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WARPED PRODUCT LIGHTLIKE SUBMANIFOLDS

BAYRAM S.AHIN

Abstract. We study a new class of lightlike submanifolds M , called
warped product lightlike submanifolds, of a semi-Riemann manifold.
We show that the null geometry of M reduces to the corresponding
non-degenerate geometry of its semi-Riemann submanifold.

1. Introduction

The main purpose of this paper is to contribute to the study of the fol-
lowing problem:

Find a class of lightlike submanifolds whose geometry is essentially the
same as that of their chosen screen distribution.

This problem was proposed by K.L. Duggal in [5], [6] and he also emphasized
that it has several physical applications. Actually, this problem has been
studied in many papers. In [7], K.L. Duggal and A. Bejancu showed that
the geometry of a Monge lightlike surface reduces to the geometry of a leaf
of its screen distribution. The same result was obtained for a hypersurface
with canonical distribution in [2] and [3] by A. Bejancu and by A. Bejancu
et al., respectively. Moreover, K.L. Duggal showed that this result is true
for a half-lightlike submanifold of a semi-Euclidean space with integrable
screen distribution [6]. Also, C. Atindogbe and K.L. Duggal introduced the
notion of screen conformal lightlike hypersurface and they obtained that the
geometry of such hypersurfaces reduces to the geometry of a leaf of its screen
distribution [1]. Furthermore, K.L. Duggal and the present author showed
that this notion is well defined for half-lightlike submanifolds and the geom-
etry of screen conformal half-lightlike submanifolds has a close relation with
non-degenerate geometry of a leaf of its screen distribution [9]. Here, note
that the radical distribution has rank r = 1 in all those papers, mentioned
above.
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On the other hand, warped product manifolds are defined in [4] as follows:
Let (B, ḡ1) and (F, ḡ2) be two Riemannian manifolds, f : B → (0,∞) and
π : B × F → B, η : B × F → F the projection maps given by π(p, q) = p
and η(p, q) = q for every (p, q) ∈ B×F. The warped product M̄ = B×F is
the manifold B × F equipped with the Riemannian structure such that

ḡ(X, Y ) = ḡ1(π∗X, π∗Y ) + (foπ)2ḡ2(η∗X, η∗Y )

for every X and Y of M̄ and ∗ is the symbol for the tangent map.
In this paper, we present a new class of lightlike submanifolds, using

warped products, such that its radical distribution has rank r ≥ 1. Roughly
speaking, our main result is that the geometry of coisotropic warped prod-
uct lightlike submanifolds of a semi-Riemann manifold reduces to the non-
degenerate geometry of a leaf of its screen distribution.

2. Preliminaries

We follow [7] for the notation and formulas used in this paper. A subman-
ifold Mm immersed in a semi-Riemannian manifold (M̄m+n, ḡ) is called a
lightlike submanifold if it is a lightlike manifold w.r.t. the metric g induced
from ḡ and the radical distribution Rad(TM) is of rank r, where 1 ≤ r ≤ m.
Let S(TM) be a screen distribution which is a semi-Riemannian complemen-
tary distribution of Rad(TM) in TM , i.e., TM = Rad (TM) ⊥ S(TM).

Consider a screen transversal vector bundle S(TM⊥), which is a semi-
Riemannian complementary vector bundle of Rad(TM) in TM⊥. Since, for
any local basis {ξi} of the Rad(TM), there exists a local null frame {Ni} of
sections with values in the orthogonal complement of S(TM⊥) in [S(TM)]⊥

such that ḡ(ξi, Nj) = δij , it follows that there exists a lightlike transversal
vector bundle ltr(TM) locally spanned by {Ni} [7, page 144]. Let tr(TM)
be complementary (but not orthogonal) vector bundle to TM in TM̄ |M .
Then,

tr(TM) = ltr(TM) ⊥ S(TM⊥),

T M̄ |M = S(TM) ⊥ [Rad(TM)⊕ ltr(TM)] ⊥ S(TM⊥).

The following are four subcases of a lightlike submanifold (M, g, S(TM),
S(TM⊥)).

