A NOTE ON INVERSE SYSTEMS OF S(n)-CLOSED SPACES

IVAN LONČAR

ABSTRACT. The aim of this paper is to study inverse systems of the S(n)-closed spaces which are the generalization of H-closed and Urysohn-closed spaces.

1. Introduction

In this paper the symbol \mathbb{N}^+ denotes the set of positive integers and $\mathbb{N} = (0) \cup \mathbb{N}^+$.

The concept of θ -closure was introduced by Veličko [16]. For a subset M of a topological space X the θ -closure is defined by $Cl_{\theta}M = \{x \in X : \text{every closed neighborhood of } x \text{ meets } M\}$, M is θ -closed if $Cl_{\theta}M = M$. This concept was used by many authors for the study of Hausdorff non-regular spaces. The θ -closure is related especially to Urysohn spaces (every pair of distinct points can be separated by disjoint closed neighborhoods). A space X is Urysohn iff the diagonal in $X \times X$ is θ -closed.

We say that a pair (G, H) is an ordered pair of open sets about $x \in X$ if G and H are open subsets of X and $x \in G \subset ClG \subset H$. A point $x \in X$ is in the u-closure of a subset $K \subset X$ ($x \in Cl_uK$) if each ordered pair (G, H) of open sets about $x \in X$ satisfies $K \cap ClH \neq \emptyset$. A subset K of a space X is u-closed if $K = Cl_uK$.

A generalization of the concepts of θ -closure and of u-closure is θ^n -closure defined in Section 2. Section 3 is the main section of this paper. In this section we study the inverse systems of S(n)-closed spaces. We shall show that an inverse limit of S(n)-closed space and Θ^n -closed bonding mapping p_{ab} is non-empty (Theorem 3.5). Moreover, if the projections $p_a: \lim \mathbf{X} \to \mathbf{X}_a, a \in A$, are Θ^n -closed and the θ^n -closure $Cl_{\theta^n}M$ is Kuratowski Closure Operator i.e. $Cl_{\theta^n}(Cl_{\theta^n}(A)) = Cl_{\theta^n}(A)$, then $X = \lim \mathbf{X}$ is non-empty and S(n)-closed (Theorem 3.7).

 $^{2010\ \}textit{Mathematics Subject Classification}. \quad \text{Primary: 54A05, Secondary: 54B35}.$

Key words and phrases. Inverse systems, S(n)-closed.

Copyright © 2015 by ANUBiH.

2. S(N)-spaces

For a positive integer n and a subset M of a topological space X, the θ^n -closure $Cl_{\theta^n}M$ of M is defined to be the set [3]

 $\{x \in X : \text{ for every chain of open neighborhoods of } x, \text{ if } U_1 \subset U_2 \subset \cdots \subset U_n \text{ with } Cl(U_i) \subset U_{i+1}, \text{ where } i = 1, 2, \ldots, n-1, \text{ then one has } Cl(U_n) \cap M \neq \emptyset\}.$

For n=1 this gives θ -closure. Moreover, for n=2 the above definition gives u-closure.

Definition 2.1. A subset M of X is said to be θ^n -closed if $M = Cl_{\theta^n}M$. Similarly θ^n -interior of M is defined and denoted by $Int_{\theta^n}M$, so $Int_{\theta^n}M = X \setminus Cl_{\theta^n}(X \setminus M)$.

Proposition 1. Every θ^n - closed subset $M \subset X$ is closed.

Proof. See [14, p. 222]. □

Definition 2.2. An open set U is called a n-hull of a set A (see [9, p. 624]) if there exists a family of open sets $U_1, U_2, \ldots, U_n = U$ such that $A \subset U_1$ and $ClU_i \subset U_{i+1}$ for $i = 1, \ldots, n-1$.

Definition 2.3. For $n \in \mathbb{N}$ and a filter \mathcal{F} on X we denote by $\mathrm{ad}_{\theta^n}\mathcal{F}$ the set of θ^n – adherent points of \mathcal{F} , i.e. $\mathrm{ad}_{\theta^n}\mathcal{F} = \cap \{Cl_{\theta^n}F_\alpha : F_\alpha \in \mathcal{F}\}$. In particular $\mathrm{ad}_{\theta^0}\mathcal{F} = \mathrm{ad}\mathcal{F}$ is the set of adherent points of \mathcal{F} .

Definition 2.4. Let X be a space and $n \in \mathbb{N}$; a point x of X is S(n)separated from a subset M of X if $x \notin Cl_{\theta^n}M$. In particular x is S(0)separated from M if $x \notin ClM$.

Definition 2.5. Let $n \in \mathbb{N}$ and X be a space:

- (a) X is an S(n)-space if every pair of distinct points of X are S(n)-separated;
- (b) A filter \mathcal{F} on X is an S(n)-filter if every nonadherent point of \mathcal{F} is S(n)-separated from some member of \mathcal{F} ;
- (c) An open cover $\{U_{\alpha}\}$ of X is an S(n)-cover if every point of X is in the θ^n -interior of some U_{α} .

The S(n)-spaces coincide with the \overline{T}_n -spaces defined in [17] and studied further in [10], where also $S(\alpha)$ -spaces are defined for each ordinal α .

Proposition 2. The S(0)-spaces are the T_0 spaces, the S(1)-spaces are the Hausdorff spaces and the S(2)-spaces are the Urysohn spaces.

Clearly every filter is an S(0)-filter, every open cover is an S(0)-cover and every open filter is an S(1)-filter. The open S(2)-filters coincide with the

Urysohn filters defined in [6] and [12]. For $n \ge 1$ the open S(n)-filters were defined in [10]. The special covers used in (3.9) [10] are S(n-1) covers, S(2)-covers are the Urysohn covers defined in [1]. In a regular space every filter (resp. open cover) is an S(n)-filter (resp. S(n)-cover) for every $n \in \mathbb{N}$. The following proposition plays fundamental role in this paper.

