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ON A QUESTION RAISED BY BROWN, GRAHAM AND
LANDMAN

VESELIN JUNGIĆ

Abstract. We construct non-periodic 2-colorings that avoid long mo-
nochromatic progressions having odd common differences. Also we prove
that the set of all arithmetic progressions with common differences in
(N!−1) ∪ N! ∪ (N!+1)− {0} does not have the 2-Ramsey property.

1. Introduction

Let N denote the set of positive integers, N0 = N ∪ {0}, and for integers
a < b, denote by [a, b] the set {a, a + 1, . . . , b}. For r ∈ N, an r-coloring
of N is a map f : N → A, with |A| = r. A coloring is an r-coloring for
some r. If f is a coloring and if B ⊆ N satisfies |f (B)| = 1, we say that
B is f -monochromatic. An arithmetic progression of length k and common
difference d, k, d ∈ N, is a set of the form {a + (i− 1) d : i ∈ [1, k]}, for some
a ∈ N.

Van der Waerden’s theorem [4] on arithmetic progressions says that for
any coloring f and any k ∈ N there is an f -monochromatic arithmetic pro-
gression of length k. Brown, Graham, and Landman in [1] study subsets L
of N such that van der Waerden’s theorem can be strengthened to guaran-
tee the existence of arbitrarily long f -monochromatic progressions having
common differences in L.

Another, more general, approach in which the set of arithmetic progres-
sions having common difference in L is replaced with the set of sequences
with special gaps in L, is studied in [3].

For r ∈ N\{1} we say that L, L ⊆ N, is r-large if every r-coloring yields
arbitrarily long monochromatic progressions having common differences in
L. We say that L is large if it is r-large for every r. In general, if T is
a family of integer sequences such that for any r-coloring of N there are
arbitrarily long monochromatic members of T , then we say that T has the
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r-Ramsey property. Thus a set L is r-large if and only if the set of all
arithmetic progressions having common differences in L has the r-Ramsey
property. Perhaps surprisingly, there are many large sets; for example, for
any m ∈ N, mN is large.

On the other hand, it is known that 2N − 1 is not 2-large. One can see
that, for n ∈ N\ {1}, the coloring fn : N → {0, 1} defined by

fn (i) = 0 ⇔ ((∃t ∈ N0) i ∈ [2 (n− 1) t + 1, (2t + 1) (n− 1)])

avoids n-term fn-monochromatic arithmetic progressions having odd com-
mon differences. Clearly, fn is periodic with a period 2 (n− 1).

In [1] it was shown that a necessary condition for 2-largeness is that the
set contains an infinite number of multiples of any integer. Obviously, the
set of odd positive integers fails to satisfy this condition.

Another example of a set that is not 2-large is N! = {n! : n ∈ N}. This
set is not 2-large because it is too sparse. It is known [1] that for a set
L = {an}n∈N to be 2-large it is necessary that for any N ∈ N there is n > N
such that an+1

an
< 3. This fact implies that for a set L = {an}n∈N to be r-large

it is necessary that for any N ∈ N there is n > N such that an+1

an
< 3

1
blog2 rc .

Ultimately, for any large set L = {an}n∈N, lim infn→∞
an+1

an
= 1.

Brown, Graham and Landman [1] conjectured that any 2-large set is large.
One notable distinction between the known properties of the family of

large sets and the family of 2-large sets is as follows. It is known that if
L1 ∪L2 is large then at least one of L1 and L2 is large. Whether or not the
same is true for 2-large sets is an open question.

Thus, one way to approach the conjecture is to find two sets that are
not 2-large and to show that their union is 2-large. Brown, Graham, and
Landman suggest that 2N−1 and N! could be such sets. Clearly, (2N−1)∪N!
contains an infinite number of multiplies of any integers and it is not sparse,
therefore it satisfies both of the necessary conditions mentioned above.

In this note we clarify two issues related to the question whether (2N−1)∪
N! is 2-large.

If χ is a periodic 2-coloring of N with a period T , then the set {1 + i ·T ! :
i ∈ N} is χ-monochromatic. Thus if there is a 2-coloring that avoids long
monochromatic progressions having their common differences in (2N−1)∪N!
then it must be non-periodic.

We prove that the family of non-periodic 2-colorings of N that avoid long
monochromatic arithmetic progressions having their common differences odd
is non-empty. As part of our construction we show that, for any p ≥ 2, the
coloring f2p could be modified by changing colors of an infinite number of
integers, but still obtaining a 2-coloring that avoids long monochromatic
arithmetic progressions having their common differences odd. We prove
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that this modification can be done so that the new coloring is not periodic.
These colorings are very different from the counterexamples considered in
[1].

