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POINTWISE PRODUCTS OF UNIFORMLY CONTINUOUS
FUNCTIONS

SAM B. NADLER, JR.

Abstract. The problem of characterizing the metric spaces on which
the pointwise product of any two uniformly continuous real - valued func-
tions is uniformly continuous is investigated. A sufficient condition is
given; furthermore, the condition is shown to be necessary for certain
types of metric spaces, which include those with no isolated point and
all subspaces of Euclidean spaces. It is not known if the condition is
always necessary.

1. Introduction

The question of when pointwise products of uniformly continuous real -
valued functions on a metric space must be uniformly continuous has been
investigated in several papers (e.g., [1], [2], [6]). Almost all results focus
on special types of uniformly continuous functions or involve complicated
conditions on the metric. An exception is Atsuji’s paper [1]: for the case
of connected metric spaces, Atsuji gives a necessary condition for pointwise
products of uniformly continuous real - valued functions to be uniformly con-
tinuous ([1], Theorem 3); in fact, the condition is also sufficient (as we note
following Theorem 4.2). Nevertheless, as far as we know, there is no com-
plete characterization of those metric spaces, even subspaces of the real line
R1, on which the pointwise product of any two uniformly continuous real -
valued functions is uniformly continuous. This is surprising to us in view
of the vast literature on rings and semigroups of continuous functions. We
state the problem for convenient reference; for brevity, we let U(X) denote
the set of all uniformly continuous real - valued functions on a metric space
(X, d).
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Characterization Problem. Determine intrinsic conditions that char-
acterize those metric spaces for which U(X) is closed under pointwise prod-
uct.

We give a general sufficient condition for U(X) to be closed under point-
wise products (we do not know if the condition is also necessary); then we
show the condition is necessary, thus solving the Characterization Problem,
for two types of spaces – metric spaces with no isolated point, and sub-
spaces of certain types of metric spaces (called W - B spaces) which include
all Euclidean spaces. Our main results are Theorems 3.1, 4.2 and 5.4 and
Corollary 5.5.

2. Terminology and notation

We present most of the terminology and notation that we use; we include
brief comments about notions we define. We do not include definitions that
we feel are standard enough to be omitted.

Twin sequences are a central idea in the paper. We say that two sequences,
{an}∞n=1 and {bn}∞n=1, in a metric space (X, d) are twin sequences provided
that

lim
n→∞

d(an, bn) = 0 and an 6= bn for all n.

A metric space is said to be uniformly isolated provided that there is a δ > 0
such that any two points of the space are more than δ apart.

A metric space is called a uniformly continuous set (abbreviated U.C.
set) provided that all continuous real - valued functions on the space are
uniformly continuous [5]. We give a characterization of U.C. sets in Theorem
5.2 that is particularly useful for us. For other results about U.C. sets, see
for example ([1], Theorem 1), [3], [7] [8, p. 368] and [9].

A W-B space is a metric space in which all closed and bounded subsets
are compact (the terminology is from [7]).

We note the following connection between notions we have defined: A
subspace Z of a W -B space is a U.C. set if and only if Z is the union of a
compact set and a uniformly isolated set (Theorem 4 of [7]).

Next, we define the notion of finite chainability. The importance of the
notion is that it characterizes those metric spaces on which every uniformly
continuous real - valued function is bounded ([1], Theorem 2).

Let (X, d) be a metric space. An ε - chain in X from x to y of length m
is a finite sequence

x0 = x, x1, x2, . . . , xm = y

such that d(xi−1, xi) < ε for all i = 1, 2, . . . ,m. We say that (X, d) is
finitely chainable provided that for each ε > 0, there are finitely many points
p1, p2, . . . , pn ∈ X and a positive integer m such that there is an ε - chain in
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X of length m from any point x of X to one of the points p1, p2, . . . , pn ([1],
p. 14).

Finite chainability is a generalization of totally bounded (totally bounded
means m = 1 in the definition of finitely chainable). The unit ball B in
any infinite dimensional Banach space is not totally bounded but is finitely
chainable (use points on radial lines from the center of B to form the required
chains). Finitely chainable spaces are always bounded; for subspaces of
W– B spaces, finite chainability is equivalent to being bounded.

If (X, d) is a metric space and A and B are nonempty subsets of X, then

d(A,B) = inf
{
d(a, b) : a ∈ A and b ∈ B

}
.

We denote the restriction of a map f to a subspace A by f |A. We use E
to denote the closure of E in the given (largest) space.