Proposition 3. In any topological space:

- a) The empty set and the whole space are Θ^n -closed,
- b) An arbitrary finite union of Θ^n -closed sets is Θ^n -closed,
- c) An arbitrary intersection of Θ^n -closed sets is Θ^n -closed,
- d) $A \Theta^n$ -closed subset is closed,
- e) $ClK \subset Cl_{\Theta^n}K$ for each subset K.

Proof. **a)** By definition.

- b) Let $F = \bigcup \{F_i : i = 1, ..., n\}$ where each F_i is Θ^n -closed. For each $x \notin F$ there exist n-hull U_i of x such that $ClU_i \cap F_i = \emptyset$, i = 1, ..., n. Now $U = \cap \{U_i : i = 1, ..., n\}$ is n-hull of x such that $ClU \cap F = \emptyset$. This means that $x \notin Cl_{\theta^n}F$, i.e. F is Θ^n -closed.
- c) Assume that $x \in Cl_{\theta^n}F$, where $F = \cap \{F_\alpha : \alpha \in A\}$ and each F_α is θ^n -closed. This means that for each n-hull U of the point x we have $ClU \cap F \neq \emptyset$. Clearly $ClU \cap F_\alpha \neq \emptyset$ for every $\alpha \in A$. We infer that $x \in F_\alpha$, $\alpha \in A$, since each F_α is θ^n -closed. Finally, $x \in \cap \{F_\alpha : \alpha \in A\} = F$ and F is θ^n -closed $(F = Cl_{\theta^n}F)$.
 - **d**) See Proposition 1.
- e) The set ClK is the minimal closed set containing K. Hence, $ClK \subset Cl_{\Theta^n}K$.

From (a) and (b) we get the following.

Lemma 2.1. If X is a topological space, then for each $Y \subset X$ there exists a minimal Θ^n -closed subset $Z \subset X$ such that $Y \subset Z$.

Proof. The collection Φ of all Θ^n -closed subsets W of X which contains Y is non-empty since $X \in \Phi$. By (b) of Proposition 3 we infer that $Z = \cap \{W : W \in \Phi\}$ is a minimal Θ^n -closed subset $Z \subset X$ containing Y.

Proposition 4. If $n \geq 1$, then every θ^n -closed subset $M \subset X$ is θ -closed.

Proof. If n=1, then θ^n -closure gives the θ -closure. Suppose that $n\geq 2$ and that some θ^n -closed subset $M\subset X$ is not θ -closed. This means there exists a point $x\in X\setminus M$ such that for every open set U which contains x the set $ClU\cap M$ is non-empty. But x is not in θ^n -closure of M, thus there exists a chain of open neighborhoods of x, $U_1\subset U_2\subset \cdots\subset U_n$, such that $ClU_i\subset U_{i+1}$ for $i=1,2,\ldots,n-1$ and $ClU_n\cap M=\emptyset$. This means that U_n is the neighborhood of x such that $ClU_n\cap M=\emptyset$. This contradicts

the fact that for every open set U which contains x the set $ClU \cap M$ is non-empty. \Box

Definition 2.6. For a space (X, τ) and $n \in \mathbb{N}$ denote by (X, τ_{θ^n}) , where τ_{θ^n} is the topology on X generated by the θ^n -closure, i.e. having as *closed* sets all θ^n -closed sets in (X, τ) .

Clearly $\tau_{\theta^0} = \tau$, $\tau_{\theta^1} = \tau_{\theta}$ and a subset U of X is τ_{θ^n} -open iff every element of U is contained in the θ^n -interior of U.

The next proposition follows directly from the definitions.

Proposition 5. For a topological space (X, τ) and $n \in \mathbb{N}^+$ the following conditions are equivalent:

- (a) (X, τ) is an S(n)-space,
- (b) (X, τ_{θ^n}) is a T_1 space
- (c) (X, τ_{θ^n}) is T_0 and (X, τ) is T_1 .

If $n \ge 1$, then these conditions are equivalent to:

- (d) (X, τ_{θ^n}) is T_0 .
- If n = 2k with $k \in \mathbb{N}^+$, then the above conditions are equivalent to:
 - (e) The diagonal in $X \times X$ is θ^k -closed

This proposition show the pivotal rôle of the topologies τ_{θ^k} in the study of S(n)-spaces for n > 1. In some sense they replace the semiregularization which was the main tool in the study of H-closed spaces.

Let us observe that we have the following result.

Proposition 6. The identity mapping $i:(X, \tau) \to (X, \tau_{\theta^n})$ is continuous.

Definition 2.7. Let $f:(X,\tau)\to (Y,\sigma)$ be a mapping. We define a mapping $f_{\Theta^n}:(X,\tau_{\theta^n})\to (Y,\sigma_{\theta^n})$ by $f_{\Theta^n}(x)=f(x)$ for every $x\in X$, i.e., the following diagram

$$(X,\tau) \xrightarrow{f} (Y,\sigma)$$

$$\downarrow id \qquad \downarrow id$$

$$(X,\tau_{\theta^n}) \xrightarrow{f_{\Theta^n}} (Y,\sigma_{\theta^n})$$

$$(2.1)$$

commutes.

Lemma 2.2. The mapping $f_{\Theta^n}:(X,\tau_{\theta^n})\to (Y,\sigma_{\theta^n})$ is continuous.

Proof. Let us prove that $f_{\Theta^n}^{-1}(F)$ is closed in (X, τ_{θ^n}) if F is closed in (Y, σ_{θ^n}) . It suffices to prove that $f^{-1}(F)$ is Θ^n -closed in X if F is Θ^n -closed in Y. If $x \in X \setminus f^{-1}(F)$, then $f(x) \notin F$. There exists an open set U such that $f(x) \in U$ and $ClU \cap F = \emptyset$ since F is Θ^n -closed in Y. The open set $f^{-1}(U)$ contains x and $Clf^{-1}(U) \cap f^{-1}(F) = \emptyset$ since $f^{-1}(ClU) \cap f^{-1}(F) = \emptyset$. Hence, if $x \in X \setminus f^{-1}(F)$, then $x \in X \setminus Cl_{\Theta^n}f^{-1}(F)$, and, consequently, $f^{-1}(F)$ is Θ^n -closed in X.

