WARPED PRODUCT LIGHTLIKE SUBMANIFOLDS

BAYRAM ŞAHIN

ABSTRACT. We study a new class of lightlike submanifolds M, called warped product lightlike submanifolds, of a semi-Riemann manifold. We show that the null geometry of M reduces to the corresponding non-degenerate geometry of its semi-Riemann submanifold.

1. INTRODUCTION

The main purpose of this paper is to contribute to the study of the following problem:

Find a class of lightlike submanifolds whose geometry is essentially the same as that of their chosen screen distribution.

This problem was proposed by K.L. Duggal in [5], [6] and he also emphasized that it has several physical applications. Actually, this problem has been studied in many papers. In [7], K.L. Duggal and A. Bejancu showed that the geometry of a Monge lightlike surface reduces to the geometry of a leaf of its screen distribution. The same result was obtained for a hypersurface with canonical distribution in [2] and [3] by A. Bejancu and by A. Bejancu et al., respectively. Moreover, K.L. Duggal showed that this result is true for a half-lightlike submanifold of a semi-Euclidean space with integrable screen distribution [6]. Also, C. Atindogbe and K.L. Duggal introduced the notion of screen conformal lightlike hypersurface and they obtained that the geometry of such hypersurfaces reduces to the geometry of a leaf of its screen distribution [1]. Furthermore, K.L. Duggal and the present author showed that this notion is well defined for half-lightlike submanifolds and the geometry of screen conformal half-lightlike submanifolds has a close relation with non-degenerate geometry of a leaf of its screen distribution [9]. Here, note that the radical distribution has rank r = 1 in all those papers, mentioned above.

²⁰⁰⁰ Mathematics Subject Classification. 53C15, 53C40, 53C50.

 $Key\ words\ and\ phrases.$ Degenerate metric, warped product manifold, semi-Riemann manifold.

On the other hand, warped product manifolds are defined in [4] as follows: Let (B, \bar{g}_1) and (F, \bar{g}_2) be two Riemannian manifolds, $f : B \to (0, \infty)$ and $\pi : B \times F \to B, \eta : B \times F \to F$ the projection maps given by $\pi(p,q) = p$ and $\eta(p,q) = q$ for every $(p,q) \in B \times F$. The warped product $\overline{M} = B \times F$ is the manifold $B \times F$ equipped with the Riemannian structure such that

$$\bar{g}(X,Y) = \bar{g}_1(\pi_*X,\pi_*Y) + (fo\pi)^2 \bar{g}_2(\eta_*X,\eta_*Y)$$

for every X and Y of \overline{M} and * is the symbol for the tangent map.

In this paper, we present a new class of lightlike submanifolds, using warped products, such that its radical distribution has rank $r \ge 1$. Roughly speaking, our main result is that the geometry of coisotropic warped product lightlike submanifolds of a semi-Riemann manifold reduces to the non-degenerate geometry of a leaf of its screen distribution.

2. Preliminaries

We follow [7] for the notation and formulas used in this paper. A submanifold M^m immersed in a semi-Riemannian manifold $(\overline{M}^{m+n}, \overline{g})$ is called a *lightlike submanifold* if it is a lightlike manifold w.r.t. the metric g induced from \overline{g} and the radical distribution Rad(TM) is of rank r, where $1 \leq r \leq m$. Let S(TM) be a screen distribution which is a semi-Riemannian complementary distribution of Rad(TM) in TM, i.e., $TM = Rad(TM) \perp S(TM)$.

Consider a screen transversal vector bundle $S(TM^{\perp})$, which is a semi-Riemannian complementary vector bundle of $\operatorname{Rad}(TM)$ in TM^{\perp} . Since, for any local basis $\{\xi_i\}$ of the $\operatorname{Rad}(TM)$, there exists a local null frame $\{N_i\}$ of sections with values in the orthogonal complement of $S(TM^{\perp})$ in $[S(TM)]^{\perp}$ such that $\overline{g}(\xi_i, N_j) = \delta_{ij}$, it follows that there exists a lightlike transversal vector bundle $\operatorname{ltr}(TM)$ locally spanned by $\{N_i\}$ [7, page 144]. Let $\operatorname{tr}(TM)$ be complementary (but not orthogonal) vector bundle to TM in $T\overline{M}|_M$. Then,

$$tr(TM) = ltr(TM) \perp S(TM^{\perp}),$$

$$T\overline{M}|_{M} = S(TM) \perp [Rad(TM) \oplus ltr(TM)] \perp S(TM^{\perp}).$$

The following are four subcases of a lightlike submanifold $(M, g, S(TM), S(TM^{\perp}))$.