We assume that all subsets of metric spaces have the subspace metric and
that the real line R1 has its usual metric.

3. A sufficient condition for metric spaces

In Theorem 3.1 we give a general class of metric spaces for which U(X)
is closed under pointwise product. We do not know if the converse of the
theorem is true; however, we show in section 4 that the converse is true for
metric spaces with no isolated point (Theorem 4.2), and we show in section 5
that the converse holds for subspaces of W - B spaces (Theorem 5.4). Other
partial converses of Theorem 3.1 are Theorem 5.7 and Corollary 5.8.

Theorem 3.1. Let (X, d) be a metric space. If X is the union of a finitely
chainable subspace F and a uniformly isolated subspace I, then U(X) is
closed under pointwise product.

Proof. Let f, g : X → R1 be uniformly continuous functions.
Since I is uniformly isolated, there exists δ1 > 0 such that for all x, y ∈ I

such that x 6= y,
d(x, y) > δ1.

Note that the restricted maps f |F and g|F are uniformly continuous.
Thus, since F is finitely chainable, f |F and g|F are bounded ([1], Theorem
2). Hence, there is an M > 0 such that

|f(x)| < M and |g(x)| < M for all x ∈ F.

Also, by uniform continuity, there is a δ2 > 0 such that if x, y ∈ X and
d(x, y) < δ2, then

|f(x)− f(y)| < 1 and |g(x)− g(y)| < 1.
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Thus, for each x ∈ F ,

|f(y)| < M + 1 and |g(y)| < M + 1 for all y ∈ Bd(x, δ2).

Next, by uniform continuity, there exists δ3 > 0 such that if x, y ∈ X and
d(x, y) < δ3, then

|f(x)− f(y)| < ε

2(M + 1)
and |g(x)− g(y)| < ε

2(M + 1)
.

Let
δ = min{δ1, δ2, δ3}.

Now, let x, y ∈ X such that x 6= y and d(x, y) < δ. Since δ ≤ δ1, x and y
are not both in I; hence, we assume without loss of generality that x ∈ F .
Thus, |f(x)| < M and, since y ∈ Bd(x, δ2), |g(y)| < M + 1. Therefore,

|f(x)g(x)− f(y)g(y)| =
∣∣f(x)g(x)− f(x)g(y) + f(x)g(y)− f(y)g(y)

∣∣
≤ |f(x)| |g(x)− g(y)|+ |g(y)| |f(x)− f(y)|

< M
ε

2(M + 1)
+ (M + 1)

ε

2(M + 1)
< ε.

This proves that f · g is uniformly continuous. �

4. Characterization when X has no isolated point

We prove that the converse of Theorem 3.1 is true when X has no isolated
point.

First we need a lemma; the lemma is probably known but does not seem
to be stated in the literature, so we include a proof of the lemma.

Lemma 4.1. Let (X, d) be a metric space, and let A and B be nonempty
subsets of X such that d(A,B) > 0. Define ϕ : X → R1 by

ϕ(x) =
d(x,A)

d(x,A) + d(x, B)
for all x ∈ X.

Then ϕ is uniformly continuous.

Proof. Let ε > 0. Let δ = ε · d(A,B). Note that δ > 0 by our assumption
about A and B.

Let p, q ∈ X such that d(p, q) < δ. Then

|ϕ(p)− ϕ(q)| =
∣∣∣∣ d(p, A)
d(p, A) + d(p, B)

− d(q, A)
d(q, A) + d(q, B)

∣∣∣∣
=

∣∣∣∣ d(p, A)d(q, B)− d(q, A)d(p, B)
[d(p, A) + d(p, B)][d(q, A) + d(q, B)]

∣∣∣∣
=

∣∣∣∣d(p, A)d(q, B)− d(p, A)d(p, B) + d(p, A)d(p, B)− d(q, A)d(p, B)
[d(p, A) + d(p, B)][d(q, A) + d(q, B)]

∣∣∣∣
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=
∣∣∣∣d(p, A)[d(q, B)− d(p, B)] + d(p, B)[d(p, A)− d(q, A)]

[d(p, A) + d(p, B)][d(q, A) + d(q, B)]

∣∣∣∣
≤ d(p, A) |d(q, B)− d(p, B)|+ d(p, B) |d(p, A)− d(q, A)|

[d(p, A) + d(p, B)][d(q, A) + d(q, B)]

≤ d(p, A) |q − p|+ d(p, B) |p− q|
[d(p, A) + d(p, B)][d(q, A) + d(q, B)]

(by [4], (6′), p. 210)

=
|p− q|

d(q, A) + d(q, B)
≤ |p− q|

d(A,B)
<

δ

d(A,B)
= ε.