Proposition 7. For every $M \subset X$ it follows

$$cl_{\theta^n}M = \cap (ClU : U \text{ is } n\text{-hull of } M).$$

Proof. a) Let us prove that $cl_{\theta^n}M \subset \cap (ClU:U$ is n-hull of M). If $x \in cl_{\theta^n}M$ then it is impossible that $x \notin \cap (ClU:U$ is n-hull of M) since then there exists n-hull U of M such that $x \notin ClU$. This means that there exists a family of open sets $U_1, U_2, \ldots, U_n = U$ such that $A \subset U_1$ and $ClU_i \subset U_{i+1}$ for $i = 1, \ldots, n-1$. Now, $V_1 = X \setminus ClU_1 \supset V_2 = X \setminus ClU_2 \supset \cdots \supset V_n = X \setminus ClU_n$ is the open sets such that $x \in V_n \subset V_{n-1} \subset \cdots \subset V_1$ which satisfy the Definition 2.2. Hence, $x \notin cl_{\theta^n}M$, a contradiction.

b) Let us prove that

$$cl_{\theta^n}M \supset \cap (ClU: U \text{ is } n\text{-hull of } M).$$

Suppose that $x \in \cap \{ClU : U \text{ is } n\text{-hull of } M\}$ is not in $cl_{\theta^n}M$, i.e. $x \notin cl_{\theta^n}M$. By the Definition 2.2 there exists a chain of open neighborhoods of $x, U_1 \subset U_2 \subset \cdots \subset U_n$, such that $ClU_i \subset U_{i+1}$ for $i = 1, 2, \ldots, n-1$ and $ClU_n \cap M = \emptyset$. Now, a chain of open neighborhoods of $M, V_1 = X \setminus ClU_1 \supset V_2 = X \setminus ClU_2 \supset \cdots \supset V_n = X \setminus ClU_n$ is a n-hull $V = V_1$ of M such that $x \notin ClV_1$ since $ClV_1 \cap U_1 = \emptyset$. The proof of $cl_{\theta^n}M \supset \cap (ClU : U \text{ is } n\text{-hull of } M)$ is completed.

Corollary 2.3. A subset M of the space X is θ^n – closed if and only if $M = \bigcap (ClU : U \text{ is } n\text{-hull of } M).$

Definition 2.8. A mapping $f: X \to Y$ is said to be Θ^n -closed if f(F) is Θ^n -closed for each Θ^n -closed subset $F \subset X$.

Lemma 2.4. Let $f: X \to Y$ be a continuous mapping. The following conditions are equivalent:

- (a) f is θ^n -closed,
- (b) For every $B \subset Y$ and each Θ^n -open set $U \supseteq f^{-1}(B)$ there exists a Θ^n -open set $V \supseteq B$ such that $f^{-1}(V) \subset U$.
- (c) f_{θ^n} is a closed mapping.

Proof. The proof is similar to the proof of the corresponding theorem for closed mappings [4, p. 52].

Question. Let $f: X \to Y$ be a mapping. Under what conditions f is θ^n -closed?

Definition 2.9. Following [2, p. 48, (31)] we say that $f: X \to Y$ is Θ^n -perfect if and only if for every filter base \mathcal{F} on X

$$f(\cap \{c1_{\theta^n}F : F \in \mathcal{F}\}) \supseteq \cap \{c1_{\theta^n}f(F) : F \in \mathcal{F}\}$$

Lemma 2.5. If $f: X \to Y$ is Θ^n -perfect, then:

- (a) For each $A \subseteq X$, $c1_{\theta^n} f(A) \subseteq f(c1_{\theta^n} A)$.
- (b) For each θ^n -closed $A \subseteq X$, f(A) is θ^n -closed.

Definition 2.10. A function $f: X \to Y$ is almost Θ^n -closed if for any set $A \subseteq X$, $f(c1_{\theta}A) = c1_{\theta}f(A)$.

Lemma 2.6. If $f: X \to Y$ is almost Θ^n -closed, then it is Θ^n -closed.

Definition 2.11. A mapping $f: X \to Y$ is said to be skeletal (HJ) [7, p. 13] if for each open (regularly open) subset $U \subset X$ we have $\operatorname{Int} f^{-1}(ClU) \subset Clf^{-1}(U)$.

A mapping $f: X \to Y$ is said to have the *inverse property* if $Clf^{-1}(U) = f^{-1}(ClU)$ for every open set U in Y.

Each open mapping has the inverse property since a mapping $f: X \to Y$ is open if and only if $f^{-1}(ClB) = Clf^{-1}(B)$ or - equivalently - Int $f^{-1}(B) = f^{-1}(IntB)$ for every $B \subset Y$ [4, Exercise 1.4.C, p. 57].

Proposition 8. [7, p. 13]. A mapping $f: X \to Y$ is HJ if and only if the counterimage of the boundary of each regularly open set is nowhere dense.

A mapping $p: Y \xrightarrow{onto} X$ is said to be *irreducible* if for each closed subset A of Y $A \neq Y$ implies $Clp(A) \neq X$. A mapping $f: X \to Y$ is said to be *semi-open* provided $Int f(U) \neq \emptyset$ for each non-empty open $U \subset X$. From Proposition 8 it follows the following result (see [7, 1.1, p. 27], [15, p. 236]).

Lemma 2.7. Each semi-open, each open and each closed irreducible mapping is HJ.

Proposition 9. Let $f: X \to Y$ be a Θ^n -closed mapping and let F be a Θ^n -closed subset of X. The restriction g = f|F is Θ^n -closed.

