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A DISTRIBUTIONAL VERSION OF THE FERENC
LUKÁCS THEOREM

RICARDO ESTRADA

Abstract. The theorem of F. Lukács determines the generalized jumps
of a periodic, integrable function in terms of a logarithmic average of the
partial sums of its conjugate Fourier series. Recently, F. Móricz gave
a version of Lukács result for the Abel-Poisson means of the conjugate
Fourier series, under an extended notion of jump. In this article we give
a generalization that applies to periodic distributions under a much
extended notion of jump, namely, that of distributional point values
of  Lojasiewicz. Our generalization is obtained by obtaining results on
the local boundary behaviour of an analytic function with distributional
boundary values near a point where the boundary generalized function
has a jump.

1. Introduction

Let f be a function of period 2π, with Fourier series

f (x) ∼ 1
2
a0 +

∞∑
k=1

(ak cos kx+ bk sin kx) . (1.1)

Let
∞∑

k=1

(ak sin kx− bk cos kx) , (1.2)

be the conjugate series and let s̃n (f, x) be the nth partial sum of (1.2).
Then the Ferenc Lukács theorem [13], [21, Thm. 8.13] states that if f is
integrable and if there exists a number d = dx (f) such that

lim
h→0+

1
h

∫ h

0
|f (x+ t)− f (x− t)− d| dt = 0 , (1.3)

then
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lim
h→0+

s̃n (f, x)
lnn

= − 1
π
d . (1.4)

Recently, F. Móricz [14] proved a corresponding result for the Abel-
Poisson means of the conjugate series, namely, if

f̃ (r, x) =
∞∑

k=1

(ak sin kx− bk cos kx) rk , 0 ≤ r < 1 , (1.5)

the number, d = dx (f) , defined by the limit

d = lim
h→0+

1
h

∫ h

0
(f (x+ t)− f (x− t)) dt , (1.6)

exists, and f is integrable, then

lim
r→1−

f̃ (r, x)
ln (1− r)

=
1
π
d . (1.7)

Our aim is to give a generalization of these results in two directions. First
we consider the case when f is a periodic distribution, f ∈ D′ (R) . Second,
we consider the case the case when d is the distributional point limit of
the jump function ψx (t) = f (x+ t) − f (x− t) as t → 0+ in the sense of
 Lojasiewicz. The existence of the distributional jump d means that there
exists n ∈ N and a primitive of order n of ψx, Ψ, with Ψ(n) = ψx, such that
Ψ is continuous near t = 0, and

lim
t→0

n!Ψ (t)
tn

= d . (1.8)

The definition (1.6), although more general than (1.3), corresponds to the
case n = 1 of the  Lojasiewicz definition (1.8). It is interesting to observe
that Fourier series having a distributional point value at a point have been
characterized [3], while there is no corresponding result for ordinary func-
tions.

The article is organized as follows. Section 2 gives some necessary back-
ground material from the distributional theory of asymptotic expansions
[4, 7, 15, 18], and from the notion of distributional point values [12]. Sec-
tion 3 considers an important question in the study of distributional point
values: the definition of  Lojasiewicz says that

f (x0) = γ , distributionally, (1.9)

if and only if,

lim
ε→0

〈f (x0 + εx) , φ (x)〉 = γ

∫ ∞

−∞
φ (x) dx , ∀φ ∈ D (R) . (1.10)

It happens many times that the evaluation 〈f (x0 + εx) , φ (x)〉 is defined
but φ /∈ D (R) , for instance if f has compact support and φ is any smooth
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function. Then, one is interested in knowing if (1.10) still holds. Here we
show that although (1.10) does not hold in general, there are extra conditions
on f and φ under which it does. The results of Section 3 are used in Sections
4 and 5, respectively, to study the local boundary behavior of harmonic
and analytic functions with distributional boundary values. The results of
Sections 4 and 5, in turn, are then used in Section 6 to prove the announced
generalization of the Lukács-Móricz theorem.

2. Preliminaries

In this section we explain the spaces of test functions and distributions
needed in this paper. We also give a summary of the notion of Cesàro
behavior of a distribution at infinity [4] and at a point [7, 12]. All of our
functions and distributions are over one dimensional spaces.

The spaces of test functions D, E , and S and the corresponding spaces of
distributions D′, E ′, and S ′ are well-known [10, 11, 16]. In general [20] we
call a topological vector space A a space of test functions if D ⊂ A ⊂ E , the
inclusions being strict, and if the derivative d/dx is a continuous operator of
A. Another useful space, particularly in the study of distributional asymp-
totic expansions [7, 15, 18], is K′, dual of K. A smooth function φ belongs
to K if there is a constant γ such that φ(k)(x) = O(|x|γ−k) as |x| → ∞ for
k = 0, 1, 2, . . . , that is, if φ(x) = O(|x|γ) strongly. The space K is formed by
the so-called GLS symbols [9]; the topology of K is given by the canonical
seminorms. The space K′ plays a fundamental role in the theory of summa-
bility of distributional evaluations [4]. The elements of K′ are exactly the
generalized functions that decay very rapidly at infinity in the distributional
sense or, equivalently, in the Cesàro sense.

