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REMARK ON THE SECOND BOUNDED COHOMOLOGY
OF AMALGAMATED PRODUCT OF GROUPS

VALERIY A. FAĬZIEV AND PRASANNA K. SAHOO

Abstract. For any cardinal numberM we construct examples of amal-
gamated products and HNN extensions of groups such that the dimen-
sion of the space of second bounded cohomologies is at least M. Also
we describe the space of pseudocharacters of the group GL(2, F2[z]).

1. Introduction

Bounded cohomology was defined first for discrete groups by F. Trauber
and then for topological spaces by Gromov [29]. Moreover, Gromov de-
veloped the theory of bounded cohomology and applied it to Riemannian
geometry, thus demonstrating the importance of this theory. The second
bounded cohomology group is related to some topics of the theory of right
orderable groups and has application in the theory of groups acting on a
circle [25, 47, 48]. In [4], Brooks made a first step in understanding the the-
ory of bounded cohomology from the point of view of relative homological
algebra. The papers of Gromov, Brooks, Ghys, Mitsumatsu, Matsumoto,
Morita and others give excellent examples of applications of abstract theory
of cohomology in Banach algebras, Riemannian geometry, topology, dynam-
ics and other branches of mathematics. An important feature of the theory
is that the bounded cohomology of a topological space and its fundamental
group coincide [29, 4, 47, 48, 49]. This makes it possible to study them
simultaneously from two basic view points: group theory and topology.

The bounded cohomology, H∗
b (G,R), of an amenable group G is zero

(Trauber’s theorem). In [4] some examples are given showing that for non-
amenable groups bounded cohomology may be nonzero and even infinite
dimensional. The first dimension in which bounded cohomology should be
investigated is dimension 2 because H(0)

b (G,R) = R and H(1)
b (G,R) = 0 for

any group G. In Faiziev’s papers [8, 12], the space of pseudocharacters of
free group were described. Using the space of pseudocharacters and results
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and methods of the papers [8, 12] Grigorchuk in [27] reformulated these re-
sults of Faiziev in terms of second bounded cohomology. Then he, using the
methods and results of the papers [5, 12], gave calculation of H(2)

b (G,R) for
surface groups.

The ordinary cohomology group H∗(G) is given by the cohomology of the
cochain complex C∗(G):

δ(n)

←− C(n)(G) δ(n−1)

←− C(n−1)(G)←− · · ·
· · ·←−C(2)(G) δ(1)

←− C(1)(G) δ(0)=0←− R δ(−1)=0←− 0,

where C(n)(G), n ≥ 0 consists of mappings

G× · · · ×G→ R,

and the differential δ = (δ(n)), n ≥ 0:

δ(n) : C(n)(G)→ C(n+1)(G)

is given by the formula

(δ(n)f)(g1, · · · , gn+1) =f(g2, · · · , gn+1)

+
n∑

i=1

(−1)if(g1, · · · , gi−1, gigi+1, gi+2 · · · , gn+1)

+ (−1)n+1f(g1, · · · , gn),

where f ∈ Cn(G). Now let us consider bounded cochains f ∈ C(n)(G), that
is, cochains for which there exists Mf > 0 such that

|f(g1, · · · , gn)| ≤Mf

for all g1, . . . , gn ∈ G. We have the cochain complex C∗
b (G):

δ
(n)
b←− C(n)

b (G)
δ
(n−1)
b←− C

(n−1)
b (G)←− · · ·

· · ·←−C(2)
b (G)

δ
(1)
b←− C(1)

b (G)
δ
(0)
b =0
←− R

δ
(−1)
b =0
←− 0,

of bounded cochains with values in R and can define `∞ (or bounded) -
cohomology

H∗
b (G,R) = H∗

b (C∗
b (G));

that is
H

(n)
b (G) = ker δ(n)

b /=δ(n−1)
b , n ≥ 0

where

δ
(n)
b = δ

(n)
b

∣∣∣∣
C

(n)
b (G)
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is the bounded differential operator (the restriction of δ(n) to the bounded
cochain complex). It is easy to see that H(1)

b (G) = 0 for all G. The fact is
that there do not exist nontrivial bounded homomorphisms G→ R.

The inclusion homomorphism C∗
b (G)→ C∗(G) induces a homomorphism

ξ : H∗
b (G) → B(G) which in general is neither injective nor surjective.

The image of this homomorphism is called the bounded part of H∗(G) and
will be denoted by H∗

b,1(G) (see [27]). Denote by H
(n)
b,2 (G) the subspace

Im δ(n−1) ∩ ker δ(n)
b / Im δ

(n−1)
b of H(n)

b (G). The space H(n)
b,2 (G) is called the

singular part of the bounded cohomology group.
In [27], Grigorchuk obtained the following result.

Theorem 1.1. An isomorphism of vector spaces

H∗
b,2(G) ∼= H∗

b,1(G)⊕H∗
b,2(G)

holds.

Let l1 denote the Banach space of summable sequences of real numbers
with the norm ||xi|| =

∑∞
i=1 |xi|. Let |A :: C| denote the number of double

cosets of A by C, and A∗CB denote an amalgamated free product of groups
A and B (for definition of A ∗C B see [44]). For amalgamated free product
of groups, Fujiwara proved the following results in [23].

Theorem 1.2. Let G = A ∗C B. If |A :: C| ≥ 3 and |B : C| ≥ 2, then there
is an injective R-linear map ω : l1 → H2

b (G,R). In particular, the dimension
of H2

b (G,R) as a vector space over R is the cardinality of the continuum.

Corollary 1.3. Let G = A ∗ B with A 6= {1}, B 6= {1}. If G 6= Z2 ∗ Z2,
then there is an injective R-linear map ω : l1 → H2

b (G,R). In particular,
the dimension of H2

b (G,R) as a vector space over R is the cardinality of the
continuum.