Proof. By (c) of Lemma 2.4 it suffices to prove that $f_{\Theta^n}|i(F)$ is a closed mapping. Lemma follows since the restriction of closed e mapping f_{θ^n} onto a closed subset is closed.

Lemma 2.8. Let $f: X \to Y$ be a surjective mapping. If F is Θ^n -closed in Y, then $f^{-1}(F)$ is Θ^n -closed in X.

Proof. Let us prove that $X \setminus f^{-1}(F)$ is Θ^n -open. If x is a point of $X \setminus f^{-1}(F)$, then $f(x) \in Y \setminus F$. There exists an open hull U such that $f(x) \in U$ and $ClU \cap F = \emptyset$ since F is Θ -closed. Now $x \in f^{-1}(U)$ and $Clf^{-1}(U) \cap F = \emptyset$. We infer that $X \setminus f^{-1}(F)$ is Θ^n -open. Hence, $f^{-1}(F)$ is Θ^n -closed by Definition 2.1.

Definition 2.12. An S(n)-space M, n > 0, is S(n)-closed ([3]) if it is θ^n -closed in every S(n)-space in which it can be embedded.

Porter and Votaw [10] characterized S(n)-closed spaces by means of open S(n)-filters and S(n)-covers (for n=2 it was done by Herrlich [6]). On the other hand Hamlett [5] proved that a Hausdorff space X is H-closed iff for every filter \mathcal{F} on X ad $_{\theta}\mathcal{F} \neq \emptyset$.

Proposition 10. [3, Proposition 2.1., p. 63] Let $n \in \mathbb{N}^+$ and X be a space. Then the following conditions are equivalent:

- (a) For every open filter \mathcal{F} on X $ad_{\theta^n}\mathcal{F} \neq \emptyset$;
- (b) For every filter \mathcal{F} on X $ad_{\theta^n}\mathcal{F} \neq \emptyset$;
- (c) For every open S(n)-filter \mathcal{F} on X ad $\mathcal{F} \neq \emptyset$;
- (d) For every S(n-1)-cover $\{U_{\alpha}\}$ of X there exist $\alpha_1, \alpha_2, \ldots, \alpha_{l\iota}$ such that $X = \bigcup_{i=1}^k ClU_{\alpha_1}$.

If X is an S(n)-space then the above conditions are equivalent to:

(e) X is S(n)-closed.

Proposition 11. Let X be S(n)-closed space. Let $f: X \to Y$ be an HJ mapping and let F be a Θ^n -closed subset $F \subset X$. Then f(F) is Θ^n -closed subset Y.

Proof. Step 1. By Corollary 2.3 we have

$$F = \bigcap (ClU : U \text{ is } n\text{-hull of } F,$$

and let $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ be a maximal family of n-hull containing F. Moreover, let $\mathcal{U} = \{U_{\mu} : \mu \in \Omega\}$ be a family of all n-hull of f(F) such that there exists $V_{\lambda} \in \mathcal{V}$ such that $f(V_{\lambda}) \subset U_{\mu}$. For every n-hull $W \ni y$ we have $ClW \cap f(V_{\lambda}) \neq \emptyset$ since $ClW \cap f(V_{\lambda}) = \emptyset$ implies $Y \setminus ClW \supset f(V_{\lambda})$, $Y \setminus ClW \in \mathcal{U}$ and $y \in Cl(Y \setminus ClW)$.

Step 2. Now, the set $W^* = \text{Int}ClW$ is regularly open and, by virtue of Definition 2.11, we have

$$\operatorname{Int} f^{-1}(ClW^*) \subset Clf^{-1}(W^*).$$

From this and $f^{-1}(ClW^*) \cap V_{\lambda} \neq \emptyset$ it follows that $f^{-1}(W^*) \cap V_{\lambda} \neq \emptyset$ for each $V_{\lambda} \in \mathcal{V}$. The family $\mathcal{V}^* = \{V_{\lambda}^* : V_{\lambda}^* = f^{-1}(W^*) \cap V_{\lambda}\}$ has the finite intersection property. From the S(n)-closedness (Proposition 10) of X it follows that there exists adherent point $x \in \cap \{Cl_{\theta_n}V_{\lambda}^* : V_{\lambda}^* \in \mathcal{V}^*\}$. It is easy to prove that $x \in F$ and $f(x) \in \cap \{ClW : W \text{ is open set containing } y\}$. This means that y = f(x) since Y is a Hausdorff space. Hence, $f(F) \supset cl_{\theta^n}f(F) = \cap (ClV : V \text{ is } n\text{-hull of } f(F)$. The proof of Proposition is completed.

Corollary 2.9. Each semi-open (open, closed irreducible) and each mapping with the inverse property is Θ^n -closed.

Lemma 2.10. If X is S(n)-closed, then every family $\{A_{\mu}, \mu \in \Omega \}$ of θ^n -closed subsets of X with the finite intersection property has a non-empty intersection $\cap \{A_{\mu}, \mu \in \Omega \}$.

Proof. Let X be S(n)-closed and let $\{A_{\mu}, \mu \in \Omega \}$ be a family of θ^n -closed subsets of X with the finite intersection property. By (b) of Proposition 10 we infer that $\operatorname{ad}_{\theta^n}\{A_{\mu}, \mu \in \Omega\} \neq \emptyset$, i.e. $\cap \{Cl_{\theta^n}A_{\mu}, \mu \in \Omega\} \neq \emptyset$ 2.3. But $Cl_{\theta^n}A_{\mu} = A_{\mu}$ since $\{A_{\mu}, \mu \in \Omega\}$ is a family of θ^n -closed subsets of X. Finally we infer that $\cap \{A_{\mu}, \mu \in \Omega\} \neq \emptyset$.

Lemma 2.11. If (X, τ) is S(n)-closed space then the space (X, τ_{θ^n}) is quasi-compact.

