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FIXED POINT PROPERTIES OF DECOMPOSABLE
ISOTONE OPERATORS IN POSETS

MARIA LUIGIA DIVICCARO

ABSTRACT. A known theorem of R.M. Dacié, involving increasing ope-
rators decomposable into a finite product of monotone mappings, is
extended from a complete lattice to a poset by using our previous results.

1. INTRODUCTION

Let (P, <) be a poset and f be a selfmap of P. We recall in Klimes [5] that
the ordered pair (z,y) € P? is called a fixed edge for f if and only if z <y
implies f(x) = y and f(y) = z. Modifying slightly the notation of Daci¢
[2], we denote by Ip(f) the set of fixed points of f in P and by E,(f) the
set of the fixed edges for f in P. We define f to be antitone (resp., isotone)
in P if for all z,y € P,z < y implies f(z) > f(y) (resp., f(z) < f(y))
and moreover we say that f is monotone in P if it is antitone or isotone
in P. In the sequel we also shall use the set P(f) = {z € P:z < f(z)}
and let I,, = {1,...,n} be the set of the n first natural numbers. Further,
we say that F' = {f; : i € I,,} is a commutative family of selfmaps of P if
fi f](a:) = fj : fz(l') for all i,j € I, and x € P.

The literature contains results on the existence of fixed edges for anti-
tone selfmaps of P (see, e.g., [1], [2], [4], [5]). In particular, by considering
decomposable isotone operators, Dacié¢ [2] proved the following theorem.

Theorem 1. Let (P,<) be a complete lattice and F = {f; : i € Iz} be
a commutative family of monotone selfmaps of P. Let f = f1 - fo--- fon
be isotone in P and suppose that P(f) # (0. Then P(f;) # 0 for every
i € Ion,NIp(fi) # 0 for all f; € F isotone and NEp(f;) # 0 for all f; € F
antitone.

Our aim is to extend Theorem 1 to a result for posets, without necessarily
assuming that P is a complete lattice. The following Theorem 2 [3], whose
proof (based on Zorn’s lemma) is given in [4], shall play a crucial role in the
proof of the main result.
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Theorem 2. Let (P, <) be a poset and F' be a commutative family of isotone
selfmaps of P satisfying the following properties:
(1) There exists an element xo € P such that xo> f(xo) for every f € F,
(2) If C is a chain of (P, <) not having an infimum in P, then there
exists an h € F such that h(C) has an infimum.

Then there exists an element mg € P such that mg = max{m: m €
Nger Ip(f) NP~ (z0)}, where P~ (x0) = {x € P: x < xo}.

2. MAIN THEOREM

In order to establish our main result, we make use of the following Lemma
of Dacié¢ [2].

Lemma. Let P # () be a poset and {f;: i € I,} be a commutative family of

selfmaps of P. Assume that f = f1 - fo--- fn. Then fr(Ip(f)) C Ip(f) for
every k € I,,.

We now prove our main theorem.

Theorem 3. Let (P, <) be a poset and F = {f; :i € I,} be a commutative
family of monotone selfmaps of P. Let f = f1 - fo--- f, be isotone in P and
suppose that:

(17) There exists an element xo € P such that xo > fi(x) for everyi € I,
and x € P~ (xg),
(27) If C is a chain of (P, <) not having an infimum in P, then f(C) has
an infimum.
Then P(f;) # 0 for every i € I, NIp(f;) # 0 for all f; € F isotone and
NEp(fi) # 0 for all f; € F antitone.

