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GENERAL SUMMABILITY FACTOR THEOREMS AND
APPLICATIONS

B. E. RHOADES AND EKREM SAVAŞ

Abstract. We obtain sufficient and (different) necessary conditions for
the series

∑
an, which is absolutely summable of order k by a triangular

matrix method A, to be such that
∑

anλn is absolutely summable of
order k by a triangular matrix B. As corollaries we obtain a number of
inclusion theorems.

In a recent paper the authors [3] obtained sufficient conditions for a series∑
an which is absolutely summable of order k by a weighted mean method

to be such that
∑

anλn is absolutely summable of order k by a triangular
matrix method. In this paper we establish a more general summability
factor theorem involving two lower triangular matrices. Using these results
we obtain a number of corollaries.

Let T be a lower triangular matrix, {sn} a sequence. Then

Tn :=
n∑

ν=0

tnνsν .

A series
∑

an is said to be summable |T |k, k ≥ 1 if

∞∑
n=1

nk−1|Tn − Tn−1|k < ∞. (1)

We may associate with T two lower triangular matrices T and T̂ as follows:

t̄nν :=
n∑

r=ν

tnr, n, ν = 0, 1, 2, . . . ,

and
t̂nν := t̄nν − t̄n−1,ν , n = 1, 2, 3, . . . .
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With sn :=
∑n

i=0 λiai.

yn :=
n∑

i=0

tnisi =
n∑

i=0

tni

i∑
ν=0

λνaν

=
n∑

ν=0

λνaν

n∑
i=ν

tni =
n∑

ν=0

t̄nνλνaν

and

Yn := yn − yn−1 =
n∑

ν=0

(t̄nν − t̄n−1,ν)λνaν =
n∑

ν=0

t̂nνλνaν . (2)

We shall call T a triangle if T is lower triangular and tnn 6= 0 for each n.
The notation ∆ν ânν means ânν − ân,ν+1.

Theorem 1 of this paper represents the first time that two arbitrary tri-
angles have been used in a summability factor theorem for absolute summa-
bility of order k > 1. By restricting A and B to be specific matrices we
obtain summability factor theorems for specific classes of matrices, such as
weighted means and the Cèsaro matrix of order 1. By setting each λn = 1
we obtain a number of inclusion theorems.

The notation λ ∈ (|A|k, |B|k) will be used to represent the statement that,
if

∑
an is summable |A|k, then

∑
anλn is summable |B|k.

Theorem 1. Let {λn} be a sequence of constants, A and B triangles satis-
fying

(i)
|bnn|
|ann|

= O
( 1
|λn|

)
,

(ii) |ann − an+1,n| = O(|annan+1,n+1|),

(iii)
n−1∑
ν=0

|∆ν(b̂nνλν)| = O(|bnnλn|),

(iv)
∞∑

n=ν+1

(n|bnnλn|)k−1|∆ν(b̂nνλν)| = O(νk−1|bννλν |k),

(v)
n−1∑
ν=0

|bνν ||b̂n,ν+1λν+1| = O(|bnnλn+1|),

(vi)
∞∑

n=ν+1

(n|bnnλn+1|)k−1|b̂n,ν+1| = O((ν|bννλν+1|)k−1),

(vii)
∞∑

ν=1

νk−1|λν+1Xν |k = O(1),
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(viii)
∞∑

n=1

nk−1
∣∣∣ n∑

ν=2

b̂nνλν

ν−2∑
i=0

â′νiXi

∣∣∣k = O(1)

where Xν , Xi and â′νi are defined latter, in formulas (4) and (5).
Then λ ∈ (|A|k, |B|k).

Proof. If yn denotes the nth term of the B-transform of a sequence {sn},
then

yn =
n∑

i=0

bnisi =
n∑

i=0

bni

i∑
ν=0

λνaν

=
n∑

ν=0

λνaν

n∑
i=ν

bni =
n∑

ν=0

b̄nνλνaν .

yn−1 =
n−1∑
ν=0

b̄n−1,νλνaν .