Corollary 1.4. Let G = A ∗C B. If |A| = ∞, |C| < ∞ and |B/C| ≥ 2
then there is an injective R-linear map ω : l1 → H2

b (G,R). In particular,
the dimension of H2

b (G,R) as a vector space over R is the cardinality of the
continuum.

Corollary 1.5. Let G = A ∗C B. If A is abelian, |A/C| ≥ 3 and |B/C| ≥ 2
then there is an injective R-linear map ω : l1 → H2

b (G,R). In particular,
the dimension of H2

b (G,R) as a vector space over R is the cardinality of the
continuum.

In the case of HNN extensions of groups, Fujiwara proved the following
results in [23].
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Theorem 1.6. Let G = A∗C,ϕ. If |A/C| ≥ 2 and |A/ϕ(C)| ≥ 2, then there
is an injective R-linear map ω : l1 → H2

b (G,R). In particular, the dimension
of H2

b (G,R) as a vector space over R is the cardinality of the continuum.

Theorem 1.7. If G is a finitely generated group with infinitely many ends,
then there is an injective R-linear map ω : l1 → H2

b (G,R). In particular,
the dimension of H2

b (G,R) as a vector space over R is the cardinality of the
continuum.

In 1940, Ulam [55] posed the following problem. Given a group G1, a
metric group (G2, d) and a positive number ε, does there exist a δ > 0 such
that if f : G1 → G2 satisfies d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then a
homomorphism T : G1 → G2 exists with d(f(x), T (x)) < ε for all x, y ∈ G1?
The first affirmative answer was given by Hyers [31] in 1941.

Theorem 1.8. (Hyers [31]). Let E1 and E2 be Banach spaces. If f : E1 →
E2 satisfies the inequality

‖ f(x+ y)− f(x)− f(y) ‖ < ε (1.1)

for some ε > 0 and for all x, y ∈ E1, then there exists a unique map T :
E1 → E2 such that

T (x+ y)− T (x)− T (y) = 0 for all x, y ∈ E1 (1.2)

and
‖ f(x)− T (x) ‖ < ε for all x ∈ E1. (1.3)

The subject rested there until Rassias [50] considered a generalized version
of the previous result which permitted the Cauchy difference to become
unbounded. That is, he assumed that

‖ f(x+ y)− f(x)− f(y) ‖ ≤ ε (‖x‖p + |y‖p) for all x, y ∈ E1,

where ε and p are constants with ε > 0 and 0 ≤ p < 1.

Rassias proved in this case too, that there is an additive function T from
E1 into E2 such that

||T (x)− f(x)|| ≤ k · ε · ||x||p,
where k depends on p as well as ε.

In 1990, during the 27th International Symposium on Functional Equa-
tions, Rassias [51] asked whether such a theorem can also be proved for
p ≥ 1. Gajda [24], following the same approach as in [50], gave an affir-
mative solution to this question for p > 1. Several generalizations of these
results can be found in [35]–[39] and [50, 51].

In connection with these results the following question arises. Let S be
an arbitrary semigroup or group and let a mapping f : S → R (the set of
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reals) be such that the set {f(xy)− f(x)− f(y) |x, y ∈ S} is bounded. Is it
true that there is a mapping T : S → R that satisfies

T (xy)− T (x)− T (y) = 0 for all x, y ∈ S,
and the set {T (x)− f(x) |x ∈ S} is bounded. A negative answer was given
by Forti [21]. It turns out that the existence of mappings that are “almost
homomorphisms” but are not small perturbations of homomorphisms has
an algebraic nature.

Definition 1.9. A quasicharacter of a semigroup S is a real-valued function
f on S such that the set {f(xy)− f(x)− f(y)|x, y ∈ S} is bounded.

Definition 1.10. By a pseudocharacter of a semigroup S (group S) we
mean its quasicharacter f that satisfies f(xn) = nf(x) for all x ∈ S and all
n ∈ N (and all n ∈ Z, if S is a group).

The set of quasicharacters of a semigroup S is a vector space (with respect
to the usual operations of addition of functions and their multiplication
by numbers), which will be denoted by KX(S). The subspace of KX(S)
consisting of pseudocharacters will be denoted by PX(S) and the subspace
consisting of real additive characters of the semigroup S, will be denoted
by X(S). We say that a pseudocharacter ϕ of the group G is nontrivial
if ϕ /∈ X(G). In the papers [7, 8, 9, 12, 13, 15] a description the set of
pseudocharacters of free groups and semigroups, on the free and semidirect
products of groups and semigroups were given.

For a real constant c and a mapping f of the group G into a semigroup of
linear transformations of a vector space, sufficient conditions of the coinci-
dence of the solution of a functional inequality ‖f(xy)−f(x) ·f(y)‖ < c with
the solution of the corresponding functional equation f(xy)−f(x) ·f(y) = 0
was studied in [2, 30, 43]. In the papers [30, 43], it was independently shown
that if a continuous mapping f of a compact group G into the algebra of en-
domorphisms of a Banach space satisfies the relation ‖f(xy)−f(x)·f(y)‖ ≤ δ
for all x, y ∈ G with a sufficiently small δ > 0, then it is ε-close to a contin-
uous representation g of the same group in the same Banach space (that is,
we have ‖f(x)− g(x)‖ < ε for all x ∈ G).

The study of pseudocharacters and quasicharacters as independent ob-
jects began in the papers [7]–[15]. However earlier in the paper [53] qua-
sicharacters were constructed to investigate the problem of expressibility in
the theory of groups and in [42] a quasicharacter was constructed in a free
group for studying the groups of cohomology of a Banach algebra.

In [17] it was shown that for any group G the following decomposition
holds

KX(G) = PX(G)⊕B(G),
where B(G) denotes the set of real valued functions on G.
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From this result, the following theorem follows (see [27])

Theorem 1.11. An isomorphism of vector spaces

H
(2)
b,2 (G) ∼= PX(G)/X(G)

holds.