Proof. Since f;-f; = f;- fi for all4, j € I,,, we can write f = fi-fo -+ fi frot1-
frao - fn, where all fi, fo,..., fr are antitone and all fii1, fxto,..., fn
are isotone. By property (17), we observe that f;(x) € P~ (xzg) for ev-
ery i € I, and z € P~ (xg). Thus property (1”) implies also that xg >
fi(fj(zx)) for every i,j € I, and x € P~ (xq), hence we deduce that zo >
filfa(o.. (fu(z))...)) = f(x) for every x € P~ (xp). In particular, we have
that xg > fi(xo) forevery i € {k+1,k+2,...,n}, o > fi(fj(zo)) for every
i,7 € Iy and g > f(z0). Furthermore, we have that f;-f = f-f; foralli € I,,.
Since property (2”) holds, we obtain that F' = {f, fr+1, fe+2, " » s {fi -
fj 14, € Ix}} is a commutative family of isotone selfmaps of P satis-
fying properties (1) and (2’) of Theorem 2. Hence there exists an ele-
ment mg € P such that mo = max{m: m € NgerIp(g) N P~ (x0)}. Clearly

mo € Ni=kt1,..nIP(fi) C Nizit1,...n P(fi)-
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We note that fj(mo) = f;(fi(fj(mo))) = fi(f;j(fi(mo))) = fi(mo) for
every i,j € I and then we can put zp = f;(my) for every ¢ € Ij. It follows
that zo € N{Ip(fi- fj) : i,j € I} and zy € Ip(f) by the above Lemma.
Furthermore we have fu(20) = fa(f;(mo)) = f(fu(mo)) = f;(mo) = 7
for every h € {k + 1,k +2,...,n}, that is 20 € Np=g11,.. Ip(fr). Since
property (17) gives zp = fi(mo) € P~ (x¢), then we deduce that zgp < mo,
hence (z0,m0) € Nj=1,..kEp(f;). Finally, we have f;(z0) > f;j(mo) = 2o for
every j € I}, and therefore 29 € Nj—1 k1 P(fj). O

Corollary 1. Let (P, <) be a poset with mazimum M and F = {f;: i € I,}
be a commutative family of monotone selfmaps of P. Let f = f1- fo--- fn be
isotone in P and suppose that property (2”) holds. Then the conclusions of
Theorem 3 hold.

Proof. 1t suffices to assume z¢p = M in Theorem 3, thus property (1”) holds.
O

Remark 1. Any complete lattice P has a maximum M and any chain in P
has an infimum, thus Theorem 1 follows from Corollary 1.

Motivated by Example 2 of [4], we now give the following:

Example 1. Let P = {a, b, ¢, d, e} be a set in which we define the following
partial ordering: @ > b,a > c,a > d,a > e, b > ¢, b > e, d > e. Then
(P,<) is a finite poset with maximum M = a. Let F' = {f1, fa, f3, fa},
where f1 = fa, f3, fa: P — P are defined as fi(a) = e, fi(b) = fi(d) =
b, fi(c) = fi(e) = a, f3(a) = a, f3(b) = f3(d) = b, f3(c) = fs(e) = e
and fy(a) = fi4(b) = fa(c) = fa(d) = fi(e) = b, respectively. It is easily
verified that f; is antitone and f3, f4 are isotone with respect to the given
partial ordering. A simple calculation proves that F'is a family of commuting
selfmaps of P. Property (2”) of Theorem 3 holds trivially since any chain in P
is finite and hence has a minimum. Then all the assumptions of the Corollary
1 are satisfied and we find that Ip(f3) N Ip(fs) = {b}, Ep(f1) = {e,a}.
Theorem 1 is not applicable because P is not a complete lattice with respect
to the given partial ordering: indeed the subset {c, e} has no an infimum.

Remark 2. Property (2”) is necessary in Theorem 2 since some conclusion
may fail if it is omitted. Indeed, let P = [0, 1]\{1/2} with its natural ordering
and F = {f1, fo, f3, fa}, where f| = fo, f3, f4: P — P are given as fi(x) =
1 -2z, fa(x) = (x+1)/3 and fa(z) = (x + 2)/5 for every x € P. Note that
fi (fs(@) = (2= 2)/3 = f5 (f1(2), fi (fa(2) = (3= )/5 = fu (fi(x)) and
fa(fa(x)) = (x+7)/15 = fa(f3(x)) for every = € P. It is also easily verified
that f7 is antitone and f3, fy, f5 are isotone. Thus F' is a commuting family of
monotone selfmaps of P and we have f(z) = f1 (f2 (fs (fa(z)))) = (z+7)/15
for every x € P. Take a chain C = {¢,} of P such that 1/2 < ¢, <1 and
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inf ¢, = 1/2. Then we have inf f(C) = 1/2 ¢ P. By assuming zp = 1, then
all the assumptions of Theorem 2 hold except property (2”). In fact we have
Ip(fs)NIp(fs) = {0} since 1/2 is the unique common fixed point of f3 and
fa in the reals but 1/2 ¢ P.

