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FIXED POINT PROPERTIES OF DECOMPOSABLE
ISOTONE OPERATORS IN POSETS

MARIA LUIGIA DIVICCARO

Abstract. A known theorem of R.M. Dacić, involving increasing ope-
rators decomposable into a finite product of monotone mappings, is
extended from a complete lattice to a poset by using our previous results.

1. Introduction

Let (P,≤) be a poset and f be a selfmap of P. We recall in Klimes [5] that
the ordered pair (x, y) ∈ P 2 is called a fixed edge for f if and only if x ≤ y
implies f(x) = y and f(y) = x. Modifying slightly the notation of Dacić
[2], we denote by IP (f) the set of fixed points of f in P and by Ep(f) the
set of the fixed edges for f in P. We define f to be antitone (resp., isotone)
in P if for all x, y ∈ P, x ≤ y implies f(x) ≥ f(y) (resp., f(x) ≤ f(y))
and moreover we say that f is monotone in P if it is antitone or isotone
in P. In the sequel we also shall use the set P (f) = {x ∈ P : x ≤ f(x)}
and let In = {1, . . . , n} be the set of the n first natural numbers. Further,
we say that F = {fi : i ∈ In} is a commutative family of selfmaps of P if
fi · fj(x) = fj · fi(x) for all i, j ∈ In and x ∈ P.

The literature contains results on the existence of fixed edges for anti-
tone selfmaps of P (see, e.g., [1], [2], [4], [5]). In particular, by considering
decomposable isotone operators, Dacić [2] proved the following theorem.

Theorem 1. Let (P,≤) be a complete lattice and F = {fi : i ∈ I2n} be
a commutative family of monotone selfmaps of P. Let f = f1 · f2 · · · f2n

be isotone in P and suppose that P (f) 6= ∅. Then P (fi) 6= ∅ for every
i ∈ I2n,∩IP (fi) 6= ∅ for all fi ∈ F isotone and ∩EP (fi) 6= ∅ for all fi ∈ F
antitone.

Our aim is to extend Theorem 1 to a result for posets, without necessarily
assuming that P is a complete lattice. The following Theorem 2 [3], whose
proof (based on Zorn’s lemma) is given in [4], shall play a crucial role in the
proof of the main result.
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Theorem 2. Let (P,≤) be a poset and F be a commutative family of isotone
selfmaps of P satisfying the following properties:

(1’) There exists an element x0∈P such that x0≥f(x0) for every f ∈ F,
(2’) If C is a chain of (P,≤) not having an infimum in P, then there

exists an h ∈ F such that h(C) has an infimum.
Then there exists an element m0 ∈ P such that m0 = max{m : m ∈

∩f∈F IP (f) ∩ P−(x0)}, where P−(x0) = {x ∈ P : x ≤ x0}.

2. Main theorem

In order to establish our main result, we make use of the following Lemma
of Dacić [2].

Lemma. Let P 6= ∅ be a poset and {fi : i ∈ In} be a commutative family of
selfmaps of P. Assume that f = f1 · f2 · · · fn. Then fk(IP (f)) ⊆ IP (f) for
every k ∈ In.

We now prove our main theorem.

Theorem 3. Let (P,≤) be a poset and F = {fi : i ∈ In} be a commutative
family of monotone selfmaps of P. Let f = f1 · f2 · · · fn be isotone in P and
suppose that:

(1”) There exists an element x0 ∈ P such that x0 ≥ fi(x) for every i ∈ In

and x ∈ P−(x0),
(2”) If C is a chain of (P,≤) not having an infimum in P , then f(C) has

an infimum.
Then P (fi) 6= ∅ for every i ∈ In, ∩IP (fi) 6= ∅ for all fi ∈ F isotone and

∩EP (fi) 6= ∅ for all fi ∈ F antitone.

Proof. Since fi ·fj = fj ·fi for all i, j ∈ In, we can write f = f1 ·f2 · · · fk ·fk+1 ·
fk+2 · · · fn, where all f1, f2, . . . , fk are antitone and all fk+1, fk+2, . . . , fn