Our construction does not avoid periodicity on all of the classes modulo
2p and therefore we are not able to avoid long arithmetic progressions having
their common differences in N!.

Secondly, we prove that (N!−1)∪N!∪ (N!+1)−{0} is not 2-large. Hence
we give an example of a subset of (2N − 1) ∪ N! that contains N! and an
infinite subset of 2N − 1 and that is not 2-large. An interesting possibility
suggested by this example is that the gaps between consecutive elements
of a 2-large set cannot be too big. We note that there are large sets with
unbounded gaps. One example of such a set is N2. A result from [1] implies
that (N!−1) ∪N! ∪ (N!+1)− {0} is not 3-large. Here we prove that, in fact,
this set is not 2-large.

2. A set of 2-colorings

Let K2N−1 be the set of all finite colorings of N that do not yield long
monochromatic arithmetic progressions having odd common differences.

We start with a lemma.
Let p ∈ N\ {1} be given.

Lemma 1. Let a ∈ [1, 2 (2p− 1)] and let l ∈ [0, 2 (p− 1)] \ {p− 1}. There
are i ∈ [0, 2p− 1], j ∈ [1, p], and k ∈ [2p, 2 (2p− 1)] so that a+i (2l + 1) ≡ 2j
(mod 2p) and a + i (2l + 1) ≡ k (mod 2 (2p− 1)).

Proof. Let {a, a + (2l + 1)} ∩ 2N = {α}. Suppose that there is q ∈ [1, p− 1]
so that

(∀i ∈ [0, q]) (∃ki ∈ [1, 2p− 1]) α + 2i (2l + 1) ≡ ki (mod 2 (2p− 1)).

We note that 2(2l + 1) 6≡ 0 (mod 2(2p − 1)) implies k1 6= k0. Since, for all
i, i′ ∈ [0, q], i 6= i′ implies ki 6= ki′ , from the fact that ki is even it follows
that q < p− 1.

Therefore, there are i ∈ [0, p− 1] and k ∈ [2p, 2 (2p− 1)] so that α +
2i (2l + 1) ≡ k (mod 2 (2p− 1)). �

Let p ∈ N and let f2p be as above. Let M ′
p be the set of 2-colorings such

that f ∈ M ′
p if and only if the following two conditions are satisfied:

1. For any n ∈ 2N, f(n) = f2p(n).
2. There is an odd number N = N (f) ∈ [1, 2p] so that for K ′

N =
{i ∈ N : i ≡ N (mod 2p)} and K ′′

N = {i ∈ (2N− 1) \K ′
N : (∃j ∈

[1, 2p − 1]) i ≡ j (mod 2 (2p− 1))} we have that the restrictions of
f and f2p on K ′

N ∪K ′′
N coincide.
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Theorem 2. M ′
p ⊆ K2N−1.

Proof. Let f ∈ M ′
p. Let a, l ∈ N, let a′ ∈ [1, 2(2p−1)], and let l′ ∈ [0, 2(p−1)]

be so that a ≡ a′ (mod 2(2p− 1)) and l ≡ l′ (mod (2p− 1)).
If l′ 6= p − 1, by Lemma 1 there is i ∈ [0, 2p − 1] so that a′ + i (2l′ + 1)

is even and f2p (a′ + i (2l′ + 1)) = f (a + i (2l + 1)) = 1. On the other hand,
1 ≤ |{i ∈ [0, 2p − 1] : f2p (a + i(2l + 1)) = 0}| ≤ |{i ∈ [0, 2p − 1] :
f(a + i(2l + 1)) = 0}|. Therefore, {a + i (2l + 1) : i ∈ [0, 2p− 1]} is not
f -monochromatic.

If l′ = p−1 then 2l′+1 = 2p−1 and, for all i ∈ [0, 2p−2], f2p(a′+i(2p−1))
6= f2p (a′+(i+1)(2p−1)). Note that if β ∈ {a′+i(2p−1) : i ∈ [0, 2p−1]}∩K ′

N
then {β − (2p− 1), β + (2p− 1)} ∩ {a′ + i(2p− 1) : i ∈ [0, 2p− 1]} 6= φ.

Thus, {a′ + i(2p− 1) : i ∈ [0, 2p− 1]} is not f -monochromatic. �

The following corollary gives a way to construct non-periodic elements of
K2N−1.