Case 1: r-lightlike if $r < min\{m, n\}$;

Case 2: Co-isotropic if r = n < m; $S(TM^{\perp}) = \{0\}$;

Case 3: Isotropic if r = m < n; $S(TM) = \{0\}$;

Case 4: Totally lightlike if r = m = n; $S(TM) = \{0\} = S(TM^{\perp})$. The Gauss and Weingarten equations are:

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \ \forall X, Y \in \Gamma(TM),$$
(2.1)

WARPED PRODUCT LIGHTLIKE SUBMANIFOLDS

$$\bar{\nabla}_X V = -A_V X + \nabla_X^t V, \ \forall X \in \Gamma(TM), \ V \in \Gamma(\operatorname{tr}(TM)),$$
(2.2)

where $\{\nabla_X Y, A_V X\}$ and $\{h(X, Y), \nabla_X^t V\}$ belong to $\Gamma(TM)$ and $\Gamma(\operatorname{ltr}(TM))$, respectively. ∇ and ∇^t are linear connections on M and on the vector bundle $\operatorname{ltr}(TM)$, respectively. The second fundamental form h is a symmetric $\mathcal{F}(M)$ -bilinear form on $\Gamma(TM)$ with values in $\Gamma(\operatorname{tr}(TM))$ and the shape operator A_V is a linear endomorphism of $\Gamma(TM)$. Then we have

$$\bar{\nabla}_X Y = \nabla_X Y + h^l(X, Y) + h^s(X, Y), \qquad (2.3)$$

$$\bar{\nabla}_X N = -A_N X + \nabla_X^l(N) + D^s(X, N), \qquad (2.4)$$

$$\bar{\nabla}_X W = -A_W X + \nabla^s_X(W) + D^l(X, W), \ \forall X, Y \in \Gamma(TM),$$
(2.5)

 $N \in \Gamma(\operatorname{ltr}(TM))$ and $W \in \Gamma(S(TM^{\perp}))$. Denote the projection of TM on S(TM) by \overline{P} . We set

$$\nabla_X \bar{P}Y = \nabla_X^* \bar{P}Y + h^*(X, \bar{P}Y), \qquad (2.6)$$

$$\nabla_X \xi = -A^*_{\xi} X + \nabla^{*t}_X \xi, \qquad (2.7)$$

for $X, Y \in \Gamma(TM)$ and $\xi \in \Gamma(\operatorname{Rad} TM)$.

In general, the induced connection ∇ on M is not metric connection. Since $\overline{\nabla}$ is a metric connection, by using (2.3) we get

$$(\nabla_X g)(Y, Z) = \bar{g}(h^l(X, Y), Z) + \bar{g}(h^l(X, Z), Y).$$
(2.8)

Finally, we will give a brief review of the notion of lifting which is of crucial importance for computations on product manifolds, details can be found in [10]. Consider a product manifold $M \times N$. If $f \in C^{\infty}(M, \mathbf{R})$ the lift of f to $M \times N$ is $\tilde{f} = fo\pi \in C^{\infty}(M, \mathbf{R})$. If $x \in T_p(M), p \in M$ and $q \in N$ then the lift \tilde{x} to (p, q) is the unique vector in $T_{(p,q)}M$ such that $\pi_*(\tilde{x}) = x$. If $X \in \Gamma(TM)$ the lift of X to $M \times N$ is the vector field \tilde{X} whose value at each (p, q). Product coordinate systems show that \tilde{X} is smooth. Let us denote vector fields on M (resp.N), lifted to $M \times N$, by $\Im(M)$ (resp. $\Im(N)$.) Then we have:

Lemma 2.1. [10] 1) If $\tilde{X}, \tilde{Y} \in \mathfrak{S}(M)$ then $[\tilde{X}, \tilde{Y}] = [X, Y] \in \mathfrak{S}(M)$, and similarly for $\mathfrak{S}(N)$. 2) If $\tilde{X} \in \mathfrak{S}(M)$ and $\tilde{V} \in \mathfrak{S}(N)$, then $[\tilde{X}, \tilde{V}] = 0$.