Case 1: r - lightlike if r < min{m, n};
Case 2: Co - isotropic if r = n < m; S(TM⊥) = {0};
Case 3: Isotropic if r = m < n; S(TM) = {0};
Case 4: Totally lightlike if r = m = n; S(TM) = {0} = S(TM⊥).
The Gauss and Weingarten equations are:

∇̄XY = ∇XY + h(X, Y ), ∀X, Y ∈ Γ(TM), (2.1)
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∇̄XV = −AV X +∇t
XV, ∀X ∈ Γ(TM), V ∈ Γ(tr(TM)), (2.2)

where {∇XY, AV X} and {h(X, Y ),∇t
XV } belong to Γ(TM) and Γ(ltr(TM)),

respectively. ∇ and ∇t are linear connections on M and on the vector bun-
dle ltr(TM), respectively. The second fundamental form h is a symmetric
F(M)-bilinear form on Γ(TM) with values in Γ(tr(TM)) and the shape
operator AV is a linear endomorphism of Γ(TM). Then we have

∇̄XY = ∇XY + hl(X, Y ) + hs(X, Y ), (2.3)

∇̄XN = −ANX +∇l
X(N) + Ds(X, N), (2.4)

∇̄XW = −AW X +∇s
X(W ) + Dl(X, W ), ∀X, Y ∈ Γ(TM), (2.5)

N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)). Denote the projection of TM on
S(TM) by P̄ . We set

∇X P̄ Y = ∇∗X P̄ Y + h∗(X, P̄Y ), (2.6)

∇Xξ = −A∗
ξX +∇∗tXξ, (2.7)

for X, Y ∈ Γ(TM) and ξ ∈ Γ(RadTM).
In general, the induced connection ∇ on M is not metric connection.

Since ∇̄ is a metric connection, by using (2.3) we get

(∇Xg)(Y, Z) = ḡ(hl(X, Y ), Z) + ḡ(hl(X, Z), Y ). (2.8)

Finally, we will give a brief review of the notion of lifting which is of
crucial importance for computations on product manifolds, details can be
found in [10]. Consider a product manifold M × N. If f ∈ C∞(M,R) the
lift of f to M ×N is f̃ = foπ ∈ C∞(M,R). If x ∈ Tp(M), p ∈ M and q ∈ N
then the lift x̃ to (p, q) is the unique vector in T(p,q)M such that π∗(x̃) = x.

If X ∈ Γ(TM) the lift of X to M × N is the vector field X̃ whose value
at each (p, q). Product coordinate systems show that X̃ is smooth. Let us
denote vector fields on M (resp.N), lifted to M×N , by =(M) (resp. =(N).)
Then we have:

Lemma 2.1. [10] 1) If X̃, Ỹ ∈ =(M) then [X̃, Ỹ ] = [X, Y ]̃ ∈ =(M), and
similarly for =(N).
2) If X̃ ∈ =(M) and Ṽ ∈ =(N), then [X̃, Ṽ ] = 0.

Throughout this article we will use the same notation for a vector field
and for its lift. Also we will assume that the manifolds are para-compact
and every object in hand is smooth.
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3. Warped product lightlike submanifolds

In this section we present a new class of lightlike submanifold of semi-
Riemannian manifold and investigate the geometry of this class by using
warped products.

Definition 1. Let (M1, g1) be a totally lightlike submanifold of dimension r
and (M2, g2) be a semi-Riemannian submanifold of dimension m of a semi-
Riemann manifold (M̄, ḡ). Then the product manifold M = M1 ×f M2 is
said to be a warped product lightlike submanifold of M̄ with the degenerate
metric g defined by

g(X, Y ) = g1(π∗X, π∗Y ) + (foπ)2g2(η∗X, η∗Y ) (3.1)

for every X, Y ∈ Γ(TM) and ∗ is the symbol for the tangent map. Here,
π : M1 × M2 → M1 and η : M1 × M2 → M2 denote the projection maps
given by π(x, y) = x and η(x, y) = y for (x, y) ∈ M1 ×M2.

It follows that the radical distribution RadTM of M has rank r and its
screen distribution S(TM) has rank m. Thus M is an r-lightlike submanifold
of M̄. From now on we consider warped product lightlike submanifolds in
the form M1 ×f M2, where M1 is a totally lightlike submanifold and M2

is a semi-Riemann submanifold of M̄. We say that M is a proper warped
product lightlike submanifold if M1 6= {0}, M2 6= {0} and f is non-constant
on M.

Example 1. Let M̄ = (R7
2, ḡ) be a semi-Riemannian manifold, where R7

2 is
semi-Euclidean space of signature (−,−,+,+,+,+,+) with respect to the
canonical basis

{∂ x1, ∂ x2, ∂ x3, ∂ x4, ∂ x5, ∂ x6, ∂ x7}.