The Cesàro behavior of a distribution at infinity is studied by using the
order symbols O(xα) and o(xα) in the Cesàro sense. If f ∈ D′(R) and
α ∈ R \ {−1,−2,−3, . . .}, we say that f(x) = O(xα) as x → ∞ in the
Cesàro sense and write

f(x) = O(xα) (C), as x→∞ , (2.1)

if there exists N ∈ N such that every primitive F of order N of f, i.e.,
F (N) = f, is an ordinary function for large arguments and satisfies the
ordinary order relation

F (x) = p(x) +O(xα+N ), as x→∞ , (2.2)

for a suitable polynomial p of degree at most N − 1. A similar definition
applies to the little o symbol. The definitions when x→ −∞ are clear. One
can also consider the case when α = −1,−2,−3, . . . [7, Def. 6.3.1].

The equivalent notations f(x) = O(x−∞) and f(x) = o(x−∞) mean that
f(x) = O(x−β) for each β > 0. It is shown in [4], [7, Thm. 6.7.1] that a
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distribution f ∈ D′ is of rapid decay at ±∞ in the (C) sense,

f(x) = O(|x|−∞) (C) as |x| → ∞ , (2.3)

if and only if f ∈ K′. Functions like sinx, J0(x), or x2eix belong to K′ and
thus are “distributionally small”. The space K′ is a distributional analogue
of the space S of rapidly decreasing smooth functions [7, Section 2.9].

These ideas can be readily extended to the study of the local behavior of
generalized functions [7, 18]. Actually,  Lojasiewicz [12] defined the value of
distribution f ∈ D′(R) at the point x0 as the limit

f(x0) = lim
ε→0

f(x0 + εx) , (2.4)

if the limit exists in D′(R), that is, if

lim
ε→0

〈f(x0 + εx), φ(x)〉 = f(x0)
∫ ∞

−∞
φ(x) dx , (2.5)

for each φ ∈ D(R). It was shown by  Lojasiewicz [12] that the existence of
the distributional point value γ = f (x0) is equivalent to the existence of
n ∈ N, and a primitive of order n of f, that is F (n) = f, which is continuous
near x = x0 and satisfies

lim
x→x0

n!F (x)
(x− x0)n = γ . (2.6)

For example the generalized function f(x) = sin (1/x) is oscillatory near
x = 0, however, it is easy to see that f(0) exists and equals 0.

More generally, one could try to look for a representation of the form

f(x0 + εx) ∼ εδg(x), as ε→ 0 , (2.7)

in the space D′(R), where g is non-null. One can then show that g has to be
homogeneous of order δ. When f(x0 + εx) = o

(
εδ

)
, as ε→ 0+ , because of

equivalencies similar to (2.6), we sometimes write f(x0 + x) = o
(
xδ

)
(C),

as x→ 0+ [7, Thm. 6.9.1].
If we consider the limit of f (x0 + εx) in D′(R \ {0}), then we obtain the

concept of the distributional limit of f(x) at x = x0. Thus limx→x0 f(x) = L
distributionally if

lim
ε→0

〈f(x0 + εx), φ(x)〉 = L

∫ ∞

−∞
φ(x) dx, φ ∈ D(R \ {0}) . (2.8)

Notice that the distributional limit limx→x0 f(x) can be defined for f ∈
D′(R \ {x0}). If the point value f(x0) exists distributionally then the distri-
butional limit limx→x0 f(x) exists and equals f(x0). On the other hand, if
limx→x0 f(x) = L distributionally then there exist constants a0, . . . , an such
that f(x) = f0(x)+

∑n
j=0 ajδ

(j)(x−x0), where the distributional point value
f0(x0) exists and equals L.
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We may also consider lateral limits. We say that the distributional lateral
value f(x+

0 ) exists if f(x+
0 ) = limε→0+ f(x0 + εx) in D′(0,∞), that is,

lim
ε→0+

〈f(x0 + εx), φ(x)〉 = f(x+
0 )

∫ ∞

0
φ(x) dx, φ ∈ D(0,∞) . (2.9)

Similar definitions apply to f(x−0 ). Notice that the distributional limit
limx→x0 f(x) exists if and only if the distributional lateral limits f(x−0 ) and
f(x+

0 ) exist and coincide.