Throughout this article we will use the same notation for a vector field and for its lift. Also we will assume that the manifolds are para-compact and every object in hand is smooth.

3. WARPED PRODUCT LIGHTLIKE SUBMANIFOLDS

In this section we present a new class of lightlike submanifold of semi-Riemannian manifold and investigate the geometry of this class by using warped products.

Definition 1. Let (M_1, g_1) be a totally lightlike submanifold of dimension rand (M_2, g_2) be a semi-Riemannian submanifold of dimension m of a semi-Riemann manifold $(\overline{M}, \overline{g})$. Then the product manifold $M = M_1 \times_f M_2$ is said to be a warped product lightlike submanifold of \overline{M} with the degenerate metric g defined by

$$g(X,Y) = g_1(\pi_*X,\pi_*Y) + (fo\pi)^2 g_2(\eta_*X,\eta_*Y)$$
(3.1)

for every $X, Y \in \Gamma(TM)$ and * is the symbol for the tangent map. Here, $\pi : M_1 \times M_2 \to M_1$ and $\eta : M_1 \times M_2 \to M_2$ denote the projection maps given by $\pi(x, y) = x$ and $\eta(x, y) = y$ for $(x, y) \in M_1 \times M_2$.

It follows that the radical distribution $\operatorname{Rad} TM$ of M has rank r and its screen distribution S(TM) has rank m. Thus M is an r-lightlike submanifold of \overline{M} . From now on we consider warped product lightlike submanifolds in the form $M_1 \times_f M_2$, where M_1 is a totally lightlike submanifold and M_2 is a semi-Riemann submanifold of \overline{M} . We say that M is a proper warped product lightlike submanifold if $M_1 \neq \{0\}, M_2 \neq \{0\}$ and f is non-constant on M.

Example 1. Let $\overline{M} = (\mathbf{R}_2^7, \overline{g})$ be a semi-Riemannian manifold, where \mathbf{R}_2^7 is semi-Euclidean space of signature (-, -, +, +, +, +, +) with respect to the canonical basis

$$\{\partial x_1, \partial x_2, \partial x_3, \partial x_4, \partial x_5, \partial x_6, \partial x_7\}.$$

Let M be a submanifold of \mathbf{R}_2^7 given by

$$\begin{aligned} x^{1} &= u^{1}, & x^{2} &= u^{2}, & x^{3} &= \frac{u^{1}}{\sqrt{2}} \sin u^{3}, & x^{4} &= \frac{u^{1}}{\sqrt{2}} \cos u^{3} \\ x^{5} &= \frac{u^{1}}{\sqrt{2}} \sin u^{4}, & x^{6} &= \frac{u^{1}}{\sqrt{2}} \cos u^{4}, & x^{7} &= u^{2}, \end{aligned}$$

where $u^3 \in \mathbf{R} - \{k\frac{\pi}{2}\}$ and $u^4 \in \mathbf{R} - \{k\pi, k \in Z\}$. Then TM is spanned by

$$Z_{1} = \partial x_{1} + \frac{1}{\sqrt{2}} \sin u^{3} \partial x_{3} + \frac{1}{\sqrt{2}} \cos u^{3} \partial x_{4} + \frac{1}{\sqrt{2}} \sin u^{4} \partial x_{5} + \frac{1}{\sqrt{2}} \cos u^{4} \partial x_{6}$$
$$Z_{2} = \partial x_{2} + \partial x_{7}$$

$$Z_3 = \frac{1}{\sqrt{2}}u^1 \cos u^3 \partial x_3 - \frac{1}{\sqrt{2}}u^1 \sin u^3 \partial x_4$$
$$Z_4 = \frac{1}{\sqrt{2}}u^1 \cos u^4 \partial x_5 - \frac{1}{\sqrt{2}}u^1 \sin u^4 \partial x_6$$