are isotone. By property (1”), we observe that fi(x) ∈ P−(x0) for ev-
ery i ∈ In and x ∈ P−(x0). Thus property (1”) implies also that x0 ≥
fi(fj(x)) for every i, j ∈ In and x ∈ P−(x0), hence we deduce that x0 ≥
f1(f2(. . . (fn(x)) . . . )) = f(x) for every x ∈ P−(x0). In particular, we have
that x0 ≥ fi(x0) for every i ∈ {k +1, k +2, . . . , n}, x0 ≥ fi(fj(x0)) for every
i, j ∈ Ik and x0 ≥ f(x0). Furthermore, we have that fi·f = f ·fi for all i ∈ In.
Since property (2”) holds, we obtain that F = {f, fk+1, fk+2, · · · , fn, {fi ·
fj : i, j ∈ Ik}} is a commutative family of isotone selfmaps of P satis-
fying properties (1’) and (2’) of Theorem 2. Hence there exists an ele-
ment m0 ∈ P such that m0 = max{m : m ∈ ∩g∈F IP (g) ∩ P−(x0)}. Clearly
m0 ∈ ∩i=k+1,...,nIP (fi) ⊆ ∩i=k+1,...,nP (fi).
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We note that fj(m0) = fj(fi(fj(m0))) = fi(fj(fj(m0))) = fi(m0) for
every i, j ∈ Ik and then we can put z0 = fi(m0) for every i ∈ Ik. It follows
that z0 ∈ ∩{IP (fi · fj) : i, j ∈ Ik} and z0 ∈ IP (f) by the above Lemma.
Furthermore we have fh(z0) = fh(fj(m0)) = fj(fh(m0)) = fj(m0) = z0

for every h ∈ {k + 1, k + 2, . . . , n}, that is z0 ∈ ∩h=k+1,...,nIP (fh). Since
property (1”) gives z0 = fi(m0) ∈ P−(x0), then we deduce that z0 ≤ m0,
hence (z0,m0) ∈ ∩j=1,...,kEP (fj). Finally, we have fj(z0) ≥ fj(m0) = z0 for
every j ∈ Ik and therefore z0 ∈ ∩j=1,...,kP (fj). �

Corollary 1. Let (P,≤) be a poset with maximum M and F = {fi : i ∈ In}
be a commutative family of monotone selfmaps of P. Let f = f1 · f2 · · · fn be
isotone in P and suppose that property (2”) holds. Then the conclusions of
Theorem 3 hold.

Proof. It suffices to assume x0 = M in Theorem 3, thus property (1”) holds.
�

Remark 1. Any complete lattice P has a maximum M and any chain in P
has an infimum, thus Theorem 1 follows from Corollary 1.

Motivated by Example 2 of [4], we now give the following:

Example 1. Let P = {a, b, c, d, e} be a set in which we define the following
partial ordering: a ≥ b, a ≥ c, a ≥ d, a ≥ e, b ≥ c, b ≥ e, d ≥ e. Then
(P,≤) is a finite poset with maximum M = a. Let F = {f1, f2, f3, f4},
where f1 = f2, f3, f4 : P → P are defined as f1(a) = e, f1(b) = f1(d) =
b, f1(c) = f1(e) = a, f3(a) = a, f3(b) = f3(d) = b, f3(c) = f3(e) = e
and f4(a) = f4(b) = f4(c) = f4(d) = f4(e) = b, respectively. It is easily
verified that f1 is antitone and f3, f4 are isotone with respect to the given
partial ordering. A simple calculation proves that F is a family of commuting
selfmaps of P. Property (2”) of Theorem 3 holds trivially since any chain in P
is finite and hence has a minimum. Then all the assumptions of the Corollary
1 are satisfied and we find that IP (f3) ∩ IP (f4) = {b}, EP (f1) = {e, a}.
Theorem 1 is not applicable because P is not a complete lattice with respect
to the given partial ordering: indeed the subset {c, e} has no an infimum.

Remark 2. Property (2”) is necessary in Theorem 2 since some conclusion
may fail if it is omitted. Indeed, let P = [0, 1]\{1/2} with its natural ordering
and F = {f1, f2, f3, f4}, where f1 = f2, f3, f4 : P → P are given as f1(x) =
1 − x, f3(x) = (x + 1)/3 and f4(x) = (x + 2)/5 for every x ∈ P. Note that
f1 (f3(x)) = (2 − x)/3 = f3 (f1(x)), f1 (f4(x)) = (3 − x)/5 = f4 (f1(x)) and
f3 (f4(x)) = (x + 7)/15 = f4 (f3(x)) for every x ∈ P. It is also easily verified
that f1 is antitone and f3, f4, f5 are isotone. Thus F is a commuting family of
monotone selfmaps of P and we have f(x) = f1 (f2 (f3 (f4(x)))) = (x+7)/15
for every x ∈ P. Take a chain C = {cn} of P such that 1/2 < cn ≤ 1 and
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inf cn = 1/2. Then we have inf f(C) = 1/2 /∈ P. By assuming x0 = 1, then
all the assumptions of Theorem 2 hold except property (2”). In fact we have
IP (f3)∩ IP (f4) = {∅} since 1/2 is the unique common fixed point of f3 and
f4 in the reals but 1/2 /∈ P.