Proof. Let (X, τ) be an S(n)-closed space and let us prove that (X, τ_{θ^n}) is quasi-compact. For every filter $\mathcal{F} = \{F : F \in \mathcal{F}\}$ of closed sets on (X, τ_{θ^n}) we have the family $\{Cl_{\Theta_n}i^{-1}(F) : F \in \mathcal{F}\}$ with non-empty intersection $\cap \{Cl_{\Theta_n}i^{-1}(F) : F \in \mathcal{F}\}$ since (X, τ) is S(n)-closed space. It is clear that $\cap \{F : F \in \mathcal{F}\} \neq \emptyset$ since $i(Cl_{\Theta_n}i^{-1}(F)) = ClF = F$. Hence, (X, τ_{θ^n}) is quasi-compact.

Following Porter and Thomas [11] (for n = 1 they introduced quasi-H-closed spaces) the spaces satisfying the equivalent conditions (a) - (d) will be called *quasi* S(n)-closed.

An open set U of a topological space (X, τ) is regularly open if $U = \operatorname{Int} Cl$ U. The topology on X which has as a basis the set of regularly open sets of (X, τ) is denoted by τ_s ; it is the semiregularization of τ and (X, τ) is semiregular if $\tau_s = \tau$.

The set $F \subset X$ regularly closed if $F = Cl \operatorname{Int} F$. A space X is almost regular if for each regularly closed set $F \subset X$ and each point $x \in X \setminus F$ there are disjoint open sets $U \ni x$ and $V \supset F$. Moreover, the space (X, τ) is almost regular if (X, τ_s) is regular.

For a space X and $n \in \mathbb{N}^+$ denote by $o_n(X)$ the (ordinal) number of iterations of the θ^n -closure to get a Kuratowski operator (it will be the closure in $\tau_{\theta'^1}$). We call $o_n(X)$ 274ⁿ-order of X. By Theorem 1.2 of [3] $o_1(X) = 1$ iff X is almost regular. We shall sometimes need this result that in an almost regular space X, $Cl_{\Theta}A$ is Θ -closed (i.e. $Cl_{\Theta}(Cl_{\Theta}A) = Cl_{\Theta}A$ [8].

Let X be a set and $\mathcal{P}(X)$ its power set. A Kuratowski Closure Operator is an assignment $cl \colon \mathcal{P}(X) \to \mathcal{P}(X)$ with the following properties:

- 1. $cl(\emptyset) = \emptyset$ (Preservation of Nullary Union);
- 2. $A \subset cl(A)$ (Extensivity);
- 3. $cl(A \cup B) = cl(A) \cup cl(B)$ (Preservation of Binary Union);
- 4. cl(cl(A)) = cl(A) (Idempotence).

If the last axiom, Idempotence, is omitted, then the axioms define a *Pre*closure Operator. It is clear that θ^n -closure $Cl_{\theta^n}M$ is a preclosure operator.

A consequence of the third axiom is: $A \subseteq B \Longrightarrow cl(A) \subseteq cl(B)$ (Preservation of Inclusion).

Clearly, (4) implies the following result.

Theorem 2.12. Let (X, τ) be S(n)-space. If θ^n -closure $Cl_{\theta^n}M$ is Kuratowski Closure Operator i.e. $Cl_{\theta^n}(Cl_{\theta^n}(A)) = Cl_{\theta^n}(A)$, then (X, τ) is S(n)-closed space if and only if the space (X, τ_{θ^n}) is quasi-compact.

Proof. The "if" part. Let the space (X, τ_{θ^n}) be quasi-compact. For every filter \mathcal{F} on X we have the family $\{Cl_{\Theta_n}F: F \in \mathcal{F}\}$. Using the mapping $i: (X, \tau) \to (X, \tau_{\theta^n})$ from Proposition 6 we obtain the family $\{i(Cl_{\Theta_n}F): F \in \mathcal{F}\}$ which is the filter of closed sets in (X, τ_{θ^n}) . From the quasi-compactness of (X, τ_{θ^n}) it follows that $\cap \{i(Cl_{\Theta_n}F): F \in \mathcal{F}\} \neq \emptyset$. Clearly, $\cap \{Cl_{\Theta_n}F: F \in \mathcal{F}\} = \mathrm{ad}_{\theta^n}\mathcal{F} \neq \emptyset$ (see Definition 2.3). By (e) of Proposition 10 we infer that (X, τ) is S(n)-closed space.

The "only if" part. See 2.11. \Box

Theorem 2.13. S(n)-closed space (X, τ) is quasi-compact if every closed subset of (X, τ) is θ^n -closed.

Proof. The identity mapping $i:(X, \tau) \to (X, \tau_{\theta^n})$ is continuous by Proposition 6. If every closed subset of (X, τ) is θ^n - closed, then the identity i is closed. Thus, $i:(X, \tau) \to (X, \tau_{\theta^n})$ is the homeomorphism. This means that (X, τ) is quasi-compact since (X, τ_{θ^n}) is quasi-compact by Theorem 2.12.

3. Inverse systems of S(n)-closed spaces - inverse system \mathbf{X}_{Θ^n}

This section is the main section of this paper. We shall use the notion of inverse systems as in the book [4, pages 135-144] and we start with the following elementary proposition.

Proposition 12. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of S(n)-spaces. If the projections $p_a : \lim \mathbf{X} \to \mathbf{X}_a, a \in A$, are surjections, then $\lim \mathbf{X}$ is S(n)-space.