Yn := yn − yn−1 =
n∑

ν=0

b̂nνλνaν , (3)

where sn =
∑n

i=0 λiai.
Let xn denote the n-th term of the A-transform of a series

∑
an. Then

Xn := xn − xn−1 =
n∑

ν=0

ânνaν . (4)

Since Â is a triangle, it has a unique two-sided inverse, which we shall
denote by Â ′. Thus we may solve (4) for an to obtain

an =
n∑

ν=0

â′nνXν . (5)

Substituting (5) into (3) yields

Yn =
n∑

ν=0

b̂nνλνaν =
n∑

ν=0

b̂nνλν

( ν∑
i=0

â′νiXi

)

=
n∑

ν=0

b̂nνλν

( ν−2∑
i=0

â′νiXi + â′ν,ν−1Xν−1 + â′ννXν

)

=
n∑

ν=0

b̂nνλν â
′
ννXν +

n∑
ν=1

b̂nνλν â
′
ν,ν−1Xν−1
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+
n∑

ν=2

b̂nνλν

ν−2∑
i=0

â′νiXi

= b̂nnλnâ′nnXn +
n−1∑
ν=0

b̂nνλν â
′
ννXν +

n−1∑
ν=0

b̂n,ν+1λν+1â
′
ν+1,νXν

+
n∑

ν=2

b̂nνλν

ν−2∑
i=0

â′νiXi

=
bnn

ann
λnXn +

n−1∑
ν=0

(
b̂nνλνa

′
νν + b̂n,ν+1λν+1â

′
ν+1,ν

)
Xν

+
n∑

ν=2

b̂nνλν

ν−2∑
i=0

â′νiXi

=
bnn

ann
λnXn +

n−1∑
ν=0

(
b̂nνλνa

′
νν + b̂n,ν+1λν+1a

′
νν − b̂n,ν+1λν+1a

′
νν

+ b̂n,ν+1λν+1â
′
ν+1,ν

)
Xν +

n∑
ν=2

b̂nνλν

ν−2∑
i=0

âνiXi

=
bnn

ann
λnXn +

n−1∑
ν=0

∆ν

(
b̂nνλν

)
aνν

Xν

+
n−1∑
ν=0

b̂n,ν+1λν+1

(
a′νν + â′ν+1,ν

)
Xν +

n∑
ν=2

b̂nνλν

ν−2∑
i=0

â′νiXi. (6)

Using the fact that

a′νν + â′ν+1,ν =
1

aνν

(aνν − aν+1,ν

aν+1,ν+1

)
, (7)

and substituting (7) into (6), we have

Yn =
bnn

ann
λnXn +

n−1∑
ν=0

∆ν(b̂nνλν)
aνν

Xν +
n−1∑
ν=0

b̂n,ν+1λν+1

(aνν − aν+1,ν

aννaν+1,ν+1

)
Xν

+
n∑

ν=2

b̂nνλν

ν−2∑
i=0

â′νiXi

= Tn1 + Tn2 + Tn3 + Tn4.
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By Minkowski’s inequality it is sufficient to show that

∞∑
n=1

nk−1|Tni|k < ∞, i = 1, 2, 3, 4.

Using (i)

∞∑
n=1

nk−1|Tn1|k =
∞∑

n=1

nk−1
∣∣∣ bnn

ann
λnXn

∣∣∣k
= O(1)

∞∑
n=1

nk−1|Xn|k = O(1),

since
∑

an is summable |A|k.
Using (i), (iii), (iv) and Hölder’s inequality,

∞∑
n=1

nk−1|Tn2|k =
∞∑

n=1

nk−1
∣∣∣ n−1∑

ν=0

∆ν(b̂nνλν)
aνν

Xν

∣∣∣k
≤

∞∑
n=1

nk−1
{ n−1∑

ν=0

(|aνν |−1|∆ν(b̂nνλν)||Xν |
}k

= O(1)
∞∑

n=1

nk−1
[ n−1∑

ν=0

|bννλν |−1|∆ν(b̂nνλν)||Xν |
]k

= O(1)
∞∑

n=1

nk−1
( n−1∑

ν=0

|bννλν |−k|∆ν(b̂nνλν)||Xν |k
)
×

×
( n−1∑

ν=0

|∆ν(b̂nνλν)|
)k−1

= O(1)
∞∑

n=1

(n|bnnλn|)k−1
n−1∑
ν=0

|bννλν |−k|∆ν(b̂nνλν)||Xν |k

= O(1)
∞∑

ν=1

|bννλν |−k|Xν |k
∞∑

n=ν+1

(n|bnnλn|)k−1|∆ν(b̂nνλν)|

= O(1)
∞∑

ν=1

|bννλν |−k|Xν |kνk−1|bννλν |k

= O(1)
∞∑

ν=1

νk−1|Xν |k = O(1).
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Using (ii), (v), (vi), (vii) and Hölder’s inequality,