�

Theorem 4.2. Let (X, d) be a metric space with no isolated point. Then
U(X) is closed under pointwise product if and only if (X, d) is finitely chain-
able.

Proof. The fact that finite chainability is sufficient is due to Theorem 3.1.
Conversely, assume that (X, d) is not finitely chainable. Then, by Theo-

rem 2 of [1], there is a uniformly continuous unbounded function g : X → R1.
Hence, there is a sequence {an}∞n=1 in X such that g(an) ≥ n for each n and
such that, without loss of generality, an 6= am for all n 6= m.

By the continuity of g, no subsequence of {an}∞n=1 converges to a point of
X; in particular, no subsequence of {an}∞n=1 converges to aj for any j. Thus,
since an 6= am for all n 6= m, there are mutually disjoint open neighborhoods
Un of the points an in X. Therefore, since an is a limit point of X, there is,
for each n, a point bn ∈ Un such that the sequences {an}∞n=1 and {bn}∞n=1

are twin sequences and g(bn) ≥ n
2 .

For each n, let
An = {an} ∪ (Un − Un),

and define f : X → R1 by

f(x) =


d(x, An)

n[d(x,An) + d(x, bn)]
, if x ∈ Un for some n

0, otherwise.

We prove that f is uniformly continuous. Let ε > 0. Fix N such that
1
N < ε. If x, y ∈ ∪∞n=NUn, then f(x), f(y) ∈ [0, 1

N ]; hence,

|f(x)− f(y)| ≤ 1
N

< ε for x, y ∈ ∪∞n=NUn;

furthermore, f is uniformly continuous on Un for each n < N by Lemma
4.1 (since d(An, bn) > 0 for each n). Therefore, since f(Un − Un) = 0 for
each n, it follows easily that f is uniformly continuous on all of X.
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Finally, g · f is not uniformly continuous since {an}∞n=1 and {bn}∞n=1 are
twin sequences such that

g(an)f(an) = 0 and g(bn)f(bn) ≥ n

2
f(bn) =

1
2
.

�

Theorem 4.2 is a generalization of a theorem that should be credited
to Atsuji – namely, For a connected metric space (X, d),U(X) is closed
under pointwise product if and only if (X, d) is finitely chainable. Atsuji
proved the necessity of being finitely chainable ([1], Theorem 3), but did not
note the sufficiency even though it follows easily from one of his theorems
([1], Theorem 2) and from the elementary fact that the pointwise product
of two bounded uniformly continuous real - valued functions is uniformly
continuous.

5. Characterization theorems for W-B spaces

Recall that a W-B space is a metric space in which all closed and bounded
subsets are compact. We characterize the subspaces Y of W - B spaces for
which U(Y ) is closed under pointwise product (Theorem 5.4 and Corollary
5.5). Our most descriptive characterizations are the equivalences of (1) and
(2) in Theorem 5.4 and Corollary 5.5; we include the equivalences of (1)
and (3) in order to specifically state a satisfying connection between (1) and
uniformly continuous sets in W - B spaces (the equivalence of (1) and (3)
does not hold in general, as we note in Example 5.6).

First, in Theorem 5.2, we characterize U.C. sets for metric spaces in terms
of twin sequences. We use Theorem 5.2 in the proof of Theorem 5.4.

We can deduce Theorem 5.2 from the equivalence of (1) and (7) in The-
orem 1 of [1]. However, the proof of Theorem 1 of [1] involves verifying a
lengthy chain of implications and several verifications are somewhat com-
plicated; thus, we prefer in the interest of completeness to include a short,
simple proof of Theorem 5.2 that is independent of [1].

Lemma 5.1. Let (X, d) be a metric space. If {an}∞n=1 and {bn}∞n=1 are twin
sequences in X that have no subsequences that converge to a point of X, then
there are twin subsequences, {ani}∞i=1 and {bni}∞i=1 , such that ani 6= anj and
bni 6= bnj for all i 6= j and ani 6= bnj for all i and j.

Proof. Let n1 = 1 and note from the definition of twin sequence that an1 6=
bn1 .