3. About distributional point values

Let f ∈ D′ (R) . Suppose that f has the distributional point value γ, in
the sense of  Lojasiewicz [12], at x = x0,

f (x0) = γ, distributionally , (3.1)

namely,

lim
ε→0

〈f (x0 + εx) , φ (x)〉 = γ

∫ ∞

−∞
φ (x) dx, ∀φ ∈ D (R) . (3.2)

Suppose now that f belongs to a smaller space of distributions, f ∈
A′ (R) , for instance, A′ = E ′ or A′ = S ′. Then, is it true that (3.2) remains
valid if φ ∈ A (R)? The answer, in general, is that (3.2) will not hold if
φ /∈ D′ (R) . As an example we may take

f (x) = δ (x− 1) , φ0 (x) =
sinx
x

. (3.3)

Then
f (0) = 0, distributionally , (3.4)

while
〈f (εx) ;φ0 (x)〉 = sin ε−1 (3.5)

does not have a limit as ε→ 0, even though the integral
∫∞
−∞ φ (x) dx exists.

Actually, in this example, 〈f (εx) , φ (x)〉 does not have a limit as ε→ 0 for
most functions φ ∈ E (R) .

Thus, (3.2) does not hold for general φ, even if 〈f (x0 + εx) , φ (x)〉 is
defined for every ε 6= 0 and even if the right hand side of (3.2) exists.
However, as we are going to show, (3.2) is valid in some cases. In particular,
it holds if f ∈ S ′ (R) and φ ∈ S (R) .

Theorem 1. Let f ∈ D′ (R) , φ ∈ E (R) . Suppose,

f (x0) = γ, distributionally, (3.6)

f (x) = O
(
|x|β

)
(C), as |x| → ∞ , (3.7)

φ (x) = O (|x|α) , strongly, as |x| → ∞ . (3.8)
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If α < −1 and α+ β < −1, then

lim
ε→0

〈f (x0 + εx) , φ (x)〉 = γ

∫ ∞

−∞
φ (x) dx . (3.9)

Proof. We may suppose x0 = 0, without any loss of generality. We may also
suppose β 6= −1,−2,−3 . . . since after slightly increasing β the hypothesis
α + β < −1 is still satisfied. If (3.6) holds then [12], there exists n0 ∈ N
such that for each n ≥ n0 there exists a primitive of order n of f, F (n)

n = f,
such that Fn is continuous in a neighborhood of x = 0, and

lim
x→0

n!Fn(x)
xn

= γ . (3.10)

On the other hand [7, Def. 6.3.1], (3.7) entails the existence of n1 ∈ N such
that if n ≥ n1 there are polynomials p (x) = pn (x) , q (x) = qn (x) of degree
n− 1 at most such that Fn (x) is continuous for all x and

Fn (x) = pn (x) +O
(
xβ+n

)
, x→ +∞ , (3.11)

Fn (x) = qn (x) +O
(
|x|β+n

)
, x→ −∞ . (3.12)

In general pn and qn do not vanish nor are they equal. However, a direct
computation shows that (3.9) holds if φ satisfies (3.8) and f (x) = δ(j) (x− a)
for a 6= 0 and j = 0, 1, 2, . . . . Therefore, by adding a suitable distribution
whose support is a finite set that does not contain the origin, we may suppose
that pn (x) = 0. We could suppose also that n ≥ max {n0, n1} .

Observe now that (3.9) holds if suppφ is compact, because of (3.6). Hence
our result would follow if we prove it under the additional assumption that
suppφ ⊆ [1,∞), since the case suppφ ⊆ (−∞,−1] follows by symmetry, and
each φ ∈ E that satisfies (3.8) can be written as φ = φ1 + φ2 + φ3, where
suppφ1 ⊆ (−∞,−1], suppφ2 ⊆ [1,∞), and suppφ3 is compact.

If suppφ ⊆ [1,∞) and pn = 0, then

〈f (εx) , φ (x)〉 = (−1)n
〈
Gn (εx) , xnφ(n) (x)

〉
, (3.13)

= (−1)n
∫ ∞

−∞
Gn (εx) xnφ(n) (x) dx ,

where Gn (x) = x−nFn (x) is continuous in R, satisfies Gn (0) = γ/n! and

|Gn (x)| ≤
{

M1 , |x| ≤ 1 ,
M1 |x|β , |x| ≥ 1 ,

(3.14)

for some constant M1. There exists another constant M2 such that∣∣∣φ(n) (x)
∣∣∣ ≤M2 |x|α−n , ∀x ∈ R . (3.15)
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Thus, if |ε| ≤ 1, ∣∣∣Gn (εx)xnφ(n) (x)
∣∣∣ ≤M |x|ρH (x− 1) , (3.16)

where ρ = max {α, α+ β} , M = M1M2, and H is the Heaviside function.
But ρ < −1, and so xρH (x− 1) belongs to L1 (R) and thus we can use the
Lebesgue dominated convergence theorem to obtain

lim
ε→0

〈f (εx) , φ (x)〉 = lim
ε→0

(−1)n
∫ ∞

−∞
Gn (εx)xnφ(n) (x) dx

=
(−1)n γ

n!