3. OTHER THEOREMS
The following theorem is also given in [4]:

Theorem 4. Let (P, <) be a poset and F' be a commutative family of isotone
selfmaps of P satisfying the following properties:
(17°) There exists an element xg € P such that xo < f(xg) for every
f E F’
(277) If C is a chain in (P, <) not having a supremum (in P), then there
exists an h € F such that h(C) has a supremum.

Then there exists an element qo € P such that qo = min{q: ¢ € N¢cp
Ip(f)N Pt (x0)}, where PT(xg) = {x € P: x > x0}.

As in Section 2, from Theorem 4 we can deduce the following result.

Theorem 5. Let (P, <) be a poset and F = {f;: i € I,} be a commutative
family of monotone selfmaps of P. Let f = f1- fo--- f,, be isotone in P and
suppose that the following properties hold:

(177) There exists an element xg € P such that xog < f;(x) for everyi € I,
and x € PT(xp),
(277) If C is a chain in (P, <) not having a supremum in P, then f(C)
has a supremum.
Then P(f;) # 0 for every i € I,, NIp(f;) # 0 for all f; € F isotone and
NEp (f;) # 0 for all f; € F antitone.

Remark 3. If F is defined as in the proof of Theorem 3, then there exists a
point go = min{q: q € Ngep Ip(g) NPT (z0)}. Clearly qo € Nizpt1,..0 IP(fi)
C Nimk+1,...n P(fi). It is also easily seen that fi(qo) = fj(q0) € Nger Ip(f)N
P (zg) for every i,j € I, and gy < fi(qo) for every i € I, that is go € P(f;)
for every i € I.

Corollary 2. Let (P, <) be a poset with minimum m and F = {f;: i € I,}
be a commutative family of monotone selfmaps of P. Let f = f1- fo--- frn be

isotone in P and suppose it satisfies property (2””). Then the conclusions
of Theorem 5 hold.

A complete lattice P has a minimum m and a maximum M. Further, any
chain of P has an infimum and a supremum in P. Using the techniques in
the proofs of Theorems 3 and 5, we can obtain the following;:
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Theorem 6. Let (P, <) be a complete lattice and F = {f;: i € I,} be a
commutative family of monotone selfmaps of P. Let f = f1- fo--- fi - fee1 -
fra2 - fn be isotone in P, where fi, fa,..., fr are antitone and fri1, frro,

.., fn are isotone. Then there exists a point qg = min G and a point mg =
max G, where G = {x € P: xz € Ip(f) N Ip(frt1) N - N Ip(fu) N{NIp(f; -
fi)ei, g € It}

We conclude with the following example, illustrative of Theorem 6:

Example 2. Let P = [0, 1] with natural ordering and F' = { f1, fa, f3, f4, f5},
where fi = fa, f3, f1,f5: P — P are given as fi(z) = 1 — z for every
x € P f3(x) = (x+1)/3, fu(z) = (x 4+ 2)/5 and f5(z) = (x + 3)/7 if
0 <z < 1/2 f3(z) = falz) = fs(x) = = if 1/2 < x < 1. Note that
F' is a commuting family of monotone selfmaps of P (see Remark 2) and

f(x) = filf2(fs(fa(f5(2))))) = (x +52)/105 if 0 < =z < 1/2 and f(z) =
fi(fa(fs(fa(f5(x))))) =« if 1/2 < 2 < 1. In this case we have gy = 1/2 and

moy = 1 since G = [ /2, 1], and Ip(f) = Ip(fg) = Ip(f4) = Ip(f5) = [1/2, 1]
and Ip(fl : fl) =P
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