In the papers [19, 20] an application of pseudocharacters to the problem
of expressibility in groups was given.

Let G be an arbitrary group and let S be its subset such that S−1 = S.
Denote by gr(S) the subgroup of G generated by S. We say that the width
of the set S is finite if there is a number k ∈ N such that any element g of
gr(S) is representable in the form

g = s1s2 · · · sn, where si ∈ S ∪ S−1, n ≤ k. (1.4)

The minimal k with this property is called the width of the set S in G and
will be denoted by wid(S,G). We say that the width of the set S in the
group G is infinite if for any k ∈ N there is an element gk ∈ gr(S) which
does not have a presentation of the form (1.4). Many papers have been
devoted to the problem of the width of different subsets (see for example
[1, 3, 6, 26, 46, 53, 54]).

Let V be a finite subset of the free group F of the countable rank. We
say that V is proper if the verbal subgroup V (F ) is a proper subgroup of F .
Let G be an arbitrary group. Denote by V (G) the set of values in the group
G of all the words from the set V . By the width of verbal subgroup V (G)
we mean the width of the set V (G)∪ V (G)−1 in the group G. Many papers
have also been devoted to the problem of the width of verbal subgroups (see
[3, 26, 53] and references therein).

If the set V contains only one word [x, y] = x−1y−1xy we will say about
commutator width.

In the paper [28], Grigorchuk made assumption that if G = A ∗H B is an
amalgamated free product such that

|A :: H| = 2 and |B : H| = 2 (1.5)

then the width of commutator subgroup G′ is finite.
The goals of this paper are:
1) To show that Theorems 1.2, 1.6, 1.7 and Corollaries 1.3, 1.4, 1.5 of

Fujiwara in [23] are not quite true. Namely, for any Fujiwara’s Theorem or
Corollary mentioned above and for any cardinal numberM, we construct a
group G = A ∗H B satisfying the assumptions of the corresponding theorem
or corollary such that the dimension of the linear space H2

b,2(G) is at least
M. Moreover in the paper [23] no information about the group G = A∗H B
was given when |A :: H| = 2 and |B : H| = 2. Using results of this paper,
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it can be shown that, in this case too, for any cardinal number M one can
construct a group G = A ∗H B such that the dimension of the linear space
H2

b (G) is at least M. Also, we construct a group G = A∗C,ϕ such that the
dimension of the linear space H2

b (G) is at least M. Moreover in the paper
[23] no information about the group G = A∗C,ϕ was given when |A/H| ≤ 2
or |A/ϕ(H)| ≤ 2. Using results of this paper, it can be shown that, in this
case too, for any cardinal numberM one can construct a group G = A∗C,ϕ

such that the dimension of the linear space H2
b (G) is at leastM.

2) To show that the assumption of Grigorchuk in [28] is not true. More-
over, from our construction, it will follow that in the case |A :: H| = 2 and
|B : H| = 2, one can construct groups such that the width of every proper
verbal subgroups will be infinite.

3) To show the space of pseudocharacters GL(2, F2[z]).

2. Some auxiliary facts

Let G be an arbitrary group and τ : G → C be an epimorphism from
G onto a group C. Denote by τ∗ the mapping that takes each element
ϕ ∈ PX(C) to ϕ ◦ τ ∈ PX(G). It is evident that τ∗ is an embedding of
PX(C) into PX(G).

Let H = A ∗B be the free product of nontrivial groups A and B. There
are natural epimorphisms τA : H → A and τB : H → B. Let τ∗A and τ∗B
be embedding of the spaces PX(A) and PX(B) into PX(G), respectively.
Below we shall identify the spaces PX(A) and PX(B) with their τ∗A and
τ∗B isomorphic images, respectively. Set A0 = A \ {1}, B0 = B \ {1} and
M = {a · b | a ∈ A0, b ∈ B0}. It is clear that subsemigroup D̃ of group H
generated by the set M is free and M is the system of free generators for
D̃. By D we denote a semigroup generated by D̃ and 1. Let v ∈ D. By |v|
we denote the length of the word v in alphabet M . If v = 1 we set |v| = 0.

Let v = a1b1 · · · anbn ∈ D̃. By v we denote the element b1a2b2 · · · anbna1.
Let PX(D,−1) be the subspace of PX(D) consisting of the pseudocharac-
ters ϕ of D satisfying the following conditions:

1) the set ϕ(M) is bounded,
2) ϕ((v)−1) = −ϕ(v), ∀v ∈ D.

Remark 2.1. Recall that by the Proposition 3 from [9] for any pseudochar-
acter ϕ of arbitrary semigroup S the relation ϕ(xy) = ϕ(yx) holds for all
x, y ∈ S.

Hence a pseudocharacter is constant in a class of conjugate elements in a
group because ϕ(x−1yx) = ϕ(yxx−1) = ϕ(y).

Let ϕ ∈ PX(D,−1). Denote by ϕ the function on the group G defining
as follows. If element v from G is conjugate to some element a ∈ A or some
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element b ∈ B, then we set ϕ(v) = 0. Otherwise we set ϕ(v) = ϕ(t), where
t ∈ D and elements v and t are conjugate in G. Remark 2.1 implies that
the function ϕ is well defined. It is clear that the function ϕ is constant on
the classes of conjugacy in H. Denote by ∼ the relation of conjugacy in the
group H.

In [16] the following two theorems were established.

Theorem 2.2. Let ϕ ∈ PX(D,−1) and c > 0 such that |ϕ(xy) − ϕ(x) −
ϕ(y)| ≤ c for all x, y ∈ D. Then the function ϕ is a pseudocharacter of
group G such that ϕ

∣∣
A∪B

≡ 0 and for any u, v from G the inequality

|ϕ(uv)− ϕ(u)− ϕ(v)| ≤ 261 c

holds.