Let M be a submanifold of R7
2 given by

x1 = u1, x2 = u2, x3 =
u1

√
2

sin u3, x4 =
u1

√
2

cos u3

x5 =
u1

√
2
sin u4, x6 =

u1

√
2

cos u4, x7 = u2,

where u3 ∈ R− {k π
2 } and u4 ∈ R− {kπ, k ∈ Z}. Then TM is spanned by

Z1 = ∂x1+
1√
2

sin u3 ∂x3+
1√
2

cos u3 ∂x4+
1√
2

sin u4 ∂x5+
1√
2

cos u4 ∂x6

Z2 = ∂x2 + ∂x7
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Z3 =
1√
2
u1 cos u3 ∂x3 −

1√
2
u1 sin u3∂ x4

Z4 =
1√
2
u1 cos u4 ∂x5 −

1√
2
u1 sin u4 ∂ x6

Thus M is 2− lightlike submanifold with RadTM = Span{Z1, Z2} Choose
S(TM) = Span{Z3, Z4}. Then a screen transversal bundle S(TM⊥) is
spanned by

W = sin u3 ∂x3 + cos u3 ∂x4 − sin u4 ∂x5 − cos u4 ∂x6,

and a lightlike transversal bundle ltr(TM) is spanned by

N1 =
1

2
√

2
{−
√

2∂ x1 + sin u3 ∂x3 + cos u3 ∂x4 + sin u4 ∂x5 + cos u4 ∂x6}

N2 =
1
2
{−∂ x2 + ∂ x7}.

It is easy to see that RadTM and S(TM) are integrable. Now, we denote
the leaves of RadTM and S(TM) by M1 and M2, respectively. Then, the
induced metric tensor of M is given by

ds2 = 0(du2
1 + du2

2) +
(u1)2

2
(du2

3 + du2
4)

=
(u1)2

2
(du2

3 + du2
4).

Hence M is a proper warped product lightlike submanifold M1 ×f M2 with
f = u1

√
2
.

Proposition 3.1. There exist no proper isotropic or totally lightlike warped
product submanifolds of a semi-Riemann manifold M̄.

Proof. Let M be a isotropic warped product lightlike submanifold. Then
S(TM) = {0}. Hence M2 = 0. The other assertion can be proved in a
similar way. �

Proposition 3.2. Let M = M1 ×f M2 be a proper warped product lightlike
submanifold of a semi-Riemannian manifold M̄ Then M1 is totally geodesic
in M as well as in M̄.

Proof. Let ∇ be a linear connection on M induced from ∇̄. We know that
∇ is not a metric connection. From the Kozsul formula we have

2ḡ(∇̄XY, Z) = Xḡ(Y, Z) + Y ḡ(X, Z)− Zḡ(X, Y )

+ ḡ([X, Y ], Z) + ḡ([Z,X], Y )− ḡ([Y, Z], X)
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for X, Y ∈ Γ(TM1) and Z ∈ Γ(S(TM)). On the other hand, from Lemma
2.1, we have [X, Z] = 0 for X ∈ Γ(RadTM) and Z ∈ Γ(S(TM)). Thus we
get

2ḡ(∇̄XY, Z) = ḡ([X, Y ], Z).
Using again Lemma 2.1, we get [X, Y ] ∈ Γ(RadTM). Hence we derive
2ḡ(∇̄XY, Z) = 0. Thus, from (2.3) we have g(∇XY, Z) = 0. this shows that
M1 is totally geodesic in M. On the other hand, from [7], Corollary 2.5,
p. 167, we know that any totally lightlike submanifold of a semi-Riemann
manifold M̄ is totally geodesic in M̄. �

Definition 2. [8] A lightlike submanifold (M, g) of a semi-Riemannian
manifold (M̄, ḡ) is totally umbilical in M̄ if there is a smooth transversal
vector field H ∈ Γ(tr(TM)) on M , called the transversal curvature vector
field of M , such that, for all X, Y ∈ Γ(TM),

h(X, Y ) = Hg(X, Y ). (3.2)

Using (2.1) and (2.3) it is easy to see that M is totally umbilical if and
only if on each coordinate neighborhood U there exist smooth vector fields
H l ∈ Γ(ltr(TM)) and Hs ∈ Γ(S(TM⊥) such that

hl(X, Y ) = H lg(X, Y ), Dl(X, W ) = 0, (3.3)

hs(X, Y ) = Hsg(X, Y ), ∀X, Y ∈ Γ(TM), W ∈ Γ(S(TM⊥) (3.4)

The above definition does not depend on the S(TM) and S(TM⊥) of M.