3. Other theorems

The following theorem is also given in [4]:

Theorem 4. Let (P,≤) be a poset and F be a commutative family of isotone
selfmaps of P satisfying the following properties:

(1”’) There exists an element x0 ∈ P such that x0 ≤ f(x0) for every
f ∈ F,

(2”’) If C is a chain in (P,≤) not having a supremum (in P ), then there
exists an h ∈ F such that h(C) has a supremum.

Then there exists an element q0 ∈ P such that q0 = min{q : q ∈ ∩f∈F

IP (f) ∩ P+(x0)}, where P+(x0) = {x ∈ P : x ≥ x0}.

As in Section 2, from Theorem 4 we can deduce the following result.

Theorem 5. Let (P,≤) be a poset and F = {fi : i ∈ In} be a commutative
family of monotone selfmaps of P. Let f = f1 · f2 · · · fn be isotone in P and
suppose that the following properties hold:
(1””) There exists an element x0 ∈ P such that x0 ≤ fi(x) for every i ∈ In

and x ∈ P+(x0),
(2””) If C is a chain in (P,≤) not having a supremum in P, then f(C)

has a supremum.
Then P (fi) 6= ∅ for every i ∈ In, ∩IP (fi) 6= ∅ for all fi ∈ F isotone and

∩EP (fi) 6= ∅ for all fi ∈ F antitone.

Remark 3. If F is defined as in the proof of Theorem 3, then there exists a
point q0 = min{q : q ∈ ∩g∈F IP (g) ∩ P+(x0)}. Clearly q0 ∈ ∩i=k+1,...,n IP (fi)
⊆ ∩i=k+1,...,n P (fi). It is also easily seen that fi(q0) = fj(q0) ∈ ∩f∈F IP (f)∩
P+(x0) for every i, j ∈ Ik and q0 ≤ fi(q0) for every i ∈ Ik, that is q0 ∈ P (fi)
for every i ∈ Ik.

Corollary 2. Let (P,≤) be a poset with minimum m and F = {fi : i ∈ In}
be a commutative family of monotone selfmaps of P. Let f = f1 · f2 · · · fn be
isotone in P and suppose it satisfies property (2””). Then the conclusions
of Theorem 5 hold.

A complete lattice P has a minimum m and a maximum M. Further, any
chain of P has an infimum and a supremum in P. Using the techniques in
the proofs of Theorems 3 and 5, we can obtain the following:
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Theorem 6. Let (P,≤) be a complete lattice and F = {fi : i ∈ In} be a
commutative family of monotone selfmaps of P. Let f = f1 · f2 · · · fk · fk+1 ·
fk+2 · · · fn be isotone in P, where f1, f2, . . . , fk are antitone and fk+1, fk+2,
. . . , fn are isotone. Then there exists a point q0 = minG and a point m0 =
max G, where G = {x ∈ P : x ∈ IP (f) ∩ IP (fk+1) ∩ · · · ∩ IP (fn) ∩ {∩IP (fi ·
fj) : i, j ∈ Ik}}.

We conclude with the following example, illustrative of Theorem 6:

Example 2. Let P = [0, 1] with natural ordering and F = {f1, f2, f3, f4, f5},
where f1 = f2, f3, f4, f5 : P → P are given as f1(x) = 1 − x for every
x ∈ P, f3(x) = (x + 1)/3, f4(x) = (x + 2)/5 and f5(x) = (x + 3)/7 if
0 ≤ x ≤ 1/2, f3(x) = f4(x) = f5(x) = x if 1/2 ≤ x ≤ 1. Note that
F is a commuting family of monotone selfmaps of P (see Remark 2) and
f(x) = f1(f2(f3(f4(f5(x))))) = (x + 52)/105 if 0 ≤ x ≤ 1/2 and f(x) =
f1(f2(f3(f4(f5(x))))) = x if 1/2 ≤ x ≤ 1. In this case we have q0 = 1/2 and
m0 = 1 since G = [1/2, 1], and IP (f) = IP (f3) = IP (f4) = IP (f5) = [1/2, 1]
and IP (f1 · f1) = P.
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