Theorem 2.3. The mapping λ : ϕ→ ϕ is an embedding of PX(D,−1) into
PX(G), and PX(G) = PX(A)⊕ PX(B)⊕ PX(D,−1).

Since X(G) ∩ PX(D,−1) = {0}, we have the following corollary.

Corollary 2.4. H2
b,2(G) = PX(A)/X(A)⊕ PX(B)/X(B)⊕ PX(D,−1).

3. Some auxiliary facts about free products of groups

Let D∗ be a free subsemigroup of the group H generated by the set M∗ =
{ba | b ∈ B0, a ∈ A0}. For any word v in alphabet M we introduce the set of
“beginnings” B(v) and the set of “ends” E(v) as follows: B(v) = E(v) = ∅,
if |v| ≤ 1, and

B(v) = {xi1 , xi1xi2 , . . . , xi1xi2 . . . xin−1},
E(v) = {xi2 , . . . , xin , xi3 . . . xin , . . . , xin−1xin , xin},

if v = xi1 · · · · · xin , n > 1.
For any element w in D such that B(w) ∩E(w) = ∅, the functions ηw(v)

and ew(v) were defined in [11] as follows: If v ∈ D, then ηw(v) is equal to
the number of occurrences of w in the word v, and

ew(v) = max{ηw(v′) | v′ ∼D v}.

An element v from the free semigroup D is called simple if it is not a nontriv-
ial power of another element u ∈ D. The set of simple elements of semigroup
D will be denoted by P. Obviously, if u ∼D v, then u ∈ P if and only if
v ∈ P.

By Lemma 8 from [11] we have that in any class of ∼D conjugate ele-
ments belonging to the set P there is a representative w that satisfies to the
condition

B(w) ∩ E(w) = ∅. (3.1)
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Denote by P the set of representatives w of classes of conjugate elements
belonging to P and satisfying relation (3.1).

It is clear that if w is a word in alphabet M such that B(w) ∩E(w) = ∅,
then the word w−1 in alphabetM∗ satisfies the conditionB(w−1)∩E(w−1) =
∅. By Lemma 13 from [11] we have that for any w ∈ P the function ew is the
pseudocharacter of the semigroup D such that for any u, v in D the relation

|ew(uv)− ew(u)− ew(v)| ≤ 2

holds. A similar pseudocharacter of semigroup group D∗ which corresponds
to the word w−1 will be denoted by ew−1 . Denote by P0 a subset of P
consisting of elements w such that w ∼ w−1 in the group H. Let Q = P \P0.
The set Q is nonempty (see [16]).

Define a relation ∼1 on the set Q as follows. Set w1 ∼1 w2 if and only if
either w1 = w2 or w−1

1 ∼ w2. It is clear that ∼1 is an equivalence relation
such that there are only two elements in each class of ∼1 equivalency.

Let us choose, in each of these classes, a representative. Denote by Q+

the set of these representatives. By Q+
n denote subset of Q+ consisting of

elements of length n in alphabet M . Obviously, if ϕ ∈ PX(D,−1), then ϕ
is fully defined by its restriction to Q+.

Now define a function πw : D → R by the formula

πw(v) = ew(v)− ew−1(v), ∀v ∈ D.

Lemma 3.1. (see [16]) Let w ∈ Q+. Then the function πw is an element
of the space PX(D,−1) and the following relation holds

|πw(uv)− πw(u)− πw(v)| ≤ 10. (3.2)

Lemma 3.2. Let w ∈ Q+, u ∈ D. Then
1) if |u| < |w|, then πw(u) = 0;
2) if |u| = |w| and u is not conjugate neither w nor to w−1, then

πw(u) = 0; if u ∼ wε where ε ∈ {+1,−1}, then πw(u) = ε.

Lemma 3.3. (See [16]) Let n ∈ N and λ is a bounded function on Q+
n .

Then the function
ψλ =

∑
w∈Q+

n

λ(w)πw

is an element of the space BPX(D,−1), and for any u, v ∈ D the following
inequality holds:

|ψλ(uv)− ψλ(u)− ψλ(v) | ≤ 240λ0 (n− 1), (3.3)

where λ0 = sup{λ(w) |w ∈ Q+
n }. Moreover, for any w0 ∈ Q+

n we have
ψλ(w0) = λ(w0).
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4. Semidirect product

Let G be a group and α be its automorphism. For any ϕ ∈ PX(G) we
set ϕα(x) = ϕ(xα) for all x ∈ G. It is clear that ϕα is a pseudocharacter of
G.

Definition 4.1. Let ϕ ∈ PX(G). The map ϕ is said to be invariant relative
to α if ϕα = ϕ. If this relation holds for each a in A ⊆ AutG, we will say
that ϕ is invariant relative to A.

The subspace consisting of pseudocharacters of G invariant relative to A
will be denoted by PX(G,A).

Let G = A · B be a semidirect product of its subgroups A and B such
that B is an invariant subgroup of G. In [12] it was shown that any element
from PX(B,A) can be extended to G as a pseudocharacter that is equal to
zero on subgroup A. The following theorem was established in [12].

Theorem 4.2. Let the group G = A · B be a semidirect product of its
subgroups A and B such that B is an invariant subgroup of G. Then

PX(A ·B) = PX(A)⊕ PX(B,A). (4.1)

Corollary 4.3. H(2)
b,2 (A ·B) = PX(A)/X(A)⊕ PX(B,A)/X(B,A).

By the last theorem, the problem of describing PX(G) is reduced to that
of PX(A) and PX(B,A).

We will use the following notations for the rest of this paper. Let A and
B be groups, and H = A ∗ B be their free product. Further, let T1 be a
subgroup of AutA, and T2 be a subgroup of AutB, and T = T1 × T2.

Let G = T ·H be the semidirect product such that T acts on H by the
rule that

at = at1 , bt = bt2 , at2 = a, bt1 = b

for any a ∈ A, b ∈ B, t1 ∈ T1, t2 ∈ T2 and t = t1t2. The relation of
conjugacy in the group H will be denoted by ∼ and by ∼ we will also
denote the relation of conjugacy in the semigroup D.