Assume inductively that we have defined n1 < n2 < · · · < nk such that
for all i, j ≤ k, ani 6= anj and bni 6= bnj when i 6= j and ani 6= bnj .
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Then, since each term of the sequences {an}∞n=1 and {bn}∞n=1 is repeated
at most finitely many times, there exists nk+1 such that for all i ≤ k,

ank+1
6= ani , bnk+1

6= bni and ank+1
6= bni .

Note that ank+1
6= bnk+1

by the definition of twin sequence.
Then, by induction, we have defined the required subsequences {ani}∞i=1

and {bni}∞i=1. �

Theorem 5.2. Let (X, d) be a metric space. Then (X, d) is a U.C. set if
and only if all twin sequences in X have subsequences that converge to a
point of X.

Proof. Assume that (X, d) is not a U.C. set. Then there is a continuous
function f : X → R1 such that f is not uniformly continuous. Thus, there
exists ε > 0 such that for each n = 1, 2, . . . , there are points xn and yn in
X for which

d(xn, yn) <
1
n

and |f(xn)− f(yn)| ≥ ε.

We see that {xn}∞n=1 and {yn}∞n=1 are twin sequences that have no subse-
quences converging to a point of X (if limi→∞ xni = p, then limi→∞ yni = p
and, hence, f is not continuous at p, a contradiction).

Conversely, assume there are twin sequences, {an}∞n=1 and {bn}∞n=1, in X
that have no subsequences converging to a point of X. By Lemma 5.1, we
assume without loss of generality that an 6= am and bn 6= bm for all n 6= m
and that an 6= bm for all n and m. Then, letting

Y = {an : n = 1, 2, . . . } ∪ {bn : n = 1, 2, . . . },

the following formula defines a function g : Y → R1 :

g(y) =

{
n, if y = an

n + 1, if y = bn.

Since Y has no limit point, g is continuous and Y is closed in X. Thus, g can
be extended to a continuous function h : X → R1 [4, pp. 127 - 128]. Since
{an}∞n=1 and {bn}∞n=1 are twin sequences, g and, hence, h is not uniformly
continuous. Therefore, X is not a U.C. set. �

Lemma 5.3. Let (X, d) be a metric space. If U(X) is closed under point-
wise product, then twin sequences in X are bounded.

Proof. Assume that {an}∞n=1 and {bn}∞n=1 are unbounded twin sequences
in X. By going to subsequences if necessary, we assume without loss of
generality that

d(a1, {an, bn}) ≥ n for all n > 1
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and, by Lemma 5.1, that an 6= am and bn 6= bm for all n 6= m and an 6= bm

for all n and m.
It follows that for all n, there are open neighborhoods Un of {an, bn} in

X such that
Un ∩ Um = ∅ when n 6= m.

Now, define An and f exactly as in the proof of Theorem 4.2, where it is
shown that f is uniformly continuous.

Next, define g : X → R1 by

g(x) = d(a1, x) for all x ∈ X.

A simple argument using the triangle inequality shows that g is nonexpan-
sive, hence uniformly continuous.

Finally, f · g is not uniformly continuous since {an}∞n=1 and {bn}∞n=1 are
twin sequences such that

f(an)g(an) = 0 and f(bn)g(bn) =
1
n

d(a1, bn) ≥ 1(n > 1).

�

We are ready to prove the main results of the section. Note that bounded
sets in W - B spaces are totally bounded and, hence, are finitely chainable.
Thus, the fact that (1) implies (2) in the following theorem shows that the
converse of Theorem 3.1 is true for subspaces of W - B spaces.

Theorem 5.4. Let (X, d) be a W -B space, and let Y ⊂ X. Then the
following are equivalent:

(1) U(Y ) is closed under pointwise product;
(2) Y is the union of a bounded set and a uniformly isolated set.
(3) Y is a U.C. set.

Proof. We first prove (1) implies (3). Assume (1). Then, by Lemma 5.3,
twin sequences in Y are bounded. Hence, twin sequences in Y are bounded
(as follows: let {an}∞n=1 and {bn}∞n=1 be twin sequences in Y ; then, for
each n, there are cn and dn in Y within d(an,bn)

3 of an and bn, respectively;
we see that {cn}∞n=1 and {dn}∞n=1 are twin sequences in Y and, hence, are
bounded; therefore, {an}∞n=1 and {bn}∞n=1 are bounded). Thus, since closed
and bounded subsets of Y are compact, it follows that all twin sequences in
Y have subsequences that converge to a point of Y . Therefore, by Theorem
5.2, Y is a U.C. set. This proves (1) implies (3).