Proof. Let x, y be a pair of different points in $\lim \mathbf{X}$. There exists an $a \in A$ such that $p_b(x) \neq p_b(y)$ for every $b \geq a$. By virtue of (a) Definition 2.5 it suffices to prove that every pair of distinct points of X are S(n)-separated (Definition 2.4). Let us prove that x is S(n)-separated from y, i.e., that $x \notin Cl_{\theta^n}\{y\}$. From the fact that X_a is S(n)-space it follows that $p_a(x)$ is S(n)-separated from $p_a(y)$. This means that there exists a n-hull U 2.2 of $p_a(x)$, i.e., there exists a family of open sets $U_1, U_2, \ldots, U_n = U$ such that

 $p_a(x) \in U_1$, $ClU_i \subset U_{i+1}$ for $i = 1, \ldots, n-1$ and $p_a(y) \notin ClU$. It is clear that $p_a^{-1}(U_1), p_a^{-1}(U_2), \ldots, p_a^{-1}(U_n) = p_a^{-1}(U)$ is the n-hull of x and $y \notin Clp_a^{-1}(U)$. Hence $\lim \mathbf{X}$ is a S(n)-space.

Theorem 3.1. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system with HJ mappings p_{ab} . If the projections $p_a : \lim \mathbf{X} \to X_a, a \in A$, are surjections, then they are HJ mapping and, consequently, Θ^n -closed.

Proof. By Proposition 11 a mapping $f: X \to Y$ is HJ if and only if the counterimage of the boundary of each regularly open set is nowhere dense. Suppose that p_a is not HJ. Then there exist a regularly open set U_a in X_a such that the boundary of $p_a^{-1}(U_a)$ contains an open set U. From the definition of a base in $\lim \mathbf{X}$ it follows that there is a $b \geq a$ and an open set U_b in X_b such that $p_b^{-1}(U_b) \subset U$. It is clear that $U_b \subset Bd$ $p_{ab}^{-1}(U_a)$. This is impossible since p_{ab} is HJ. Hence, the projections $p_a, a \in A$, are HJ. From Proposition 11 it follows that p_a is Θ^n -closed.

For every inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of S(n)-closed spaces we shall introduce the inverse system \mathbf{X}_{Θ^n} . Namely, for every space X_a there exists the space $(X_a)_{\Theta^n}$ which is defined in Definition 2.6 as the space (X, τ_{θ^n}) . Moreover, for every mapping $p_{ab}: X_b \to X_a$ there exists the mapping $(p_{ab})_{\Theta^n}$ (see Definition 2.7 and Lemma 2.2). The transitivity condition

$$(p_{ab})_{\Theta^n}(p_{bc})_{\Theta^n} = (p_{ac})_{\Theta^n}$$

follows from the commutativity of the diagram 2.1. This means that we have the following result.

Proposition 13. For every inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of S(n)-closed spaces there exists the inverse system $\mathbf{X}_{\Theta^n} = \{(X_a)_{\Theta^n}, (p_{ab})_{\Theta^n}, A\}$ such that the following diagram commutes

where i and each i_a is the identity for every $a \in A$.

Let us recall that the continuity of the mapping i was proved in Proposition 6.

Proposition 14. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system. There exists a mapping $p_{\Theta} : (\lim \mathbf{X})_{\Theta^n} \to \lim \mathbf{X}_{\Theta^n}$ such that $i = p_{\Theta}i_{\Theta}$, where $i_{\Theta} : \lim \mathbf{X} \to (\lim \mathbf{X})_{\Theta^n}$ is the identity.

Proof. By Definition 2.1 for each $a \in A$ there is $(p_a)_{\Theta} : (\lim \mathbf{X})_{\Theta} \to (X_a)_{\Theta}$. This mapping is continuous (Lemma 2.2). The collection $\{(p_a)_{\Theta} : a \in A\}$

induces a continuous mapping $p_{\Theta} : (\lim \mathbf{X})_{\Theta} \to \lim \mathbf{X}_{\Theta}$. Hence we have the following diagram.

$$\lim_{\downarrow i} \mathbf{X} \stackrel{id}{\to} \lim_{\downarrow i_{\Theta}} \mathbf{X}$$

$$\downarrow i \qquad \downarrow i_{\Theta}$$

$$\lim_{\downarrow i_{\Theta}} \mathbf{X}_{\Theta^{n}} \stackrel{p_{\Theta}}{\leftarrow} (\lim_{\downarrow i_{\Theta}} \mathbf{X})_{\Theta^{n}}$$

In the sequel we shall use the following results.

Theorem 3.2. [13, Theorem 3, p. 206]. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of quasi-compact non-empty T_0 spaces and closed bonding mapping p_{ab} . Then $\lim \mathbf{X}$ is non-empty.

Theorem 3.3. [13, Theorem 5, p. 208]. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of quasi-compact T_0 spaces and closed bonding mapping p_{ab} . Then $\lim \mathbf{X}$ is quasi-compact.

Now, we shall prove the following result.

Lemma 3.4. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of quasi-compact non-empty T_0 spaces and closed surjective bonding mapping p_{ab} . Then the projections $p_a : \lim \mathbf{X} \to \mathbf{X}_a, a \in A$, are surjective and closed.

Proof. Let us prove that the projections p_a are surjective. For each $x_a \in X_a$ the sets $Y_b = p_{ab}^{-1}(x_a)$ are non-empty closed sets. This means that the system $\mathbf{Y} = \{Y_b, p_{bc} | Y_c, a \leq b \leq c\}$ satisfies Theorem 3.2 and has a non-empty limit. For every $y \in Y$ we have $p_a(y) = x_a$. Hence, p_a is surjective. It remains to prove that p_a is closed. It suffices to prove that for every $x_a \in X_a$ and every neighborhood U of $p_a^{-1}(x_a)$ in $\lim \mathbf{X}$ there exists an open set U_a containing x_a such that $p_a^{-1}(U_a) \subset U$. For every $x \in p_a^{-1}(x_a)$ there is a basic open set $p_{a(x)}^{-1}(U_{a(x)})$ such that $x \in p_{a(x)}^{-1}(U_{a(x)}) \subset U$. From the quasicompactness of $p_a^{-1}(x_a)$ it follows that there exists a finite set $\{x_1, \ldots, x_n\}$ of the points of $p_a^{-1}(x_a)$ such that $\{p_{a(x_1)}^{-1}(U_{a(x_1)}), \ldots, p_{a(x_n)}^{-1}(U_{a(x_n)})\}$ is an open cover of $p_a^{-1}(x_a)$. Let $b \geq a(x), a(x_1), \ldots, a(x_n)$ and let $U_b = \bigcup \{p_{a(x_1)b}^{-1}(U_{a(x_1)}), \ldots, p_{a(x_n)b}^{-1}(U_{a(x_n)})\}$. It follows that $p_b^{-1}(U_b) \subset U$ and $p_{ab}^{-1}(x_a) \subset U_b$. From being closed p_{ab} it follows that there is an open set U_a containing x_a such that $p_a^{-1}(U_a) \subset U_b$. Finally, $p_a^{-1}(U_a) \subset U$.