Corollary 3.1. Let M = M1 ×f M2 be a proper warped product lightlike
submanifold of a semi-Riemann manifold M̄. Then we have

hl(X, Z) = 0, h∗(X, Z) = 0, ∀X ∈ Γ(RadTM), Z ∈ Γ(S(TM)) (3.5)

Proof. From equation (2.3) we have ḡ(hl(X, Z), Y ) = ḡ(∇̄XZ, Y ) for X, Y ∈
Γ(RadTM) and Z ∈ Γ(S(TM)). Hence we have that ḡ(hl(X, Z), Y ) =
−ḡ(∇̄XY, Z) = −g(∇XY, Z). From Proposition 3.2, we have known that
M1 is totally geodesic in M. Hence we get ḡ(hl(X, Z), Y ) = 0, thus we
obtain the first equation of (3.5). In a similar way, we obtain the second
equation. �

Proposition 3.3. Let M = M1 ×f M2 be a proper warped product lightlike
submanifold of a semi-Riemann manifold M̄. Then M is totally umbilical in
M̄ if and only if hs(X, Y ) = g(X, Y )Hs for X, Y ∈ Γ(TM), where Hs is a
smooth vector field on coordinate neighborhood U ⊂ M.

Proof. First, we claim that ∇XZ ∈ Γ(S(TM)) for X ∈ Γ(RadTM) and Z ∈
Γ(S(TM)). Let us suppose that ∇XZ ∈ Γ(RadTM)) for X ∈ Γ(RadTM)
and Z ∈ Γ(S(TM)). Then from Kozsul formula we have

2ḡ(∇̄XZ,W ) = Xḡ(Z,W )



WARPED PRODUCT LIGHTLIKE SUBMANIFOLDS 257

for W ∈ Γ(S(TM)). Since by assumption ∇XZ ∈ Γ(RadTM) and the
definition of warped metric tensor, using (2.3) we get

g(∇XZ,W ) = 0,

hence we derive
X(foπ)2g2(Z,W ) = 0.

Since g2 is constant on M1 we obtain

X(f)
f

g(Z,W ) = 0,

here we have put f for foπ. Thus X(f) = 0 or g2(Z,W ) = 0. Since g2 is
non-degenerate and f is not constant, we get a contradiction, so ∇XZ ∈
Γ(S(TM)). Now, since ∇̄ is a metric connection, we have

ḡ(∇̄ZW,X) = −ḡ(W, ∇̄ZX)

for X ∈ Γ(RadTM) and Z,W ∈ Γ(S(TM)). Using (2.3) we have

ḡ(hl(Z,W ), X) = −g(W,∇ZX) = −g(W,∇XZ).

Hence

ḡ(hl(Z,W ), X) = −X(f)
f

g(Z,W ). (3.6)

Thus proof follows from (3.6), Corollary 3.1 and the definition of totally
umbilical lightlike submanifold. �

Theorem 3.1. Let M = M1 ×f M2 be a proper warped product lightlike
submanifold of a semi-Riemann manifold M̄. Then the induced connection
∇ is never a metric connection.

Proof. Let us suppose that ∇ is a metric connection on M . Then from [7]
we know that hl = 0. Thus from (3.6) we obtain X(f)

f g(Z,W ) = 0 for X ∈
Γ(RadTM) and Z,W ∈ Γ(S(TM). Hence X(f)fg2(Z,W ) = 0. Thus, f 6= 0
implies that X(f) = 0 or g2(Z,W ) = 0. Since M is a proper warped product
ligtlike submanifold and g2 is non-degenerate,this is a contradiction. �

Corollary 3.2. There exist no totally geodesic proper warped product light-
like submanifolds of a semi-Riemann manifold M̄.

We note that from Lemma 2.1, it follows that the radical distribution and
the screen distribution of M are integrable. Now, we are ready to prove our
main two results.

Theorem 3.2. Let M = M1 ×f M2 be a proper warped product lightlike
submanifold of a semi-Riemann manifold M̄. Then M is totally umbilical
if any leaf of screen distribution is so immersed as a submanifold of M̄
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and ḡ(Dl(Z,W ), X) = 0 for X ∈ Γ(RadTM),Z ∈ Γ(S(TM) and W ∈
Γ(S(TM⊥).