∫ ∞

−∞
xnφ(n) (x) dx

= γ

∫ ∞

−∞
φ (x) dx ,

as required. �

In particular, (3.9) holds if f is a tempered distribution and φ is a rapidly
decreasing smooth function.

Corollary 1. Let f ∈ S ′ (R) and φ ∈ S (R) . If f (x0) = γ distributionally
then

lim
ε→0

〈f (x0 + εx) , φ (x)〉 = γ

∫ ∞

−∞
φ (x) dx .

For our purposes, we need a generalization of Theorem 1 .

Theorem 2. Let f ∈ D′ (R) , φ ∈ E (R) . Suppose

f (x0 + εx) = o (εκ) , ε→ 0+ , (3.17)

in the space D′ (R) , while

f (x) = O
(
|x|β

)
(C), |x| → ∞ , (3.18)

φ (x) = O (|x|α) , strongly, as |x| → ∞ . (3.19)
If α+ κ < −1 and α+ β < −1, then

〈f (x0 + εx) , φ (x)〉 = o (εκ) , ε→ 0+. (3.20)

Proof. We could give a proof similar to that of Theorem 1, but we prefer
to derive Theorem 2 from Theorem 1. Indeed, if (3.17) is satisfied then the
distribution

g0 (x) =
f (x)

|x− x0|κ
, (3.21)

that belongs to D′ (R \ {x0}) , admits at least an extension g ∈ D′ (R) that
satisfies g (x0) = 0 (if (3.17) is not necessarily satisfied, then g0 would have
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many extensions to D′ (R) , but perhaps none that have a distributional
value at x = x0). The result then follows by writing φ = φ1 + φ2, suppφ1

compact, x0 /∈ suppφ2 :

〈f (x0 + εx) , φ (x)〉 = 〈f (x0 + εx) , φ1 (x)〉
+ εκ 〈g (x0 + εx) , |x− x0|κ φ2 (x)〉

= o (εκ) + εκo (1) = o (εκ) ,

the first bound because of the estimate (3.17), and the second because of
Theorem 1. �

4. Boundary values of harmonic functions

Let U (x, y) be harmonic in the upper half-plane, y > 0. Suppose U has
distributional boundary values,

u (x) = lim
y→0

U (x, y) , (4.1)

in D′ (R) . We want to study the relationship between the distributional
behavior of u (x) at x = x0 and the limits of U (x, y) as (x, y) → (x0, 0) ; for
ease of writing we shall take x0 = 0.

Suppose first that u (x) = 0 in a neighborhood (−ς, ς) of x0 = 0. Then by
applying the reflection principle [17, Section 4.5], [1, Section 3.4], U admits
a harmonic extension to a region that contains (−ς, ς) . Therefore, U is real
analytic at (0, 0) . It follows that if (x̃, ỹ) is any fixed point with ỹ > 0, then
U (εx̃, εỹ) = O (ε) , as ε → 0+. The behavior of U (εx̃, εỹ) up to orders of
magnitude smaller than O (ε) depends only on the local behavior of u (x)
near x = 0.

Therefore, we may suppose that u has compact support. Then we have
the Poisson formula,

U (x, y) =
1
π

〈
u (t) ,

y

(t− x)2 + y2

〉
. (4.2)

So, if ỹ > 0,

U (εx̃, εỹ) =
1
π

〈
u (εt) ,

ỹ

(t− x̃)2 + ỹ2

〉
, (4.3)

thus if u (εt) = o (εκ) , as ε→ 0+, in the space D′ (R) , and κ < 1, then the
Theorem 2 immediately yields U (εx̃, εỹ) = o (εκ) , as ε→ 0+. The estimate
is uniform in (x̃, ỹ) ∈ K, where K is any compact subset of the (open) upper
half-plane. Clearly the estimates do not hold if κ = 1. Summarizing.

Theorem 3. Let U (x, y) be harmonic in the upper half-plane y > 0, with
distributional boundary values u (x) = U (x, 0+) . If

u (εx) = o (εκ) , ε→ 0+ , (4.4)
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in the space D′ (R) and
κ < 1 , (4.5)

then
U (x, y) = o

((
x2 + y2

)κ/2
)
, as (x, y) → (0, 0) , (4.6)

uniformly in any angular domain y ≥ m |x| , for m > 0.