Thus M is 2- lightlike submanifold with $\operatorname{Rad} TM = \operatorname{Span}\{Z_1, Z_2\}$ Choose $S(TM) = \operatorname{Span}\{Z_3, Z_4\}$. Then a screen transversal bundle $S(TM^{\perp})$ is spanned by

$$W = \sin u^3 \partial x_3 + \cos u^3 \partial x_4 - \sin u^4 \partial x_5 - \cos u^4 \partial x_6,$$

and a lightlike transversal bundle ltr(TM) is spanned by

$$N_{1} = \frac{1}{2\sqrt{2}} \{ -\sqrt{2}\partial x_{1} + \sin u^{3} \partial x_{3} + \cos u^{3} \partial x_{4} + \sin u^{4} \partial x_{5} + \cos u^{4} \partial x_{6} \}$$
$$N_{2} = \frac{1}{2} \{ -\partial x_{2} + \partial x_{7} \}.$$

It is easy to see that $\operatorname{Rad} TM$ and S(TM) are integrable. Now, we denote the leaves of $\operatorname{Rad} TM$ and S(TM) by M_1 and M_2 , respectively. Then, the induced metric tensor of M is given by

$$ds^{2} = 0(du_{1}^{2} + du_{2}^{2}) + \frac{(u^{1})^{2}}{2}(du_{3}^{2} + du_{4}^{2})$$
$$= \frac{(u^{1})^{2}}{2}(du_{3}^{2} + du_{4}^{2}).$$

Hence M is a proper warped product lightlike submanifold $M_1 \times_f M_2$ with $f = \frac{u^1}{\sqrt{2}}$.

Proposition 3.1. There exist no proper isotropic or totally lightlike warped product submanifolds of a semi-Riemann manifold \overline{M} .

Proof. Let M be a isotropic warped product lightlike submanifold. Then $S(TM) = \{0\}$. Hence $M_2 = 0$. The other assertion can be proved in a similar way.

Proposition 3.2. Let $M = M_1 \times_f M_2$ be a proper warped product lightlike submanifold of a semi-Riemannian manifold \overline{M} Then M_1 is totally geodesic in M as well as in \overline{M} .

Proof. Let ∇ be a linear connection on M induced from $\overline{\nabla}$. We know that ∇ is not a metric connection. From the Kozsul formula we have

$$2\bar{g}(\bar{\nabla}_X Y, Z) = X\bar{g}(Y, Z) + Y\bar{g}(X, Z) - Z\bar{g}(X, Y) + \bar{g}([X, Y], Z) + \bar{g}([Z, X], Y) - \bar{g}([Y, Z], X)$$

for $X, Y \in \Gamma(TM_1)$ and $Z \in \Gamma(S(TM))$. On the other hand, from Lemma 2.1, we have [X, Z] = 0 for $X \in \Gamma(\text{Rad} TM)$ and $Z \in \Gamma(S(TM))$. Thus we get

$$2\bar{g}(\nabla_X Y, Z) = \bar{g}([X, Y], Z).$$

Using again Lemma 2.1, we get $[X, Y] \in \Gamma(\operatorname{Rad} TM)$. Hence we derive $2\bar{g}(\bar{\nabla}_X Y, Z) = 0$. Thus, from (2.3) we have $g(\nabla_X Y, Z) = 0$. this shows that M_1 is totally geodesic in M. On the other hand, from [7], Corollary 2.5, p. 167, we know that any totally lightlike submanifold of a semi-Riemann manifold \bar{M} is totally geodesic in \bar{M} .

Definition 2. [8] A lightlike submanifold (M, g) of a semi-Riemannian manifold $(\overline{M}, \overline{g})$ is totally umbilical in \overline{M} if there is a smooth transversal vector field $\mathbf{H} \in \Gamma(\operatorname{tr}(TM))$ on M, called the transversal curvature vector field of M, such that, for all $X, Y \in \Gamma(TM)$,

$$h(X,Y) = \mathbf{H}g(X,Y). \tag{3.2}$$

Using (2.1) and (2.3) it is easy to see that M is totally umbilical if and only if on each coordinate neighborhood \mathcal{U} there exist smooth vector fields $H^l \in \Gamma(\operatorname{ltr}(TM))$ and $H^s \in \Gamma(S(TM^{\perp}))$ such that

$$h^{l}(X,Y) = H^{l}g(X,Y), \quad D^{l}(X,W) = 0,$$
(3.3)

$$h^{s}(X,Y) = H^{s}g(X,Y), \quad \forall X,Y \in \Gamma(TM), \quad W \in \Gamma(S(TM^{\perp}))$$
(3.4)