Definition 4.4. We will say that elements u and v from H are T -conjugate
if there is t ∈ T such that ut ∼ v.

The subset of PX(D,−1) consisting of pseudocharacters invariant relative
to the group T we denote by PX(D,−1, T ).

Lemma 4.5. PX(H,T ) = PX(A, T1)⊕ PX(B, T2)⊕ PX(D,−1, T ).

Corollary 4.6.

PX(G) = PX(T )⊕ PX(A, T1)⊕ PX(B, T2)⊕ PX(D,−1, T ). (4.2)
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Thus the problem of describing PX(G) is reduced to PX(D,−1, T ).

Corollary 4.7.

H
(2)
b,2 (G) = PX(T )/X(T )⊕ PX(A, T1)/X(A, T1) (4.3)

⊕PX(B, T2)/PX(B, T2)⊕ PX(D,−1, T ).

5. definition of δw

In this section, we recall some facts from the paper [16]. Let P be a set
of simple elements of the semigroup D, and the sets P, P0 are the same
as before. Denote by E0 a subset of P consisting of elements w such that
w ∼ w−1 in the group G. That is, there is a t in T such that elements wt

and w−1 conjugate in the group H. It is easy to verify that P \ E0 6= ∅.
Denote by E a system of representatives of classes of T–conjugate ele-

ments belonging to P such that if w ∈ E, then w and w−1 are not T–
conjugate. As it was shown in [20], the set E is nonempty. The subset of E
consisting of elements of the length n in alphabet M will be denoted by En.
It is clear that we can assume E ⊆ Q and En ⊆ Qn. If we let E+ = E∩Q+,
then E+

n = E ∩Q+
n .

Let M(w) be the set of values of the function t→ wt for t ∈ T . For any
w ∈ E define the function δw : D → R by letting

δw(v) =
∑

u∈M(w)

πu(v).

From Lemma 3.3 it follows that δw ∈ PX(D,−1), and if |w| ≥ 2 then

| δw(uv)− δw(u)− δw(v) | ≤ 240 (|w| − 1). (5.1)

Proposition 5.1. For any w ∈ E+, the function δw belongs to the space
PX(D,−1, T ).

Proposition 5.2. Let w ∈ E+. Then
1) For any u ∈M(w), we have eu−1(w) = 0, and
2) δw(w) = number of elements in the set M(w) conjugate to w.

Lemma 5.3. The set {δw | w ∈ E+} is a system of linearly independent
elements of PX(D,−1, T ).

Proof. Suppose that there are different elements w1, w2, . . . , wk ∈ E+ (we
may assume |w1| ≤ |w2| ≤ · · · ≤ |wk|) and r1, r2, . . . , rk ∈ R \ {0} such that

k∑
i=1

riδwi ≡ 0.
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By Collorary 3.2 we have
k∑

i=1

riδwi(w1) = r1δw1(w1) = 0

and we have contradiction with Proposition 5.2. �

6. On Fujiwara Theorem 1.2

In this section we will show, using the decomposition (4.2), how to con-
struct examples that will show that the statement of Theorem 1.2 of Fujiwara
in [23] is incorrect.

Let us consider a particular case of the amalgamated products of groups
G = A ∗T B. Namely, we will consider below the amalgamated products of
two groups that are semidirect products T ·A and T ·B. In this case we have
G = T ·A∗T T ·B. It easy to see that in this case the group G = T ·A∗T T ·B
is a semidirect product G = T · (A ∗B). Hence from (4.2) it follows

PX(G) = PX(T )⊕ PX(A, T )⊕ PX(B, T )⊕ PX(D,−1, T ), (6.1)

H
(2)
b,2 (G) = PX(T )/X(T )⊕ PX(A, T )/X(A, T ) (6.2)

⊕PX(B, T )/X(B, T )⊕ PX(D,−1, T ).

6.1. DIMENSION OF PX(T )/X(T ) . Let us construct a class of amalga-
mated products of groups K of the form G = T · A ∗T T · B such that for
any cardinal number M there is a G ∈ K such that the cardinality of the
the basis of the space PX(G) is at leastM.

Indeed, let T be some group such that the linear dimension of the factor
space PX(T )/X(T ) is at least M. For example, for such a group we can
take a free group F with free generators X such that the cardinality of the
set X is at least M. We can construct similar groups using free product of
groups.

Now let A and B be an arbitrary non unit groups. Consider semidirect
products T · A and T · B. For example if the group T acts trivially on
A or on B respectively, then we have T · A = T × A or T · B = T × B
respectively. In this case we have G = T · A ∗T T · B = T · (A ∗ B). Hence
PX(G) = PX(T · (A ∗ B)) = PX(T ) ⊕ PX(A ∗ B, T ) and we see that the
subspace PX(T )/X(T ) of H(2)

b,2 (G) has linear dimension at leastM.
If A = B = Z2 the group of order 2, then we get |T ·A :: T | = |T ·A : T | =

|T ·B :: T | = |T ·B : T | = 2. It is well known that PX(A ∗B) = 0. Hence,
we have PX(G) = PX(T × (A ∗B)) = PX(T )⊕PX((A ∗B), T ) = PX(T ),
and we see that dimension of H(2)

b,2 (G) can be arbitrarily large.
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6.2. DIMENSION OF PX(A, T )/X(A, T ). Now using the space PX(A),
we consider how to construct the group G = T · A ∗T T · B with the re-
quired property. Let A and T be some groups and T ·A be their semidirect
product. Let the linear dimension of PX(A, T )/X(A, T ) be at least M.

For example, if the group T acts trivially on A, then we have T ·A = T×A.
Hence, PX(A, T )/X(A, T ) = PX(A)/X(A), and we can choose the group
A to be any group such that the dimension of the space PX(A)/X(A) is at
leastM.