∞∑
n=1

nk−1|Tn3|k =
∞∑

n=1

nk−1
∣∣∣ n−1∑

ν=0

b̂n,ν+1λν+1

(aνν − aν+1,ν

aννaν+1,ν+1

)
Xν

∣∣∣k
≤

∞∑
n=1

nk−1
( n−1∑

ν=0

|b̂n,ν+1λν+1|
∣∣∣aνν − aν+1,ν

aννaν+1,ν+1

∣∣∣|Xν |
)k

= O(1)
∞∑

n=1

nk−1
( n−1∑

ν=0

|b̂n,ν+1λν+1||Xν |
)k

= O(1)
∞∑

n=1

nk−1
( n−1∑

ν=0

( |bνν |
|bνν |

)
|b̂n,ν+1λν+1||Xν |

)k

= O(1)
∞∑

n=1

nk−1
n−1∑
ν=0

|bνν |1−k|b̂n,ν+1λν+1||Xν |k×

×
( n−1∑

ν=0

|bνν |b̂n,ν+1λν+1|
)k−1

= O(1)
∞∑

n=1

(n|bnnλn+1|)k−1
n−1∑
ν=0

|bνν |1−k|b̂n,ν+1||Xνλν+1|k

= O(1)
∞∑

ν=0

|bνν |1−k||λν+1||Xν |k
∞∑

n=ν+1

(n|bnnλn+1|)k−1|b̂n,ν+1|

= O(1)
∞∑

ν=0

|bνν |1−k||λν+1||Xν |kνk−1|bννλν+1|k−1

= O(1)
∞∑

ν=0

νk−1|λν+1Xν |k = O(1).

From (viii),

∞∑
n=1

nk−1|Tn4|k =
∞∑

n=1

nk−1
∣∣∣ n∑

ν=2

b̂nνλν

ν−2∑
i=0

â′νiXi

∣∣k = O(1).

�

A weighted mean matrix is a lower triangular matrix with entries pk/Pn,
0 ≤ k ≤ n, where Pn :=

∑n
k=0 pk.

Corollary 1. Let λn be a sequence of constants, {pn} a sequence of positive
constants, B a triangle satisfying
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(i) Pn|bnn| = O(pn/|λn|),

(ii)
n−1∑
ν=0

|∆ν(λν b̂nν)| = O(|bnnλn|),

(iii)
∞∑

n=ν+1

(n|bnnλn|)k−1|∆ν(λν b̂nν)| = O(νk−1|λνbνν |k),

(iv)
n−1∑
ν=0

|bνν b̂n,ν+1λν+1| = O(|bnnλn+1|),

(v)
∞∑

n=ν+1

(n|bnnλn+1|)k−1|b̂n,ν+1| = O((ν|bννλν+1|)k−1).

(vi)
∞∑

ν=1

νk−1|λν+1Xν |k = O(1).

Then λ ∈ (|N, pn|k, |B|k).

Proof. Conditions (i), (iii) - (vii) of Theorem 1 reduce to conditions (i) -
(vi), respectively of Corollary 1.

With A = (N, pn),

ann − an+1,n =
pn

Pn
− pn

Pn+1
=

pnpn+1

PnPn+1
= annan+1,n+1,

and condition (ii) of Theorem 1 is automatically satisfied.
A matrix A is said to be factorable if ank = bnck for each n and k.
Since A is a weighted mean matrix, Â is a factorable triangle and, as

has been shown in [4], its inverse is bidiagonal. Therefore condition (viii) of
Theorem 1 is trivially satisfied. �

Corollary 2. Let λn be a sequence of constants, {pn} a sequence of positive
constants, A a triangle satisfying

(i) pn/(Pn|ann|) = O(1/|λn|),

(ii) |ann − an+1,n| = O(|annan+1,n+1|),

(iii)
n−1∑
ν=0

|∆ν(λνPν−1)| = O(Pn−1|λn|),

(iv) |∆ν(Pν−1λν)|
∞∑

n=ν+1

(npn|λn|
Pn

)k−1 pn

PnPn−1
= O

(
νk−1

(pν |λν |
Pν

)k)
,
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(v)
n−1∑
ν=0

pν |λν+1| = O(Pn−1λn+1),

(vi)
∞∑

n=ν+1

nk−1
(npnλn+1

Pn

)k−1 pn

PnPn−1
= O

(
(νpν |λν+1|)k−1

P k
ν

)
,

(vii)
∞∑

ν=1

νk−1|λν+1Xν |k = O(1),

(viii)
∞∑

n=ν+1

nk−1
( pn

PnPn−1

)k∣∣∣ n∑
ν=2

λνPν−1

ν−2∑
i=0

â′νiXi

∣∣∣k = O(1).