The above definition does not depend on the S(TM) and $S(TM^{\perp})$ of M. Corollary 3.1. Let $M = M_1 \times_f M_2$ be a proper warped product lightlike submanifold of a semi-Riemann manifold \overline{M} . Then we have

$$h^{l}(X,Z) = 0, \ h^{*}(X,Z) = 0, \ \forall X \in \Gamma(\operatorname{Rad} TM), \ Z \in \Gamma(S(TM))$$
(3.5)

Proof. From equation (2.3) we have $\bar{g}(h^l(X,Z),Y) = \bar{g}(\bar{\nabla}_X Z,Y)$ for $X,Y \in \Gamma(\operatorname{Rad} TM)$ and $Z \in \Gamma(S(TM))$. Hence we have that $\bar{g}(h^l(X,Z),Y) = -\bar{g}(\bar{\nabla}_X Y,Z) = -g(\nabla_X Y,Z)$. From Proposition 3.2, we have known that M_1 is totally geodesic in M. Hence we get $\bar{g}(h^l(X,Z),Y) = 0$, thus we obtain the first equation of (3.5). In a similar way, we obtain the second equation.

Proposition 3.3. Let $M = M_1 \times_f M_2$ be a proper warped product lightlike submanifold of a semi-Riemann manifold \overline{M} . Then M is totally umbilical in \overline{M} if and only if $h^s(X,Y) = g(X,Y)H^s$ for $X,Y \in \Gamma(TM)$, where H^s is a smooth vector field on coordinate neighborhood $\mathbf{U} \subset M$.

Proof. First, we claim that $\nabla_X Z \in \Gamma(S(TM))$ for $X \in \Gamma(\operatorname{Rad} TM)$ and $Z \in \Gamma(S(TM))$. Let us suppose that $\nabla_X Z \in \Gamma(\operatorname{Rad} TM))$ for $X \in \Gamma(\operatorname{Rad} TM)$ and $Z \in \Gamma(S(TM))$. Then from Kozsul formula we have

$$2\bar{g}(\nabla_X Z, W) = X\bar{g}(Z, W)$$

for $W \in \Gamma(S(TM))$. Since by assumption $\nabla_X Z \in \Gamma(\operatorname{Rad} TM)$ and the definition of warped metric tensor, using (2.3) we get

$$g(\nabla_X Z, W) = 0,$$

hence we derive

$$X(fo\pi)^2 g_2(Z,W) = 0.$$

Since g_2 is constant on M_1 we obtain

$$\frac{X(f)}{f}g(Z,W)=0$$

here we have put f for $fo\pi$. Thus X(f) = 0 or $g_2(Z, W) = 0$. Since g_2 is non-degenerate and f is not constant, we get a contradiction, so $\nabla_X Z \in \Gamma(S(TM))$. Now, since $\overline{\nabla}$ is a metric connection, we have

$$\bar{g}(\nabla_Z W, X) = -\bar{g}(W, \nabla_Z X)$$

for $X \in \Gamma(\operatorname{Rad} TM)$ and $Z, W \in \Gamma(S(TM))$. Using (2.3) we have

$$\bar{g}(h^l(Z,W),X) = -g(W,\nabla_Z X) = -g(W,\nabla_X Z).$$

Hence

$$\bar{g}(h^l(Z,W),X) = -\frac{X(f)}{f}g(Z,W).$$
 (3.6)

Thus proof follows from (3.6), Corollary 3.1 and the definition of totally umbilical lightlike submanifold.

Theorem 3.1. Let $M = M_1 \times_f M_2$ be a proper warped product lightlike submanifold of a semi-Riemann manifold \overline{M} . Then the induced connection ∇ is never a metric connection.

Proof. Let us suppose that ∇ is a metric connection on M. Then from [7] we know that $h^l = 0$. Thus from (3.6) we obtain $\frac{X(f)}{f}g(Z,W) = 0$ for $X \in \Gamma(\operatorname{Rad} TM)$ and $Z, W \in \Gamma(S(TM))$. Hence $X(f)fg_2(Z,W) = 0$. Thus, $f \neq 0$ implies that X(f) = 0 or $g_2(Z,W) = 0$. Since M is a proper warped product lightlike submanifold and g_2 is non-degenerate, this is a contradiction. \Box

Corollary 3.2. There exist no totally geodesic proper warped product lightlike submanifolds of a semi-Riemann manifold \overline{M} .