6.3. DIMENSION OF PX(D,−1, T ). Let J be a set such that |J | ≥ M.
Further, let Ai, i ∈ J be nontrivial groups, and Ti ⊆ AutAi, A =

∏×
i∈J Ai,

T =
∏×

i∈J Ti. Let us continue the action of Ti onto A as follows: If ti ∈ Ti,
aj ∈ Aj , i 6= j, then ati

j ∈ aj . Hence T becomes a subgroup of AutA and
we can construct semidirect product T ·A.

Now let B be an arbitrary group and T ×B be direct product of T and B.
Now we can construct the amalgamated product G = (T ·A)∗T (T ×B). We
may assume that J is an ordered set. Let us denote by J3 the set of all subset
of J consisting three different elements, that is J3 = {(i, j, k) |i < j < k }.
For every i ∈ J , let us fix some nonunit element ai ∈ Ai, and let b be
nonunit element from B. Let p = (i, j, k) ∈ J3. Then wp = aibajbakb ∈ D,
and we can construct elements ewp ∈ PX(D,−1) and δwp ∈ PX(D,−1, T )
as above.

Lemma 6.1. Let p and q be different elements from J3, then ewp 6∼T ewq

and ewp 6∼T ew−1
q

. Hence, πwp(wp) = 1 and πwp(wq) = 0.

Lemma 6.2. Let p and q be different elements from J3, then δwp 6∼T δw−1
q

.
Further δwp(wp) = 1 and δwp(wq) = 0.

Proof. δwp(v) =
∑

u∈M(wp) πwp(v). Let u ∈ M(wp) and u 6= wp. Then for
some t ∈ T we have u = (wp)t = at

iba
t
jba

t
ib and either at

i 6= ai or at
j 6= aj or

at
k 6= ak. In this case we have πu(wp) = 0. Hence δwp(wp) = 1. �

Corollary 6.3. The set δwp , p ∈ J3 is linearly independent.

Proof. Suppose that for some p1, . . . , pm ∈ J3 and nonzero reals λ1, . . . , λm

we have ϕ =
∑m

l=1 λlδpl
≡ 0. Then by previous lemma we have ϕ(wp1) =

λ1 = 0, . . . , ϕ(wpm) = λm = 0, and we come to contradiction with the
assumption about λl, l = 1, . . . ,m. �

From this corollary it follows that the dimension of the space PX(D,−1, T )
is at least M.

Remark 6.4. The statements of Corollaries 1.3– 1.5 are not accurate.
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Indeed, let Ai, i ∈ I be abelian groups and all groups Ti are trivial. Then
in this case we have G = (T · A) ∗T (T × B) = A ∗ B, and as was shown
above the cardinality of the space PX(D,−1) is at leastM.

7. On Fujiwara Theorem 1.6

In this section, we will show how to construct examples that will show
that the statement of Theorem 1.6 of Fujiwara in [23] is incorrect. Let a
group G be an HNN extension G = A∗C,ϕ.

We recall the notion of HNN extension. Let G be an arbitrary group, A
and B its subgroups and ϕ : A → B an isomorphism. Let T be an infinite
cyclic group with generator t.

The group K is denoted by K = G∗A,ϕ =
〈
G, t; t−1at = ϕ(a), ∀ a ∈ A

〉
is an HNN extension of G with connected subgroups A and B. In other
words K is a factor group of G ∗ T by its invariant subgroup generated by
the set

{
t−1atϕ(a)−1, a ∈ A

}
.

For more on HNN extension, the interested reader is referred to [44].

7.1. FOR THE CASE WHEN A = B = G. It is clear that in this case we
have K = T ·G, that is, K is a semidirect product of its subgroups T , G and
G is invariant inK. By Theorem 4.2 we have PX(K) = PX(T )⊕PX(G,T ).
In this case we have PX(K)/X(K) = PX(G,T )/X(G,T ).

Now we need to construct a group G such that the dimension of the
space PX(G,T )/X(G,T ) is at leastM. It is not difficult to construct such
groups. When the group T acts trivially on G, we obtain PX(K)/X(K) =
PX(G,T )/X(G,T ) = PX(G)/X(G), and we see that we can construct
groups such that the dimension of the space PX(K)/X(K) is at leastM.

7.2. FOR THE GENERAL CASE WHEN A ⊆ G, B ⊆ G. Let
K = G∗A,ϕ =

〈
G, t; t−1at = ϕ(a), ∀ a ∈ A

〉
is HNN extension. Let ϕ(A) = B Consider the following HNN extension.
Let C be an arbitrary group and G acts on C by automorphisms. Further,
let H = G · C their semidirect product. Then subgroup of H generated by
A and C is a semidirect product A1 = A · C. More over subgroup of H
generated by B and C is a semidirect product B1 = B · C.

Let α be an automorphism of C. Define ϕ′ : A · C → B · C as follows:

ϕ′(ac) = ϕ(a)α(c) ∀ a ∈ A, ∀c ∈ C.

Lemma 7.1. The map ϕ′ is an isomorphism if and only if for any a ∈ A
and any c ∈ C the relation

α(c)ϕ(a) = α(ca) (7.1)

holds.
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Suppose that the relation (7.1) holds. Then we can define the following
HNN extension

Q = (G · C)∗A·C,ϕ′ =
〈
G · C, t; t−1xt = ϕ′(x), ∀x ∈ A · C

〉
.

If the group G acts trivially on C, then we have G·C = G×C, A·C = A×C,
and B ·C = B ×C. Hence, the relation (7.1) is fulfilled and in this case we
have

Q = (G× C)∗A×C,ϕ′ =
〈
G× C, t; t−1xt = ϕ′(x), ∀x ∈ A× C

〉
.

Here C is an arbitrary group, ϕ′ : A×C → B×C and ϕ′(a) = ϕ(a) for all a ∈
A, ϕ′(c) = c for all c ∈ C.

