(0, \omega_0)$

$$
S(t)x = \lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\gamma - i\omega}^{\gamma + i\omega} e^{\lambda t} \frac{R(\lambda, A)x}{\lambda^{\alpha}} d\lambda.
$$
 (4)

Proof. Fix any $\gamma > \max(0, \omega_0)$, $x \in X$ and $t \geq 0$. Then

$$
\lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\gamma - i\omega}^{\gamma + i\omega} e^{\lambda t} \frac{R(\lambda, A)x}{\lambda^{1 + \alpha}} d\lambda = \lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\gamma - i\omega}^{\gamma + i\omega} \frac{e^{\lambda t}}{\lambda} d\lambda \int_{0}^{\infty} e^{-\lambda s} S(s) x ds.
$$

We interchange the order of integration and obtain the expression :

$$
\lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{0}^{\infty} S(s)x \, ds \int_{\gamma - i\omega}^{\gamma + i\omega} \frac{e^{\lambda(t-s)}}{\lambda} d\lambda =
$$
\n
$$
= \int_{0}^{t} S(s)x \, ds \lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\gamma - i\omega}^{\gamma + i\omega} \frac{e^{\lambda(t-s)}}{\lambda} d\lambda + \int_{t}^{\infty} S(s)x \, ds \lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\gamma - i\omega}^{\gamma + i\omega} \frac{e^{\lambda(t-s)}}{\lambda} d\lambda.
$$

It is well-known that for $\gamma > 0$ it holds :

$$
\frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} \frac{e^{\lambda z}}{\lambda} d\lambda = \begin{cases} 1, & \text{for } z > 0 \\ 0, & \text{for } z \le 0. \end{cases}
$$

Therefore, the limit above equals \int 0 $S(s)x ds$. Hence, (3) holds.

It is known that for $x \in D(A)$ and $t \geq 0$ it holds :

$$
S(t)x = \frac{t^{\alpha}}{\Gamma(\alpha+1)}x + \int_{0}^{t} S(s)Ax ds.
$$

Here Γ denote the Gamma-function. From (3) we have for $\gamma > \max(0, \omega_0)$:

$$
S(t)x = \frac{t^{\alpha}}{\Gamma(\alpha+1)}x + \lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\gamma - i\omega}^{\gamma + i\omega} e^{\lambda t} \frac{R(\lambda, A)Ax}{\lambda^{1+\alpha}} d\lambda.
$$

Because of $R(\lambda, A)Ax = (\lambda I - A)^{-1}(A - \lambda I + \lambda I)x = \lambda R(\lambda, A)x - x$, we have :

$$
S(t)x = \frac{t^{\alpha}}{\Gamma(\alpha+1)}x + \lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\gamma-i\omega}^{\gamma+i\omega} e^{\lambda t} \frac{\lambda R(\lambda, A)x - x}{\lambda^{1+\alpha}} d\lambda
$$

=
$$
\left[\frac{t^{\alpha}}{\Gamma(\alpha+1)} - \lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\gamma-i\omega}^{\gamma+i\omega} \frac{e^{\lambda t}}{\lambda^{1+\alpha}} d\lambda \right] x + \lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\gamma-i\omega}^{\gamma+i\omega} e^{\lambda t} \frac{R(\lambda, A)x}{\lambda^{\alpha}} d\lambda.
$$

For all $t > 0$

$$
\lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\gamma - i\omega}^{\gamma + i\omega} \frac{e^{\lambda t}}{\lambda^{1 + \alpha}} d\lambda = L^{-1} \left[\frac{1}{\lambda^{1 + \alpha}} \right] = \frac{t^{\alpha}}{\Gamma(\alpha + 1)}.
$$

Here L^{-1} denote the inverse Laplace transform. Therefore, for $t > 0$:

$$
S(t)x = \lim_{\omega \to \infty} \frac{1}{2\pi i} \int_{\gamma - i\omega}^{\gamma + i\omega} e^{\lambda t} \frac{R(\lambda, A)x}{\lambda^{\alpha}} d\lambda,
$$

i.e. (4) holds.

Acknowledgement. The author would like to thank the referee for his help in the improvement of this paper.

REFERENCES

- [1] W. Arendt, Resolvent positive operators and integrated semigroups, Proc. London Math. Soc., 54 (3) (1987), 321–349.
- [2] W. Arendt, O. El-Mennaoui and V. Keyantuo, Local integrated semigroups: evolution with jumps of regularity, J. Math. Anal. Appl., 186 (1994), 572-595.
- [3] Paul L. Butzer, Hubert Berens, Semi-Groups of Operators and Approximation, Springer-Verlag Berlin Heidelberg New York, 1967.
- [4] M. Hieber, *Integrated semigroups and differential operators on* L^p spaces, Math. Ann., 291 (1991), 1–16.
- [5] M. Hieber, Laplace transforms and α−times integrated semigroups, Forum Math., 3 (1991), 595–612
- [6] M. Hieber, Integrated semigroups and the Cauchy problem for systems in L^p -spaces, J. Math. Ann. Appl., 162 (1991), 300–308.
- [7] E. Hille, R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Collog. Publ., Vol. 31. Providence, Rhode Island, 1957.
- [8] H. Kellermann and M. Hieber, Integrated semigroups, J. Funct. Anal., 84 (1989), 160–180.
- [9] M. Mijatović, S. Pilipović and F. Vajzović, α –times integrated semigroups ($\alpha \in \mathbb{R}^+$), J. Math. Anal. Appl., 210 (1997), 790–803.
- [10] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math., 135 (1988), 111–155.
- [11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York-Berlin, 1983.
- [12] H. Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problem, J. Math. Anal. Appl., 152 (1990), 416–447.
- [13] F. Vajzović and R.Vugdalić, Two exponential formulas for α −times integrated semigroups $(\alpha \in \mathbb{R}^+)$, Sarajevo J. Math., Vol. 1(13) (1) (2005), 93-115.

(Received: February 11, 2005) Department of Mathematics

(Revised: June 8, 2005) Faculty of Natural Science and Mathematics University of Tuzla 75000 Tuzla Bosnia and Herzegovina E–mail: ramiz.vugdalic@untz.ba