Then λ ∈ (|A|k, |N, pn|k).

Proof. With B = (N, pn), conditions (i) - (viii) of Theorem 1 reduce to
conditions (i) - (viii), respectively of Corollary 2, since

b̂nν =
pnPν−1

PnPn−1
.

�

Corollary 3. Let qn = 1 for each n, {pn} a positive sequence satisfying con-
ditions (iii)-(vi) of Corollary 2,

(i)
npn|λn|

Pn
= O(1),

(ii)
∞∑

ν=1

νk−1|λν)Xν |k| = O(1).

Then λ ∈ (|C, 1|k, |N, pn|k).

Proof. With A = (C, 1), condition (i) of Corollary 2 becomes condition (i)
of Corollary 3.

Note that

ann − an+1,n =
pn

Pn
− pn

Pn+1

=
pnpn+1

PnPn+1
= annan+1,n+1,

and condition (ii) of Corollary 2 is automatically satisfied.
Since the inverse of (C, 1) is bidiagonal, condition (viii) of Corollary 2 is

automatically satisfied. �

Corollary 4. Let {pn} be a positive sequence, qn = 1 for each n, satisfying
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(i)
Pn|λn|
npn

= O(1),

(ii)
n−1∑
ν=0

|∆ν(νλν)| = O(n|λn|),

(iii) |∆ν(νλν)|
∞∑

n=ν+1

|λn|k−1

n(n + 1)
= O

( |λν |k

ν

)
,

(iv)
n−1∑
ν=0

|λν+1| = O(n|λn+1|),

(v)
∞∑

n=ν+1

|λn+1|k

n(n + 1)k
= O

(( |λν+1|
ν

)k−1)
,

(vi)
∞∑

ν=1

νk−1|λν+1Xν |k = O(1).

Then λ ∈ |N, pn|k, |C, 1|k).

With B = (C, 1), the conditions of Corollary 1 reduce to those of Corollary 4.

We now turn our attention to obtaining necessary conditions.

Theorem 2. Let A and B be two lower triangular matrices with A satisfying

∞∑
n=ν+1

nk−1|∆ν ânν |k = O(|aνν |k). (8)

Then necessary conditions for λ ∈ (A|k, |B|k) are

(i) |bννλν | = O(|aνν |),

(ii)
( ∞∑

n=ν+1

nk−1|∆ν b̂nνλν |k)1/k = O(|aνν |ν1−1/k
)
,

(iii)
∞∑

n=ν+1

nk−1|b̂n,ν+1λν+1|k = O
( ∞∑

n=ν+1

nk−1|ân,ν+1|k
)
.

Proof. For k ≥ 1 define

A∗ =
{
{ai} :

∑
ai is summable |A|k

}
,

B∗ =
{
{bi} :

∑
biλi is summable |B|k

}
.
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With Yn and Xn as defined by (3) and (4), the spaces A∗ and B∗ are
BK-spaces, with norms given by

‖a‖1 =
{
|X0|k +

∞∑
n=1

nk−1|Xn|k
}1/k

(9)

and

‖a‖2 =
{
|Y0|k +

∞∑
n=1

nk−1|Yn|k
}1/k

, (10)

respectively.
From the hypothesis of the theorem, ‖a‖1 < ∞ implies that ‖a‖2 < ∞.

The inclusion map i : A∗ → B∗ defined by i(x) = x is continuous, since A∗

and B∗ are BK-spaces. Applying the closed graph theorem, there exists a
constant K > 0 such that

‖a‖2 ≤ K‖a‖1. (11)

Let en denote the n-th coordinate vector. From (3) and (4), with {an}
defined by an = en − en+1, n = ν, an = 0 otherwise, we have

Xn =


0, n < ν,

ânν , n = ν,

∆ν ânν , n > ν,

and

Yn =


0, n < ν,

b̂nν , n = ν,

∆ν(b̂nνλν), n > ν.