Using the Theorem 3, one may easily obtain the behavior of U (x, y) as
(x, y) → (0, 0) if the behavior of u (x) as x→ 0, distributionally (i.e., in the
space D′ (R)), is known. In particular, if the distributional point value

u (x0) = γ , (4.7)

exists in the sense of  Lojasiewicz, then

lim
(x,y)→(x0,0)

U (x, y) = γ . (4.8)

This result holds even if u is a hyperfunction [19]. If, on the other hand, u
has distributional limits from both sides of u, and no delta functions at x0

present, in the sense that ∀φ ∈ D (R)

lim
ε→0+

〈u (x0 + εx) , φ (x)〉 = γ−

∫ 0

−∞
φ (x) dx+ γ+

∫ ∞

0
φ (x) dx , (4.9)

then

lim
ε→0

U (x0 + εx̃, εỹ) =
ϑ

π
γ− +

(
1− ϑ

π

)
γ+ , (4.10)

where ϑ = arg (x̃+ iỹ) , 0 < ϑ < π. Similarly, if

u (x0 + εx) ∼ εκ
(
γ−x

κ
− + γ+x

κ
+

)
, ε→ 0+, (4.11)

that is, if ∀φ ∈ D (R) ,

lim
ε→0+

〈u (x0 + εx) , φ (x)〉
εκ

= γ−

∫ 0

−∞
|x|κ φ (x) dx+ γ+

∫ ∞

0
|x|κ φ (x) dx ,

(4.12)
then, with r̃2 = x̃2 + ỹ2,

lim
ε→0

U (x0 + εx̃, εỹ)
εκ

=
r̃κ

sinκπ
(γ+ sinκ (π − ϑ) + γ− sinκϑ) , (4.13)

if κ < 1, κ 6= 0,−1,−2,−3, . . . . When κ = −k = −1,−2,−3, . . . , we use the
dispersion relations [7, (2.61)-(2.62)]

1

(x± i0)k
=

1
xk

∓ iπ (−1)k−1

(k − 1)!
δ(k−1) (x) , (4.14)
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where
1
xk

is the canonical regularization [7, pg. 69] to obtain that if

u (x0 + εx) ∼ ε−k
(
ρ δ(k−1) (x) + σ x−k

)
, ε→ 0+, (4.15)

that is, if ∀φ ∈ D (R) ,

lim
ε→0

εk 〈u (x0 + εx) , φ (x)〉 = ρφ(k−1) (0) + σ
〈
x−k, φ (x)

〉
, (4.16)

then

lim
ε→0

εkU (x0 + εx̃+ εỹ) =

(−1)k−1 (k − 1)!ρ
π

=m
(

1
x̃+ iỹ

)
+ σ<e

(
1

x̃+ iỹ

)
. (4.17)

It should be remarked that Theorem 3, as well as formulas (4.8), (4.10),
(4.13), and (4.17) have corresponding valid results for harmonic functions
having distributional boundary values on a smooth contour or on a smooth
arc. Indeed, we just have to use conformal mapping.

5. Boundary values of analytic functions

Let f ∈ D′ (R) with supp f ⊆ [0,∞). Suppose f is the jump of the section-
ally analytic function F (z) , z ∈ C\R, that admits an analytic continuation
to z ∈ C \ [0,∞), across the real axis,

f (x) = F (x+ i0)− F (x− i0) ,

where the two limits

F (x± i0) = lim
ε→0+

F (x± iε) , (5.1)

exist in D′ (R) .
Then, if

f (εx) = o (εκ) , ε→ 0+ , (5.2)
in the space D′ (R) and κ < 0, we can conclude that

F (z) = o (|z|κ) , z → 0, z ∈ C \ [0,∞) . (5.3)

Actually (5.3) is uniform in any sector ς < arg z < 2π − ς , for any ς with
0 < ς < 2π. To prove ( 5.3) we decompose f as f = f1 + f2, where f1

has compact support and where 0 /∈ supp f2. Then F (z) = F1 (z) + F2 (z) ,
where

F1 (z) =
1

2πi

〈
f1 (x) ,

1
x− z

〉
, (5.4)

while F2 = F −F1. Since 0 does not belong to the support of f2, the jump of
F2, it follows [1, Thm. 3.14], [2, Section 5.8], [6], that F2 admits an analytic
continuation to a neighborhood of z = 0. Therefore, F2 (z) = O (1) , z → 0.
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The behavior of F1 (z) as z → 0 in C \ [0,∞) follows directly from Theorem
2. Indeed, let ξ ∈ C, |ξ| = 1, ξ 6= 1, then if z = εξ, we obtain

F1 (εξ) =
1

2πi

〈
f1 (x) ,

1
x− εξ

〉
=

1
2πi

〈
f (εx) ,

1
x− ξ

〉
. (5.5)

In this case f (x) = o (εκ) , as ε → 0+ in the space D′ (R), f (x) = O
(
xβ

)
(C), x → ∞ for any β ∈ R, while φ (x) = o (xα) strongly as x → ∞ for
any α > −1. If we take β negative and α close to −1 we obtain α + κ <
−1, α + β < −1. Therefore, F1 (εξ) = o (εκ) , ε → 0+, and (5.3) follows.
That (5.3) is uniform in ξ for ς < arg ξ < 2π − ς , whenever 0 < ς < 2π is
clear.