The following Theorem is the main result of this section.

Theorem 3.5. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty S(n)-closed spaces and Θ^n -closed bonding mapping p_{ab} . Then $\lim \mathbf{X}$ is non-empty. Moreover, if p_{ab} are surjections, then the projections p_a : $\lim \mathbf{X} \to X_a$, $a \in A$, are surjections.

Proof. Consider the following diagram

$$X_{a} \qquad \underset{\downarrow}{p_{ab}} \qquad X_{b} \qquad \underset{\downarrow}{p_{bc}} \qquad X_{c} \qquad \dots \qquad \lim \mathbf{X}$$

$$\downarrow i_{a} \qquad \qquad \downarrow i_{b} \qquad \qquad \downarrow i_{c} \qquad \qquad \downarrow i$$

$$(X_{a})_{\Theta^{n}} \qquad \stackrel{(p_{ab})_{\Theta^{n}}}{\longleftarrow} \qquad (X_{b})_{\Theta^{n}} \qquad \stackrel{(p_{bc})_{\Theta^{n}}}{\longleftarrow} \qquad (X_{c})_{\Theta^{n}} \qquad \dots \qquad \lim \mathbf{X}_{\Theta^{n}}$$

from Proposition 13. By Theorem 2.12 each $(X_a)_{\Theta^n}$ is a quasi-compact T_1 space. Furthermore, each mapping $(p_{ab})_{\Theta^n}$ is closed by c) of Lemma 2.4 since p_{ab} is Θ^n -closed (see Definition 2.8). This means that the inverse system $\mathbf{X}_{\Theta} = \{(X_a)_{\Theta}, (p_{ab})_{\Theta}, A\}$ satisfies the conditions of Theorem 3.2. It follows that $\lim \mathbf{X}_{\Theta}$ is non-empty. This implies that $\lim \mathbf{X}$ is non-empty. Further, if $p_{ab}, b \geq a$, are onto mappings, then for each $x_a \in X_a$ the sets $Y_b = p_{ab}^{-1}(x_a)$ are non-empty Θ^n -closed sets (Lemma 2.8). This means that the system $\mathbf{Y}_{\Theta} = \{(Y_b)_{\Theta}, (p_{bc})_{\Theta} | (Y_c)_{\Theta}, a \leq b \leq c\}$ satisfies Theorem 3.2 and has a non-empty limit. This means $\mathbf{Y} = \{Y_b, p_{bc} | Y_c, a \leq b \leq c\}$ has a non-empty limit. For every $y \in Y$ we have $p_a(y) = x_a$.

Lemma 3.6. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of S(n)-closed spaces and Θ^n -closed surjective bonding mapping p_{ab} . Then the projections $p_a : \lim \mathbf{X} \to \mathbf{X}_a, a \in A$, are Θ^n -closed if and only if the mapping $p_{\Theta} : (\lim \mathbf{X})_{\Theta^n} \to \lim \mathbf{X}_{\Theta^n}$ from Proposition 14 is a homeomorphism.

Proof. The "if" part. Now we have the following diagram

where i and each i_a is the identity for every $a \in A$. Each projection q_a : $(\lim \mathbf{X})_{\Theta^n} \to (X_a)_{\Theta^n}$ is closed (Lemma 3.4). From (a) and (c) of Lemma 2.4 it follows that the projection p_a : $\lim \mathbf{X} \to \mathbf{X}_a$ is Θ^n -closed for every $a \in A$.

The only "if" part. Suppose that the projections p_a : $\lim \mathbf{X} \to \mathbf{X}_a, a \in A$, are Θ^n -closed. Let us prove that p_{Θ} is a homeomorphism. It suffice to prove that p_{Θ} is closed. Let $F \subset (\lim \mathbf{X})_{\Theta^n}$ be closed. This means that F is Θ^n -closed in $\lim \mathbf{X}$. For each $a \in A$ the set $p_a(F)$ is Θ^n -closed since the projections p_a are Θ^n -closed. Now, $i_ap_a(F)$ is closed in $(X_a)_{\Theta^n}$. We have the collection $\{q_a^{-1}i_ap_a(F): a \in A\}$ having the finite intersection property. It is clear that $p_{\Theta}(F) = \cap \{q_a^{-1}i_ap_a(F): a \in A\}$ and that $\cap \{q_a^{-1}i_ap_a(F): a \in A\}$ is closed in $\lim \mathbf{X}_{\Theta^n}$. Hence, p_{Θ} is closed and, consequently, a homeomorphism. \square

Question. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of S(n)-closed spaces Under what conditions $\lim \mathbf{X}$ is S(n)-closed?

Now we shall prove some partial answers to this question.

Theorem 3.7. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty S(n)-closed spaces such that θ^n -closure $Cl_{\theta^n}M$ is Kuratowski Closure Operator i.e. $Cl_{\theta^n}(Cl_{\theta^n}(A)) = Cl_{\theta^n}(A)$. If the projections $p_a : \lim \mathbf{X} \to \mathbf{X}_a, a \in A$, are Θ^n -closed, then $X = \lim \mathbf{X}$ is non-empty and S(n)-closed.