Next, assume (3). Then, by Theorem 4 of [7], Y is the union of a compact
set C and a uniformly isolated set I. Hence, Y is the union of the bounded
set C ∩ Y and the uniformly isolated set I ∩ Y . This proves (3) implies (2).

Finally, (2) implies (1) by Theorem 3.1 (since, as noted above, bounded
sets in Y are totally bounded, hence finitely chainable). �
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Corollary 5.5. If (X, d) is a W -B space, then the following are equivalent:
(1) U(X) is closed under pointwise product;
(2) X is the union of a compact set and a uniformly isolated set;
(3) (X, d) is a U.C. set.

Proof. The corollary follows immediately from Theorem 5.4 ((1) implies (2)
by Theorem 5.4 since the closure of a bounded set in a W - B space is com-
pact). �

We give an example to show that assuming that (X, d) is a W - B space
is necessary for (1) to imply (3) in Theorem 5.4 and Corollary 5.5 (we will
see in Theorem 5.7 that (1) always implies (2) in Theorem 5.4).

Example 5.6. Let B be the unit ball in an infinite dimensional Banach
space. Then B is finitely chainable (as shown in section 2); thus, by Theorem
3.1, B satisfies (1) of Theorem 5.4 and Corollary 5.5. However, it is easy to
see that B does not satisfy (3) of Theorem 5.4 and Corollary 5.5.

Our next theorem shows that (1) implies (2) in Theorem 5.4 without as-
suming (X, d) is a W - B space. The theorem also provides a partial converse
to Theorem 3.1. The corollary that follows the theorem is a characterization
in the setting of spaces that satisfy a condition similar to the condition that
defines W - B spaces.

Theorem 5.7. Let (X, d) be a metric space, and let L denote the set of
all limit points of X. If U(X) is closed under pointwise product, then L
is bounded and the complement of some bounded neighborhood of L in X is
uniformly isolated.

Proof. For each n = 1, 2, . . . , let

Bn = {x ∈ X : d(x, L) < n}.

If L is unbounded or if X −Bn is not uniformly isolated for any n, then,
in either case, we can easily obtain unbounded twin sequences in X; this
contradicts Lemma 5.3. Hence, L is bounded and X − Bk is uniformly
isolated for some k. Since L is bounded, Bk is bounded; clearly, Bk is a
neighborhood of L in X. �

Corollary 5.8. Let (X, d) be a metric space in which all bounded subspaces
are finitely chainable. Then U(X) is closed under pointwise product if and
only if X is the union of a finitely chainable subspace and a uniformly iso-
lated subspace.

Proof. The corollary is due to Theorem 5.7 and Theorem 3.1. �
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Regarding Theorem 5.7, the following example shows that the comple-
ment of some bounded neighborhood of L in X may not be uniformly iso-
lated:

Example 5.9. Let X be the subspace of the Euclidean plane R2 consisting
of the points ( 1

n , 0) and ( 1
n , 1

m) for n, m = 1, 2, . . . . Since X is a bounded set
in the W - B space R2, U(X) is closed under pointwise product by Theorem
5.4. Let

U = {(x, y) ∈ X : y < x};
then U is a bounded neighborhood of L = {( 1

n , 0) : n = 1, 2, . . . } in X such
that X − U is not uniformly isolated.

6. A reduction for the characterization problem

We conclude with a theorem that is easy to prove but that might be useful
to be aware of in working on the Characterization Problem: the theorem
reduces the Problem to complete spaces.

We let X̂ denote the completion of (X, d). We do not distinguish between
X and the natural copy of X that is isometrically embedded in X̂ as a dense
subset of X̂.

Theorem 6.1. Let (X, d) be a metric space. Then U(X) is closed under
pointwise product if and only if U(X̂) is closed under pointwise product.

Proof. Assume that U(X) is closed under pointwise product, and let f, g :
X̂ → R1 be uniformly continuous. Then (f |X)·(g|X) = (f ·g)|X is uniformly
continuous. Therefore, since X is dense in X̂, f · g is uniformly continuous.

Conversely, assume that U(X̂) is closed under pointwise product, and let
f, g : X → R1 be uniformly continuous. Then f and g can be extended
(uniquely) to uniformly continuous maps F,G : X̂ → R1 (10.66 of [10,
p. 324]). Hence, F ·G is uniformly continuous. Therefore, since (F ·G)|X =
f · g, f · g is uniformly continuous. �
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