Let L be a subgroup of Q generated by G and T . It is easy to see
that C and L are normal subgroups of Q such that Q = C × L. Hence,
PX(Q) = PX(C) ⊕ PX(L). Because C is an arbitrary group we see that
for any cardinal number M we can construct a group Q which is HNN
extension and the dimension of the space PX(Q)/X(Q) is at leastM.

8. On Grigorchuk’s assumption

In this section we will show that the assumption made by Grigorchuk
is not true. Let A and B be a cyclic group of order two. Then we have
T ·A = T×A, T ·B = T×B and G = T ·A∗T T ·B = T ·(A∗B) = T×(A∗B).
The group A ∗B = Z2 ∗Z2 is amenable. Hence PX(A ∗B) = X(A ∗B) = 0,
and we see that PX(G) = PX(T )⊕ PX(A ∗B) = PX(T ).

Thus if we take T to be a group with nontrivial pseudocharacters ϕ, we
obtain that the width of commutator subgroup T ′ of the group T is infinite.
Indeed, if we suppose that there is k ∈ N such that every element t of T ′

can be represented as a product of no more than k commutators, then we
obtain that ϕ is bounded on T . Indeed, suppose for some c > 0 we have
|ϕ(xy)−ϕ(x)−ϕ(y)| ≤ c for all x, y ∈ T . Then we get |ϕ([x, y])−ϕ(x−1)−
ϕ(y−1xy)| = |ϕ([x, y]) + ϕ(x) − ϕ(y−1xy)| = |ϕ([x, y])| ≤ c. Hence for any
t ∈ T ′ we get |ϕ(t)| ≤ (k − 1)c, and we see that ϕ is bounded on T . Thus
ϕ ≡ 0, and we came to contradiction with the assumption regarding ϕ.

The group T is an epimorphic image of G, hence if the group T has the
property that for a word W the verbal subgroup W (T ) has infinite width,
then the verbal subgroup W (G) of G also has infinite width.

9. On the group G = GL(2, F2[z])

Let F2 be a field consisting of two elements {0, 1}, and let F2[z] be the
ring of polynomials over F2. Further, let T be a subgroup of the group A =
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GL(2, F2) consisting of matrices[
1 0
0 1

]
, and

[
1 1
0 1

]
.

Denote by t the matrix
[

1 1
0 1

]
, hence t2 = 1. Let

Q =
{ [

1 0
0 1

]
,

[
0 1
1 1

]
,

[
1 1
1 0

]}
.

If a =
[

0 1
1 1

]
, then a2 = a−1 =

[
1 1
1 0

]
, then Q is a subgroup of order

three.

Let B be the subgroup of G = GL(2, F2[z]) consisting of matrices[
1 f(z)
0 1

]
; where f(z) ∈ F2[z].

It is clear that T ⊂ B. It is well known that the group G = GL(2, F2[z])
is an amalgamated product G = A ∗T B (see [44]). It is clear that B is an
abelian group such that for any b ∈ B we have b2 = 1. Let Bn be subgroup

of B generated by bn =
[

1 zn

0 1

]
.

Lemma 9.1. 1) Q is normal subgroup in A, A is semidirect products A =
T ·Q and t−1at = a−1.

2) Elements

P =
{[

1 ϕ(z)
0 1

]
; ϕ(0) = 0

}
.

form a subgroup of B and P =
∏×

n∈NBn.

3) B is direct product B = T × P .

Proof. The proof is obtained by direct calculations. �

Corollary 9.2. 1) Subgroup H of G generated by Q and P is their free
product. 2) H is invariant in G, and G is semidirect product G = T ·H.

Hence to describe of the space of H(2)
2,b (G) we can use the results of the

Section 4. In our situation we have PX(T ) = PX(Q) = PX(P ) = 0.

Corollary 9.3. H(2)
b,2 (G) = PX(D,−1, T ).
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10. Description of the space PX(D,−1, T )

Now let us describe the space PX(D,−1, T ). In what follows we will use
results of Sections 2− 5.

Let B(w) = B(w) ∪ {w} and E(w) = E(w) ∪ {w}. We set µu,v(w) = 1 if
there exist x and y such that x ∈ E(w), y ∈ B(w), and w = xy; otherwise
we set µu,v(w) = 0. Similarly the measures µu,v for all u, v ∈ D∗ on Q−1 are
defined. Here Q is the same as in Sections 3 – 5. Let

νu,v(w) = µu,v(w) + µuv,uv(w)− µu,u(w)− µv,v(w).

Hence, the measure νu,v takes values from the set {−2,−1, 0, 1, 2}. In [11] it
was shown that for any u, v ∈ D and for any w ∈ Q+, the following equality

ew(uv)− ew(u)− ew(v) = νu,v(w) (10.1)

holds.
Let the group C = A ∗B be a free product of A and B.

Definition 10.1. By canonical form of nonunit element g from G = A ∗B
we mean its presentation in the form g = c1c2 · · · cn, where ci ∈ A0 ∪ B0,
and cici+1 /∈ A ∪B.

Let v = c1c2 · · · ckck+1 be a canonical form. Then we set v̇ = c1, v̈ =
ck+1, ṽ = 1, if k = 1 and ṽ = c2 · · · ck, if k > 1. For any t ∈ M∗ and any
w ∈ Q+ we set rt(w) = 1, if t = w−1 and rt(w) = 0, if t 6= w−1. For any
u, v in D that differ from unit element, let us define a measure ζu,v(w) on
Q+ as follows:

ζu,v(w) = rüv̇(w) + rv̈u̇(w)− rüu̇(w)− rv̈v̇(w)

+νũüv̇,ṽv̈u̇(w−1) + νũ,üv̇(w−1) + νṽ,v̈u̇(w−1)

−νũ,üu̇(w−1)− νṽ,v̈v̇(w−1). (10.2)

Lemma 10.2. (see [16]) For any w ∈ Q+ and u, v ∈ D the following equality
holds

ew−1(uv)− ew−1(u)− ew−1(v) = ζu,v(w).