Suppose now that κ = 0, that is,

f (εx) = o (1) , ε→ 0 , in the space D′ (R) . (5.6)

Then the Theorem 2 cannot be applied, but we may proceed by observing
that distributional limits can be differentiated, thus,

εf ′ (εx) = o (1) , ε→ 0, distributionally,

or

f ′ (εx) = o
(
ε−1

)
, ε→ 0, distributionally. (5.7)

But if the jump of F is f then the jump of F ′ is f ′. Thus, from (5.3) with
κ = −1 we obtain

F ′ (z) = o
(
|z|−1

)
, z → 0, z ∈ C \ [0,∞). (5.8)

Integrating this order relation we obtain

F (z) = o
(

ln |z|−1
)
, z → 0, z ∈ C \ [0,∞), (5.9)

uniformly in ς < arg z < 2π − ς whenever 0 < ς < 2π.
Therefore, we obtain the ensuing result.

Theorem 4. Let f ∈ D′ (R) be the jump of the sectionally analytic function
F (z) , z ∈ C \ [0,∞). Suppose

f (x) =
n∑

j=1

γjx
κj +

m∑
k=1

(ρkδ
(k−1) (x) + σkx

−k) + γ0 + o (1) (C), (5.10)
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as x→ 0+, where κ1 < κ2 < · · · < κn < 0, κj 6= −1,−2,−3, . . . . Then

F (z) =
n∑

j=1

γj

1− e2πiκj
zκj +

m∑
k=1

iρk ln z + (−1)k (k − 1)!σk

2πzk

+
γ0 ln z−1

2πi
+ o

(
ln |z|−1

)
, (5.11)

as z → 0 in C\ [0,∞), uniformly in ς < arg z < 2π−ς whenever 0 < ς < 2π.

When κ > 0, the leading asymptotic behavior of F (z) in ( 5.3) will depend
globally on f, not just on its local behavior near x = 0.

Observe also that the corresponding estimates near an endpoint of any
smooth arc C hold. Indeed, using a conformal map, we obtain that if F (z)
is analytic in C \ C and has the distributional jump f (ξ) along C, that
satisfies f (ξ) = o (|ξ − a|κ) (C), as ξ → a, where a is an endpoint of C, then
if κ < 0,

F (z) = o (|z − a|κ) , z → a, z ∈ C \ C , (5.12)

while if κ = 0,

F (z) = o
(

ln |z − a|−1
)
, z → a z ∈ C \ C , (5.13)

the order relations being uniform for the angular non-tangential approach
to C. Results similar to the Theorem 4 also follow.

We also have the following useful result. We use the notation sgnx for
the signum function, x/ |x| for x 6= 0.

Theorem 5. Let F be analytic in the upper half-plane, with distributional
boundary values f (x) = F (x+ i0) . Suppose f has a distributional symmet-
ric jump d at x = 0, in the sense that

f (εx)− f (−εx) = d sgnx+ o (1) , ε→ 0+ , (5.14)

in the space D′ (R). Then,

F (z) =
d

πi
ln z−1 + o (|ln z|) , as z → 0 , (5.15)

in the upper-half plane, uniformly in ς < arg z < π− ς whenever 0 < ς < 2π.

Proof. Let ω = z2 and G (ω) = F (z) . Then G is analytic in C \ [0,∞), the
distributional boundary limits G (x± i0) exist, and coincide in the negative
semi-axis x < 0. Thus g (x) = G (x+ i0) − G (x− i0) vanishes for x < 0
and equals f (t) − f (−t) , x = t2, for x > 0, and from (5.14), has the
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distributional lateral limit d as x→ 0+. Therefore, using ( 5.10),

F (z) = G (ω)

=
d

2πi
lnω−1 + o (|lnω|)

=
d

πi
ln z−1 + o (|ln z|) ,

as ω → 0 in C \ [0,∞), or, what is the same, as z → 0 in =mz > 0. �

It is important to point out what Theorem 5 does not say. Let F be a
sectionally analytic function, defined in C \ R. Suppose the distributional
boundary limits F (x± i0) exist, and let f (x) = F (x+ i0)− F (x− i0) be
the corresponding jump. Then the existence of the distributional symmetric
jump of f (x) as x → 0 does not imply that F satisfies an asymptotic
approximation of the type (5.15). Indeed, just take F analytic in the upper
half-plane and zero in the lower half-plane!