We note that from Lemma 2.1, it follows that the radical distribution and the screen distribution of M are integrable. Now, we are ready to prove our main two results.

Theorem 3.2. Let $M = M_1 \times_f M_2$ be a proper warped product lightlike submanifold of a semi-Riemann manifold \overline{M} . Then M is totally umbilical if any leaf of screen distribution is so immersed as a submanifold of \overline{M}

and $\bar{g}(D^l(Z,W),X) = 0$ for $X \in \Gamma(\operatorname{Rad} TM), Z \in \Gamma(S(TM))$ and $W \in \Gamma(S(TM^{\perp}))$.

Proof. We note that from (3.1), we get $g(X,Y) = (fo\pi)^2 g_2(\bar{P}X,\bar{P}Y)$ for $X,Y \in \Gamma(TM)$ From Proposition 3.2 we know that Rad TM defines a totally geodesic foliation in \bar{M} , hence $h^l(X,Y) = h^s(X,Y) = 0$ for $X,Y \in \Gamma(\operatorname{Rad} TM)$. Moreover from Corollary 3.1, we have that $h^l(X,Z) = 0$ and $h^*(X,Z) = 0$ for $X \in \Gamma(\operatorname{Rad} TM)$ and $Z \in \Gamma(S(TM))$. Now, from (2.3) and (2.5) we obtain

$$\bar{g}(h^s(X,Z),W) = \bar{g}(X,D^l(Z,W))$$
 (3.7)

for $X \in \Gamma(\operatorname{Rad} TM)$, $Z \in \Gamma(S(TM) \text{ and } W \in \Gamma(S(TM^{\perp}))$. On the other hand, from (2.3) we write

$$\bar{\nabla}_Z V = \nabla'_Z V + h'(Z, V)$$

for $Z, V \in \Gamma(S(TM))$, where h' is the second fundamental form of M_2 in \overline{M} and ∇' is the metric connection of M_2 in \overline{M} . Hence we have

$$h'(Z,V) = h^*(Z,V) + h^l(Z,V) + h^s(Z,V).$$
(3.8)

The proof follows from (3.7) and (3.8).

Theorem 3.3. Let
$$M = M_1 \times_f M_2$$
 be a coisotropic warped product lightlike
submanifold of a semi-Riemann manifold \overline{M} . Then M is totally umbilical if
any leaf of screen distribution is so immersed as a submanifold of \overline{M} .

Proof. If M is coisotropic, then $S(TM^{\perp}) = \{0\}$. Thus, $h^s = 0$ on M. Then the proof follows from Proposition 3.2, Corollary 3.1 and (3.8).

Example 2. Let $\overline{M} = (\mathbf{R}_3^6, \overline{g})$ be a semi-Riemannian manifold, where \mathbf{R}_3^6 is semi-Euclidean space of signature (-, -, -, +, +, +) with respect to the canonical basis

$$\{\partial x_1, \partial x_2, \partial x_3, \partial x_4, \partial x_5, \partial x_6\}$$

Let M be a submanifold of \mathbf{R}_3^6 given by

$$\begin{aligned} x^1 &= u^1, & x^2 &= u^2, & x^3 &= u^1 \cos u^3 \sinh u^4 \\ x^4 &= u^1 \cos u^3 \cosh u^4, & x^5 &= u^2, & x^6 &= u^1 \sin u^3, \end{aligned}$$

where $u^3 \in \mathbf{R} - \{k\frac{\pi}{2} \mid k \in Z\}$. Then *TM* is spanned by

$$Z_1 = \partial x_1 + \cos u^3 \sinh u^4 \partial x_3 + \cos u^3 \cosh u^4 \partial x_4 + \sin u^3 \partial x_6$$

$$Z_2 = \partial x_2 + \partial x_5$$

$$Z_3 = -u^1 \sin u^3 \sinh u^4 \partial x_3 - u^1 \sin u^3 \cosh u^4 \partial x_4 + u^1 \cos u^3 \partial x_6$$

$$Z_4 = u^1 \cos u^3 \cosh u^4 \partial x_3 + u^1 \cos u^3 \sinh u^4 \partial x_4.$$