Proof. Using Theorem 3.5 we infer that $\lim \mathbf{X}$ is non-empty. By the only if part of Lemma 3.6 we infer that the mapping $p_{\Theta} : (\lim \mathbf{X})_{\Theta^n} \to \lim \mathbf{X}_{\Theta^n}$ from Proposition 14 is a homeomorphism, i.e. that $\lim \mathbf{X}_{\Theta^n} = (\lim \mathbf{X})_{\Theta^n}$. From Theorem 3.3 it follows that $\lim \mathbf{X}_{\Theta^n}$ is quasi-compact. Moreover, from $\lim \mathbf{X}_{\Theta^n} = (\lim \mathbf{X})_{\Theta^n}$ we infer that $(\lim \mathbf{X})_{\Theta^n}$ is quasi-compact. Finally, (a) of Theorem 2.12 completes the proof.

Theorem 3.8. If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system of non-empty S(n)-closed spaces X_a and HJ mappings p_{ab} such that θ^n -closure $Cl_{\theta^n}M$ is Kuratowski Closure Operator i.e. $Cl_{\theta^n}(Cl_{\theta^n}(A)) = Cl_{\theta^n}(A)$, then $X = \lim \mathbf{X}$ is non-empty and S(n)-closed.

Proof. Using Theorem 3.5 we infer that $\lim \mathbf{X}$ is non-empty. Then from Theorem 3.1 it follows that the projections $p_a : \lim \mathbf{X} \to \mathbf{X}_a, a \in A$, are HJ mapping and, consequently, Θ^n -closed. Theorem 3.7 completes the proof.

Corollary 3.9. If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system of non-empty S(n)-closed spaces X_a and semi-open (open, closed irreducuble) mappings p_{ab} such that θ^n -closure $Cl_{\theta^n}M$ is Kuratowski Closure Operator i.e. $Cl_{\theta^n}(Cl_{\theta^n}(A)) = Cl_{\theta^n}(A)$, then $X = \lim \mathbf{X}$ is non-empty and S(n)-closed.

We say that an inverse system $\mathbf{Y} = \{Y_a, q_{ab}, A\}$ is a subsystem of $\mathbf{X} = \{X_a, p_{ab}, A\}$ if $Y_a \subset X_a, a \in A$, and $q_{ab} = p_{ab}|Y_b$. In this case we shall write $\mathbf{Y} = \{Y_a, p_{ab}|Y_b, A\}$.

Proposition 15. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty S(n)-closed spaces and Θ^n -closed bonding mapping p_{ab} . If $\mathbf{Y} = \{Y_a, p_{ab} | Y_b, A\}$ is an inverse subsystem of Θ^n -closed subsets $Y_a \subset X_a, a \in A$, then $\lim \mathbf{Y}$ is non-empty.

Proof. Now $\{(p_a)_{\Theta^n}^{-1}i_a(Y_a): a \in A\}$ is a family of closed sets in $\lim \mathbf{X}_{\Theta^n}$ with the finite intersection property. From the quasi-compactness of $\lim \mathbf{X}_{\Theta^n}$ (Theorem 3.3) it follows that $\cap \{(p_a)_{\Theta^n}^{-1}i_a(Y_a): a \in A\}$ is non-empty. Hence $\lim \mathbf{Y} \neq \emptyset$ since $\lim \mathbf{Y} = \mathbf{i}^{-1}(\cap \{(p_a)_{\Theta^n}^{-1}i_a(Y_a): a \in A\})$.

References

 M. P. Berri, J. R. Porter and R.M. Stephenson, A Survey of Minimal Topological Spaces, in: General Topology and its Relations to Modern Analysis and Algebra, Proc. Kanpur Top. Conf. (Academic Press, New York, 1970), 93–114.

- [2] R. F. Dickman, Jr., and Jack R. Porter, θ-perfect and θ-absolutely closed functions, Illinois J. Math., 21 (1977), 42–60.
- [3] D. Dikranjan and E. Giuli, S(n)- θ -closed spaces, Topology and its Applications 28 (1988), 59–74.
- [4] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [5] T. Hamlett, *H-closed spaces and the associated* θ -convergence space, Math. Chronicle, 8 (1979), 83–88.
- [6] H. Herrlich, T_ν-Abgeschlossenheit und T_ν-Minimalititat, Math. Z., 88 (1965), 285–294.
- [7] J. Mioduszewski and L. Rudolf, H-closed and extremally disconnected Hausdorff spaces, Diss. Math., 51 (1969).
- [8] M. N. Mukherjee and Atasi Debily, On H-closed space and grills, An. Ştiin. Univ. Al. I. Cuza Iaşi, Mat., 44 (1998), 1–25.
- [9] A. V. Osipov, Nearly H-closed spaces, J. Math. Sci., 155 (2008), 624-631.
- [10] J. R. Porter and C. Votaw, S(α) spaces and regular Hausdortf extensions, Pacific J. Math., 45 (1973), 327–345.
- [11] J. R. Porter and J. Thomas, On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc., 138 (1969), 159–170.
- [12] C. T. Scarborough, Minimal Urysohn spaces, Pacific J. Math., 27 (1968), 611–617.
- [13] A. H. Stone, Inverse limits of compact spaces, Gen. Topology Appl., 10 (1979), 203– 211
- [14] L. Stramaccia, S(n)-spaces and H-sets, Comment. Math. Univ. Carolinae, 29 (1988), 221–226.
- [15] V. M. Uljanov, O bikompaktnyh rasširenijah sčetnogo haraktera i absoljutah, Mat. Sbornik, 98 (1975), 223–254.
- [16] H. V. Velichko, *H-closed topological spaces*, Mat. Sb. (N.S.), 70 (112) (1966), 98–112.
- [17] G. A. Viglino, \overline{T}_n spaces, Notices Amer. Math. Soc., 16 (1969), 846.

(Received: August 1, 2014) Faculty of Organizations and Informatics (Revised: December 3, 2014) Varaždin

Croatia

ivanloncar18@gmail.com