When (5.14) holds as a lateral limit, that is, in the space D′ (R\ {0}) then
there exists a polynomial P, whose constant term we may take to be 0, such
that

F (z) = P

(
1
z

)
+

d

πi
ln z−1 + o (|ln z|) , as z → 0 . (5.16)

Using a suitable conformal mapping one can prove the equivalent of (5.16) for
other geometries. In particular, if F (z) is analytic in |z| < 1, has distribu-
tional boundary values f (θ) = limr→1− F

(
reiθ

)
, and f has a distributional

symmetric lateral limit, d = limθ→0 (f (θ)− f (−θ)) , then

F (z) = P

(
1

z − 1

)
+
d ln (z − 1)−1

πi
+ o (|ln (z − 1)|) , z → 1 , (5.17)

where P is a polynomial. In case the odd function f (θ) − f (−θ) does
not contain any delta function at θ = 0, we can conclude that P is just a
constant, that can be taken to be 0.

The Theorem 5 has an interesting generalization. If F is analytic in a
sector θ1 < arg z < θ2, has distributional boundary values at arg z = θ1 and
arg z = θ2 , f1 (r) = f

(
reiθ1

)
and f2 (r) = f

(
reiθ2

)
, respectively, and if

f1 (r)− f2 (r) has a distributional limit d as r → 0+ and no delta functions
at the corner, then

F (z) =
d ln z−1

(θ1 − θ0) i
+ o (|ln z|) , as z → 0 , (5.18)

in the sector. Theorem 4 corresponds to the case the angle aperture is
θ1− θ0 = 2π, while (5.15) covers the case θ1− θ0 = π. The proof is basically
the same as that of Theorem 5.
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We emphasize that we do not assume the existence of the distributional
limits of f1 (r) and f2 (r) as r → 0+, but the existence of the distributional
limit of f1 (r) − f2 (r) . Actually, more is true, since if the distributional
limits f1 (0+) and f2 (0+) exist then they must coincide, and thus the jump
has to vanish!. Indeed, by using conformal mapping, it is enough to see it in
the case of the unit disc, and (5.17) shows that unless P is a constant and
d = 0 the lateral limits do not exist. Therefore, (5.17) gives another proof
of the following beautiful result [5, Thm. 3.1] .

Theorem 6. Let f be analytic inside a region bounded by a smooth contour
C. Suppose F has distributional boundary values, f (ξ) , as z → ξ ∈ C. Let
ξ0 ∈ C and suppose the distributional lateral limits f

(
ξ−0

)
and f

(
ξ+0

)
both

exist. Then f
(
ξ−0

)
= f

(
ξ+0

)
, the distributional point value f (ξ0) exists, and

equals this common value.

6. The Ferenc Lukács theorem

Let f ∈ D′ (R) be periodic, of period 2π, with Fourier series

f (t) =
1
2
a0 +

∞∑
k=1

(ak cos kt+ bk sin kt) . (6.1)

Let
ψx (θ) =

1
2

(f (x+ θ)− f (x− θ)) . (6.2)

Observe that as function of θ, ψx (θ) is odd and has the Fourier sine series
representation

ψx (θ) = −
∞∑

k=1

(ak sin kx− bk cos kx) sin kθ . (6.3)

Suppose now that the distributional lateral limit ψx (0+) exists, so that
ψx (0−) = −ψx (0+) also exists, and that ψx (θ) contains no delta functions
at x = 0. This means that

ψx (εθ) = d sgn θ + o (1) , ε→ 0+, in the space D′ (R) , (6.4)

where d = ψx (0+) is half the value of the jump of ψx at θ = 0. Equivalently,
there exists n ∈ N and a primitive of order n of ψx, Ψx, with Ψ(n)

x (θ) =
ψx (θ) , that is continuous near θ = 0, and satisfies

lim
θ→0

n!Ψx (θ)
θn sgn θ

= d . (6.5)

Observe that the existence of the distributional lateral limits of ψx (θ) at
θ = 0 does not imply the existence of the distributional lateral limits of f (t)
at t = x. Similarly, the fact that ψx (θ) contains no delta functions at θ = 0
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does not imply that the same holds for f (t) at t = x. The function ψx (θ)
captures the symmetric jump structure of f (t) around t = x.

Let us now consider the conjugate Abel-Poisson means of f and ψx :

f̃ (r, t) =
∞∑

k=1

(ak sin kt− bk cos kt) rk , (6.6)

ψ̃x (r, θ) =
∞∑

k=1

(ak sin kx− bk cos kx) cos kθ rk , (6.7)

for 0 ≤ r < 1. Then for t = x and θ = 0 we obtain

f̃ (r, x) = ψ̃x (r, 0) . (6.8)

Therefore, the behavior of the conjugate Abel-Poisson means f̃ (r, x) as r →
1− depends only on the symmetric behavior of f (t) about t = x.