Corollary 3. Let g be a non-periodic 2-coloring of N0 and let f : N →{0, 1}
be defined by

f (n) =

{
g

(
n−2p−1
2p(2p−1)

)
if n ≡ (2p + 1) (mod 2p (2p− 1))

f2p (n) otherwise.

Then f is a non-periodic element of M ′
p.

An example of a non-periodic 2-coloring of N is the Morse sequence. See,
for example, [2].

Note that for any f obtained in the way described in Corollary 3, there
are arbitrarily long monochromatic progressions having their common dif-
ferences in N!.

Let M ′′
p be the set of all 2-colorings so that f ∈ M ′′

p if and only if the
following two conditions are satisfied:

1. For any odd integer n, f(n) = f2p(n).
2. There is an even N = N (f) ∈ [1, 2p] so that for L′N = {i ∈ N : i ≡ N

(mod 2p)} and L′′N = {i ∈ 2N\L′N : (∃j ∈ [2p, 2(2p − 1)]) i ≡
j (mod 2(2p − 1))} we have that the restrictions of f and f2p on
L′N ∪ L′′N coincide.

Then M ′′
p ⊆ K2N−1. Therefore, Mp =

{
χ : {χ, 1− χ} ∩

(
M ′

p ∪M ′′
p

)
6= φ

}
⊆

K2N−1.
We note that the elements of Mp permit monochromatic (2p− 1)-term

arithmetic progressions having common difference 1.
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3. An interesting example

By [1], Corollary 2.2, (N! − 1) ∪ N! ∪ (N! + 1) − {0} is not 3-large. We
prove that (N!− 1) ∪ N! ∪ (N! + 1)− {0} is not 2-large.

Let N! = {n!}n∈N and let χ : N → {0, 1} be defined by χ(1) = 1 and,
inductively, if χ is defined on [1, n!] then

(∀x ∈ [n! + 1, (n + 1)!]) χ(x) 6= χ(x− n!).

It is not difficult to check that there is no χ-monochromatic 3-term arith-
metic progression having its common difference in N!. Also, let q, n ∈ N and
let x, k ∈ [1, n+1] be such that {x, x+k ·n!} ⊆ [q(n+1)!+1, (q+1)(n+1)!].
If k is even then χ(x) = χ(x + k · n!).

Theorem 4. (N!− 1) ∪ N! ∪ (N! + 1)− {0} is not 2-large.

Proof. Let q ∈ N0 and let n ≥ 9. For j ∈ [0, 8], let Ij = [(q + j)n! + 1, (q +
j + 1)n!]. Let r ∈ N and l ∈ {0, 4} be such that ∪4

j=0Il+j ⊆ [r(n + 1)! +
1, (r + 1)(n + 1)!].

For x ∈ [qn! + 1, (q + 1)n! − 8] let X = {x + j(n! + 1) : j ∈ [0, 8]} and
X ′ = {x+(l+j)(n!+1) : j ∈ {0, 2, 4}}. Since j is even, χ(x+(l+j)(n!+1)) =
χ(x + l(n! + 1) + j) and it follows that X ′ is not χ-monochromatic.

Therefore, there is no χ-monochromatic 9-term arithmetic progression
having its least element in [qn! + 1, (q + 1)n! − 8], and having common
difference n! + 1.

Let x ∈ [(q+1)n!−7, (q+1)n!] and let us consider the 17-term arithmetic
progression {x+j(n!+1) : j ∈ [0, 16]}. For s ∈ [1, 8] such that x+s(n!+1) =
(q+s+1)n!+1, the 9-term arithmetic progression {x+s(n!+1)+j(n!+1) :
j ∈ [0, 8]} = {x + j(n! + 1) : j ∈ [s, s + 8]} is not monochromatic.

Therefore, χ avoids monochromatic 17-term arithmetic progressions hav-
ing common difference in N! + 1.

Similarly, we can see that χ avoids monochromatic 17-term arithmetic
progressions having common difference in N!− 1. �

With the results presented in this note we would like to draw the reader’s
attention to the Brown-Graham-Landman conjecture that every 2-large set
is large. It seems that this simply stated conjecture is difficult to prove or
disprove and that the answer could go either way.
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[2] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,
Princeton University Press, Princeton, 1981.

[3] B. M. Landman and A. Robertson, Avoiding monochromatic sequences with special
gaps, Submitted.

[4] B. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskd., 15
(1927) 212–216.

(Received: February 25, 2004) Department of Mathematics
(Revised: December 24, 2004) Simon Fraser University

Burnaby, B.C. V5A 2R6,
Canada
E–mail: vjungic@sfu.ca