Thus M is a 2- lightlike submanifold \mathbf{R}_3^6 . Choose $S(TM) = \operatorname{span}\{Z_3, Z_4\}$, then it follows that a lightlike transversal vector bundle $\operatorname{ltr}(TM)$ is spanned by

$$N_{1} = \frac{1}{2} \{ -\partial x_{1} + \cos u^{3} \sinh u^{4} \partial x_{3} + \cos u^{3} \cosh u^{4} \partial x_{4} + \sin u^{3} \partial x_{6} \}$$
$$N_{2} = \frac{1}{2} \{ -\partial x_{2} + \partial x_{5} \}$$

hence M is a coisotropic submanifold. By direct calculations, we conclude that Rad TM and S(TM) are integrable in M. Now denote the leaves of Rad TM and S(TM) by M_1 and M_2 . We also obtain that the induced induced metric tensor is

$$ds^{2} = (u^{1})^{2} (du_{3}^{2} - \cos^{2} u^{3} du_{4}^{2}).$$

Thus M is a coisotropic warped product submanifold of \mathbf{R}_3^6 with $f = u^1$. By direct calculations, using Gauss formulas (2.3) and (2.6) we obtain

$$h^{l}(X, Z_{1}) = h^{l}(X, Z_{2}) = h^{l}(Z_{3}, Z_{4}) = 0, \ \forall X \in \Gamma(TM)$$

$$h^{l}(Z_{3}, Z_{3}) = -u^{1}N_{1}, \ h^{l}(Z_{4}, Z_{4}) = u^{1} \cos^{2} u^{3}N_{1}$$
(3.9)

and

$$h^*(X, Z_1) = h^*(X, Z_2) = h^*(Z_3, Z_4) = h^*(Z_4, Z_3) = 0, \ \forall X \in \Gamma(TM)$$
$$h^*(Z_3, Z_3) = -\frac{1}{2}u^1 Z_1, \ h^*(Z_4, Z_4) = \frac{1}{2}u^1 \cos^2 u^3 Z_1.$$

Now, we denote the second fundamental form of M_2 in \overline{M} by h'. Then we obtain

$$h'(Z_3, Z_4) = 0$$

and

$$h'(Z_3, Z_3) = -u^1(N_1 + \frac{1}{2}Z_1), \ h'(Z_4, Z_4) = u^1 \cos^2 u^3(N_1 + \frac{1}{2}Z_1).$$

Hence we have

$$h'(X,Y) = g(X,Y)H',$$

where $H' = -N_1 - \frac{1}{2}Z_1$ for $X, Y \in \Gamma(S(TM))$. Thus, it follows that M_2 is totally umbilical in \overline{M} . On the other hand, from (3.9) we have

$$h^l(X,Y) = g(X,Y)H^l,$$

where $H^l = -N_1$ for $X, Y \in \Gamma(TM)$. Thus, from Definition 2, it follows that M is also totally umbilical in \overline{M} .

References

- C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math., 11 (4) (2004), 421–442.
- [2] A. Bejancu, Null hypersurfaces of semi-Euclidean spaces, Saitama Math. J., 14 (1996), 25–40.
- [3] A. Bejancu, A. Ferrández and P. Lucas, A new viewpoint on geometry of a lightlike hypersurface in a semi-Euclidean space, Saitama Math. J., 16 (1998), 31–38.
- [4] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1–49.
- [5] K. L. Duggal, Constant scalar curvature and warped product globally null manifolds, J. Geom. Phys., 4 (2002), 327–340.
- [6] K. L. Duggal, Riemannian geometry of half-lightlike manifolds, Math. J. Toyama Univ., 25 (2002), 165–179.
- [7] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Its Applications, Kluwer Academic Publishers, Dortrecht, (1996).
- [8] K. L. Duggal and D. H. Jin, Totally umbilical lightlike submanifolds, Kodai Math J., 26 (2003), 49–68.
- K. L. Duggal and B. Sahin, Screen conformal half-lightlike submanifolds, Internat J. Math. and Math. Sci., 68 (2004), 3737–3753.
- [10] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, (1983).

(Received: March 21, 2005) (Revised: May 17, 2005) Department of Mathematics Inonu University 44280 Malatya, Turkey E-mail: bsahin@inonu.edu.tr