Next, we define

G (ζ) =
∞∑

k=1

(ak sin kx− bk cos kx) ζk, |ζ| < 1 . (6.9)

The analytic function G has the distributional boundary value g (θ) =
limr→1 g

(
reiθ

)
given by

g (θ) =
∞∑

k=1

(ak sin kx− bk cos kx) eikθ

= ψ̃x (θ)− iψx (θ) , (6.10)

where ψ̃x (θ) = ψ̃x (1, θ) . The distribution g has the distributional symmetric
jump function

{g (θ)− g (−θ)} = −2iψx (θ) ,

that has the lateral limit −2id as θ → 0+, and that contains no delta func-
tions at θ = 0. Then formula (5.17) yields

G (ζ) =
−2id
2πi

ln (ζ − 1)−1 + o (|ln (ζ − 1)|)

= −d
π

ln (ζ − 1)−1 + o (|ln (ζ − 1)|) , ζ → 1 . (6.11)

But if ζ = r ∈ R then

G (r) = ψ̃x (r, 0) , (6.12)

and thus
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lim
r→1−

ψ̃x (r, 0)
ln (1− r)

=
d

π
, (6.13)

which, because of (6.8), is the Móricz-Lukács formula. We thus have proved
the following result.

Theorem 7. Let f ∈ D′ (R) be periodic of period 2π. Let x ∈ R, such that f
has a distributional symmetric jump of magnitude d at x, without any delta
functions present, that is,

f (x+ εθ)− f (x− εθ) = d sgn θ + o (1) , ε→ 0+, (6.14)

in D′ (R) . If f̃ (r, x) is the Abel-Poisson mean of the conjugate Fourier series
of f then

lim
r→1−

f̃ (r, x)
ln (1− r)

=
d

π
. (6.15)

More generally, we could just assume that the odd generalized function
ψx (θ) has a distributional limit d as θ → 0+, so that ψx (θ) could have a
sum of (odd) derivatives of the Dirac delta function concentrated at θ = 0.
Then (5.17) yields

G (ζ) = P

(
1

ζ − 1

)
− d

π
ln (ζ − 1)−1 + o (|ln (ζ − 1)|) , ζ → 1 . (6.16)

Therefore, if we use the notion of the finite part of a limit [7, Section 2.4;
exercise 2.3.4], the limit of the expression obtained by removing the singular
part, we obtain the next, more complete generalization of the Móricz-Lukács
formula.

Theorem 8. Let f ∈ D′ (R) be periodic of period 2π. Let x ∈ R, such that
f (x+ θ)− f (x− θ) has a distributional limit d as θ → 0+, that is,

f (x+ εθ)− f (x− εθ) = d sgn θ + o (1) , ε→ 0+, (6.17)

in D′ (R\ {0}) . If f̃ (r, x) is the Abel-Poisson mean of the conjugate Fourier
series of f and F.p. stands for the finite part, then

F.p. lim
r→1−

f̃ (r, x)
ln (1− r)

=
d

π
. (6.18)

It is to be observed that Fejér gave the first result in the subject of
determining the jumps of a function in terms of the partial sums of its
Fourier series [8], and that later Zygmund [21, 9.11, Chap. III, pg. 108]
gave a corresponding theorem for the Abel-Poisson means of the Fourier
series. It is a simple matter to derive a generalization of the Fejér-Zygmund
result as a corollary of our analysis.
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Theorem 9. Let f ∈ D′ (R) be periodic of period 2π. Let x ∈ R, such that
f (x+ θ)− f (x− θ) has a distributional limit d as θ → 0+, that is,

f (x+ εθ)− f (x− εθ) = d sgn θ + o (1) , ε→ 0+, (6.19)

in D′ (R\ {0}) . If f,x (r, x) is the Abel-Poisson mean of the Fourier series of
the derivative f,x = f ′ (x) then

F.p. lim
r→1−

(1− r) f,x (r, x) =
d

π
. (6.20)

Proof. Indeed, an easy computation shows that f,x (r, x) = −rG′ (r) , and
thus (6.20) will follow immediately if we can show that (6.16) can be differ-
entiated with respect to z. Actually, by subtracting an appropriate term we
may suppose that P = 0 and that d = 0, so that it is enough to show that if

g (εθ)− g (−εθ) = o (1) , as ε→ 0+, (6.21)

in D′ (R) then

G′ (ζ) = o

(
1

ζ − 1

)
, as ζ → 1 . (6.22)

But distributional limits can be differentiated, so taking the second deriva-
tive of (6.21) we obtain

g′′ (εθ)− g′′ (−εθ) = o

(
1
ε2

)
, as ε→ 0+, (6.23)

in D′ (R) and therefore our analysis at the beginning of Section 5 yields

G′′ (ζ) = o

(
1

(ζ − 1)2

)
, as ζ → 1 , (6.24)

since g′′ is the distributional boundary value of G′′. Hence (6.22) follows by
integration. �
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