Proof. We note that from (3.1), we get g(X, Y ) = (foπ)2g2(P̄X, P̄Y ) for
X, Y ∈ Γ(TM) From Proposition 3.2 we know that RadTM defines a to-
tally geodesic foliation in M̄ , hence hl(X, Y ) = hs(X, Y ) = 0 for X, Y ∈
Γ(RadTM). Moreover from Corollary 3.1, we have that hl(X, Z) = 0 and
h∗(X, Z) = 0 for X ∈ Γ(RadTM) and Z ∈ Γ(S(TM)). Now, from (2.3) and
(2.5) we obtain

ḡ(hs(X, Z),W ) = ḡ(X, Dl(Z,W )) (3.7)

for X ∈ Γ(RadTM), Z ∈ Γ(S(TM) and W ∈ Γ(S(TM⊥). On the other
hand, from (2.3) we write

∇̄ZV = ∇′ZV + h′(Z, V )

for Z, V ∈ Γ(S(TM)), where h′ is the second fundamental form of M2 in M̄
and ∇′ is the metric connection of M2 in M̄. Hence we have

h′(Z, V ) = h∗(Z, V ) + hl(Z, V ) + hs(Z, V ). (3.8)

The proof follows from (3.7) and (3.8). �

Theorem 3.3. Let M = M1×f M2 be a coisotropic warped product lightlike
submanifold of a semi-Riemann manifold M̄. Then M is totally umbilical if
any leaf of screen distribution is so immersed as a submanifold of M̄ .

Proof. If M is coisotropic, then S(TM⊥) = {0}. Thus, hs = 0 on M. Then
the proof follows from Proposition 3.2, Corollary 3.1 and (3.8). �

Example 2. Let M̄ = (R6
3, ḡ) be a semi-Riemannian manifold, where R6

3

is semi-Euclidean space of signature (−,−,−,+,+,+) with respect to the
canonical basis

{∂ x1, ∂ x2, ∂ x3, ∂ x4, ∂ x5, ∂ x6}.
Let M be a submanifold of R6

3 given by

x1 = u1, x2 = u2, x3 = u1 cos u3 sinh u4

x4 = u1 cos u3 cosh u4, x5 = u2, x6 = u1 sin u3,

where u3 ∈ R− {k π
2 k ∈ Z}. Then TM is spanned by

Z1 = ∂ x1 + cos u3 sinh u4 ∂ x3 + cos u3 cosh u4 ∂ x4 + sin u3 ∂ x6

Z2 = ∂ x2 + ∂ x5

Z3 = −u1 sin u3 sinh u4 ∂ x3 − u1 sin u3 cosh u4 ∂ x4 + u1 cos u3 ∂ x6

Z4 = u1 cos u3 cosh u4 ∂ x3 + u1 cos u3 sinh u4 ∂ x4.
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Thus M is a 2− lightlike submanifold R6
3. Choose S(TM) = span{Z3, Z4},

then it follows that a lightlike transversal vector bundle ltr(TM) is spanned
by

N1 =
1
2
{−∂ x1 + cos u3 sinh u4 ∂ x3 + cos u3 cosh u4 ∂ x4 + sin u3 ∂ x6}

N2 =
1
2
{−∂ x2 + ∂ x5}

hence M is a coisotropic submanifold. By direct calculations, we conclude
that RadTM and S(TM) are integrable in M. Now denote the leaves of
RadTM and S(TM) by M1 and M2. We also obtain that the induced in-
duced metric tensor is

ds2 = (u1)2(du2
3 − cos2 u3 du2

4).

Thus M is a coisotropic warped product submanifold of R6
3 with f = u1.

By direct calculations, using Gauss formulas (2.3) and (2.6) we obtain

hl(X, Z1) = hl(X, Z2) = hl(Z3, Z4) = 0, ∀X ∈ Γ(TM)

hl(Z3, Z3) = −u1N1, hl(Z4, Z4) = u1 cos2 u3N1 (3.9)

and

h∗(X, Z1) = h∗(X, Z2) = h∗(Z3, Z4) = h∗(Z4, Z3) = 0, ∀X ∈ Γ(TM)

h∗(Z3, Z3) = −1
2
u1 Z1, h∗(Z4, Z4) =

1
2

u1 cos2 u3 Z1.

Now, we denote the second fundamental form of M2 in M̄ by h′. Then we
obtain

h′(Z3, Z4) = 0

and

h′(Z3, Z3) = −u1(N1 +
1
2
Z1), h′(Z4, Z4) = u1 cos2 u3(N1 +

1
2
Z1).

Hence we have
h′(X, Y ) = g(X, Y )H ′,

where H ′ = −N1 − 1
2Z1 for X, Y ∈ Γ(S(TM)). Thus, it follows that M2 is

totally umbilical in M̄. On the other hand, from (3.9) we have

hl(X, Y ) = g(X, Y )H l,

where H l = −N1 for X, Y ∈ Γ(TM). Thus, from Definition 2, it follows that
M is also totally umbilical in M̄.
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