From (9) and (10),

‖a‖1 =
{

νk−1|aνν |k +
∞∑

n=ν+1

nk−1|∆ν ânν |k
}1/k

,

and

‖a‖2 =
{

νk−1|bνν |k +
∞∑

n=ν+1

nk−1|∆ν b̂nν |k
}1/k

,

recalling that b̂νν = b̄νν = bνν .
From (11), using (8), we obtain

νk−1|bννλν |k +
∞∑

n=ν+1

nk−1|∆ν(b̂nνλν |k
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≤ Kk
(
νk−1|aνν |k +

∞∑
n=ν+1

nk−1|∆ν ânν |k
)

≤ Kk
(
νk−1|aνν |k + O(1)|aνν |k

)
= O

(
|aνν |k(νk−1 + 1)

)
= O(νk−1|aνν |k).

The above inequality will be true if and only if each term on the left hand
side is O(νk−1|aνν |k). Using the first term,

νk−1|bννλν |k = O(νk−1|aνν |k),
which implies that |bννλν | = O(|aνν |), and (i) is necessary.

Using the second term we obtain( ∞∑
n=ν+1

nk−1|∆ν(b̂nνλν)|k
)1/k

= O(ν1−1/k|aνν |),

which is condition (ii).
If we now define an = en+1 for n = ν, an = 0 otherwise, then, from (3)

and (4) we obtain

Xn =

{
0, n ≤ ν,

ân,ν+1, n > ν,

and

Yn =

{
0, n ≤ ν,

b̂n,ν+1λν+1, n > ν.

The corresponding norms are

‖a‖1 =
{ ∞∑

n=ν+1

nk−1|ân,ν+1|k
}1/k

and

‖a‖2 =
{ ∞∑

n=ν+1

nk−1|b̂n,ν+1λν+1|k
}1/k

.

Applying (11),{ ∞∑
n=ν+1

nk−1|b̂n,ν+1λν+1|k
}1/k

≤ K
{ ∞∑

n=ν+1

nk−1|ân,ν+1|k
}1/k

,

which implies condition (iii). �
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Corollary 5. Let B be a lower triangular matrix, {pn} a sequence satisfying
∞∑

n=ν+1

nk−1
( pn

PnPn−1

)k
= O

( 1
P k

ν

)
. (12)

Then necessary conditions for λ ∈ (|N, pn|k, |B|k) are

(i) |bννλν | = O
( pν

Pν

)
,

(ii)
( ∞∑

n=ν+1

nk−1|∆ν(b̂nνλν)|k
)1/k

= O
(
ν1−1/k pν

Pν

)
,

(iii)
∞∑

n=ν+1

nk−1|b̂n,ν+1λν+1|k = O(1).

Proof. With A = (N, pn), equation (8) becomes (12), and conditions (i) -
(iii) of Theorem 2 become conditions (i) - (iii) of Corollary 10, respectively.

�

Corollary 6. Let 1 ≤ k < ∞, {pn} a positive sequence. Then λ ∈ (|N, pn|,
|B|k) if and only if

(i) |bννλν |
Pν

pν
= O(ν1/k−1),

(ii)
( ∞∑

n=ν+1

nk−1|∆ν(b̂nνλν)|k
)1/k

= O
( pν

Pν

)
,

(iii)
( ∞∑

n=ν+1

nk−1|b̂n,ν+1λν+1|k
)1/k

= O(1).

Every summability factor theorem becomes an inclusion theorem by set-
ting each λn = 1.

Corollary 7. Let A and B be triangles satisfying

(i)
|ann|
|bnn|

= O(1),

(ii)
∣∣∣bn+1,n − bnn

bnnbn+1,n+1

∣∣∣ = O(1),

(iii)
n−1∑
ν=0

|∆ν ânν | = O(|ann|),

(iv)
∞∑

n=ν+1

(n|ann|)k−1|∆ν ânν | = O(νk−1|aνν |k),
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(v)
n−1∑
ν=0

|aνν ||ân,ν+1| = O(|ann|),

(vi)
∞∑

n=ν+1

(n|ann|)k−1|ân,ν+1| = O((ν|aνν |)k−1),

(vii)
∞∑

n=1

nk−1
∣∣∣ n∑

ν=2

ân,ν

r−2∑
r=1

b′νrXr|k = O(1).