If w ∈M , that is, the length of the word w in alphabet M equal to one,
then it is clear that

νũüv̇,ṽv̈u̇(w−1) = νũ,üv̇(w−1) = νṽ,v̈u̇(w−1) = νũ,üu̇(w−1) = νṽ,v̈v̇(w−1) = 0.

Hence

ζu,v(w) = rüv̇(w) + rv̈u̇(w)− rüu̇(w)− rv̈v̇(w), w ∈M. (10.3)

If w /∈M , then

rüv̇(w) = rv̈u̇(w) = rüu̇(w) = rv̈v̇(w) = 0,
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and by (10.2) we get

ζu,v(w) = νũüv̇,ṽv̈v̇(w−1) + νũ,üv̇(w−1)

+νṽ,v̈u̇(w−1)− νũ,üu̇(w−1)− νṽ,v̈v̇(w−1). (10.4)

For any w ∈ Q+ and u, v ∈ D define Θu,v(w) by setting

Θu,v(w) = νu,v(w)− ζu,v(w). (10.5)

Remark 10.3. Let us note that if either u̇ = v̇ or ü = v̈, then Θu,v(w) = 0
for all w ∈ M . Indeed, for example if u̇ = v̇, then we obtain üv̇ = üu̇ and
v̈u̇ = v̈v̇.

Hence, (10.5) implies Θu,v(w) = 0. Thus, if Θu,v(w) 6= 0, then u̇ 6= v̇ and
ü 6= v̈. From the latter we obtain that the words üv̇, v̈u̇, üu̇, v̈v̇ are pair
wise different. Hence, the measure Θu,v on Q+

1 takes values from the set
{ -1, 0, 1 }.

The measure νu,v is a sum of four measures of the form µu,v, and for n > 1
the measure Θu,v is the sum of 24 measures of the form µu,v. Hence for any
n > 1 the following relations hold:

| supp νu,v ∩Q+
n | ≤ 4 (n− 1) (10.6)

| supp Θu,v ∩Q+
n | ≤ 24 (n− 1). (10.7)

Note that if w ∈M , then |Θu,v(w) | ≤ 4, and if w /∈M , then |Θu,v(w) | ≤ 10.

Lemma 10.4. (see [16]) Let w ∈ Q+. then the following relations hold

πw(uv)− πw(u)− πw(v) = Θu,v(w), and |Θu,v(w)| ≤ 10. (10.8)

It is clear that for any w ∈ D we have the estimate 1 ≤ |δw(w)| ≤ |w|.
Set δ̂w = 1

δw(w)δw, then δ̂w(w) = 1, δw(v) = δw(w)δ̂w(v). Set

ΘT
u,v(w) =

∑
g∈M(w)

Θu,v(g).

Proposition 10.5. Let |w| = n ≥ 2. Then

|ΘT
u,v(w)| ≤ 240 (|w| − 1)| supp ΘT

u,v ∩ E+
n | ≤ 240(n− 1)2.

Proposition 10.6. Let λ be a bounded function on E+
n for all n ∈ N . Then

the functions

ψλ =
∑

w∈E+
n

λ(w)δw and ψλ =
∑

w∈E+
n

λ(w)δ̂w

belong to PX(D,−1, T ), and ψλ(w) = λ(w) for all w ∈ E+
n .
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Denote by E(D) the set of functions ϕ on the semigroup D satisfying the
relations:

1) ϕ(xn) = nϕ(x) for all n ∈ N and for all x ∈ D;
2) ϕ(xy) = ϕ(yx) for all x, y ∈ D;
3) ϕ((v)−1) = −ϕ(v) for all v ∈ D;
4) ϕ

∣∣
E+

i
is a bounded function for all i ∈ N;

5) ϕ(xt) = ϕ(x) for all x ∈ D and for all t ∈ T .
It is clear that E(D) is a linear space (with respect to ordinary opera-

tions).

Lemma 10.7. Let ϕ ∈ PX(D,−1). Then ϕ is bounded on Q+
n for all

n ∈ N.

From Lemma 10.7 it follows that PX(D,−1, T ) is subspace of E(D).
Denote by L(E+) the space of real-valued functions α on E+ satisfying the
following condition: α

∣∣
E+

n
is bounded for any n ∈ N.

Let us construct a mapping ∆ between the spaces E(D) and L(E+).
Let ϕ ∈ E(D). For each i ∈ N we define the function αi : E+

i → R by
induction as follows: α1 ≡ ϕ

∣∣
E+

1
, and if the values α1, . . . , αn have already

been defined, then we set

αn+1 = (ϕ−
n∑

i=1

ϕαi)
∣∣
Q+

n+1
(w), w ∈ Q+

n+1. (10.9)

Here ϕαi are pseudocharacters introduced by the formula

ϕαi =
∑

w∈E+
i

α(w)δ̂w. (10.10)

Now we define the function α = ∆(ϕ) via its restriction to E+
i by setting

α
∣∣
E+

i
= αi.

Theorem 10.8. ∆ is an isomorphism between the linear spaces E(D) and
L(E+).

Denote by L(E+,Θ) a subspace of L(E+), consisting of functions α ∈
L(E+) such that the quantities∣∣∣∣∫

E+

αdΘu,v

∣∣∣∣ u, v ∈ D

are uniformly bounded.

Theorem 10.9. 1) The mapping ∆ establishes an isomorphism between
linear spaces PX(D,−1, T ) and L(E+,ΘT ).
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2) Each element ϕ from the space PX(D,−1, T ) is uniquely representable
in the form

ϕ =
∑

w∈E+

α(w)δw, where α ∈ L(E+,ΘT )

or in the form

ϕ =
∑

w∈E+

β(w)δ̂w, where β(w) =
α(w)
δw(w)

.
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