Then
∑

an summable |B|k implies that it is summable |A|k, k ≥ 1.

Corollary 7 is Theorem 1 of [3].

Corollary 8. Let {pn} be a positive sequence, T a nonnegative triangle
satisfying

(i) tni ≥ tn+1,i, n ≥ i, i = 0, 1, . . . ,

(ii) Pntnn = O(pn),

(iii) t̄n0 = t̄n−1,0, n = 1, 2, . . .,

(iv)
n−1∑
ν=1

tνν |t̂n,ν | = O(tnn),

(v)
∞∑

n=ν+1

(ntnn)k−1|∆ν t̂nν | = O(νk−1tkνν),

(vi)
∞∑

n=ν+1

(ntnn)k−1|t̂n,ν | = O((νtνν)k−1.

Then
∑

an summable |N, pn|k implies
∑

an is summable |T |k, k ≥ 1.

Proof. Since each λn = 1, condition (vi) of Corollary 1 simply states that∑
an is summable |N, pn|k.
Condition (i) of Corollary 1 reduces to condition (ii) of Corollary 6.
Note that

∆ν t̂nν = t̂nν − t̂n,ν+1 = t̄nν − t̄n−1,ν − t̄n,ν+1 + t̄n−1,ν+1

=
n∑

i=ν

tni −
n−1∑
i=ν

tn−1,i −
n∑

i=ν+1

tni +
n−1∑

i=ν+1

tn−1,i

= tnν − tn−1,ν ≥ 0.
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Therefore, from (i) and (iii) of Corollary 6,
n−1∑
ν=0

|∆ν t̂nν | =
n−1∑
ν=0

|tnν − tn−1,ν | =
n−1∑
ν=0

tn−1,ν −
n−1∑
ν=0

tnν

= t̄n−1,0 − t̄n0 + tnn = tnn,

and condition (ii) of Corollary 1 is satisfied.
Condition (iii) of Corollary 1 reduces to condition (v) of Corollary 6.
Using condition (ii) of Corollary 1, condition (iv) of Corollary 6, and the

fact that condition (iii) of Corollary 6 implies that t̂n0 = 0,
n−1∑
ν=0

tνν t̂n,ν+1 =
n−1∑
ν=0

tνν(t̂n,ν+1 − t̂nν) +
n−1∑
ν=0

tνν t̂nν

=
n−1∑
ν=0

tνν |∆ν t̂nν |+
n−1∑
ν=0

tnν t̂nν = O(tnn),

and condition (iv) of Corollary 1 is satisfied.
Using condition (iv) of Corollary 1 and condition (v) of Corollary 6,

∞∑
n=ν+1

(ntnn)k−1t̂n,ν+1 =
∞∑

n=ν+1

(ntnn)k−1|∆ν t̂nν |+
∞∑

n=ν+1

(ntnn)k−1t̂nν

= O((νtνν)k−1),

and condition (v) of Corollary 1 is satisfied. �

Remark 1. Corollary 6 is equivalent to the corrected version of the Theo-
rem in [1], which appears in [2].

Corollary 9. Let A and B be two lower triangular matrices, A satisfing
(8). Necessary conditions for

∑
an summable |A|k to imply that

∑
an is

summable |B|k are
(i) |bνν | = O(|aνν |),

(ii)
∞∑

n=ν+1

nk−1|∆ν b̂nν |k = O(|aνν |kνk−1),

(iii)
∞∑

n=ν+1

nk−1|b̂n,ν+1|k = O
( ∞∑

n=ν+1

nk−1|ân,ν+1|k
)
.

To prove the corollary simply put λn = 1 in Theorem 2.

Corollary 10. Let B be a lower triangular matrix, A a weighted mean
matrix with {pn} a sequence satisfying (8). Then necessary conditions for∑

an summable |N, pn|k to imply that
∑

an is summable |B|k are
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(i)
Pν |bνν |

pν
= O(1),

(i)
∞∑

n=ν+1

nk−1|∆ν b̂nν |k = O
(
νk−1

( pν

Pν

)k)
,

(iii)
∞∑

n=ν+1

nk−1|∆ν b̂n,ν+1|k = O(1).

To prove the corollary set λn = 1 in Corollary 5.
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Department of Mathematics
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