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ISOTYPIC EQUIVALENCE OF ABELIAN p-GROUPS WITH
SEPARABLE REDUCED PARTS

ELENA BUNINA

This paper is devoted to the great anniversary of my friend Mirjana Vuković.
I wish her many-many productive and happy years!

ABSTRACT. We prove that two Abelian p-groups with separable reduced parts
are isotypically equivalent if and only if their divisible parts and their basic sub-
groups are elementarily equivalent. Also as a corollary we prove that any Abelian
p-group with a separable reduced part is ω-strongly homogeneous.

1. INTRODUCTION

In this paper we study Abelian p-groups A with separable reduced parts. Our
goal is to figure out how close are such groups in case they have the same sets of
types realized in A. We show that these groups have the same types (are isotypi-
cally equivalent) if and only if their divisible parts and their basic subgroups are
elementarily equivalent.

In this paper (Abelian) groups are our main subject, so we do not consider rings,
semigroups, etc., even though most of definitions below make sense for arbitrary
algebraic structures.

Definition 1.1. Let G be a group and (g1, . . . ,gn) n-tuple of its elements. The type
of this tuple in G, denoted tpG(g1, . . . ,gn), is the set of all first order formulas in
free variables x1, . . . ,xn in the standard group theory language which are true on
(g1, . . . ,gn) in G (see [6] or [8] for details).

Definition 1.2. The set of all types of tuples of elements of G is denoted by tp(G).
Following [12], we say that two groups G and H are isotypic if tp(G) = tp(H),
i. e., if any type realized in G is realized in H, and vice versa.

Isotypic groups appear naturally in logical (algebraic) geometry over groups
which was developed in the works of B. I. Plotkin and his co-authors (see [10–12]
for details), they play an important part in this subject. In particular, it turns out
that two groups are logically equivalent if and only if they have the same sets of
realizable types. So there arise two fundamental algebraic questions which are
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interesting in its own right: what are possible types of elements in a given group G
and how much of the algebraic structure of G is determined by the types of its
elements?

Isotypicity property of groups is related to the elementary equivalence property,
though it is stronger. Indeed, two isotypic groups are elementarily equivalent, but
the converse does not hold. For example, if we denote by Fn a free group of finite
rank n, then groups Fn and Fm for 2 ⩽ m < n are elementarily equivalent [7, 15],
but not isotypic [9]. Furthermore, Theorem 1 from [9] shows that two finitely
generated isotypic nilpotent groups are isomorphic, but there are examples, due to
Zilber, of two elementarily equivalent non-isomorphic finitely generated nilpotent
of class 2 groups [16].

Isotypicity is a very strong relation on groups, which quite often implies their
isomorphism. This explains the need of the following definition.

Definition 1.3. We say that a group G is defined by its types if every group isotypic
to G is isomorphic to G.

It was noticed in [9] that every finitely generated group G which is defined by
its types satisfies a (formally) stronger property. Namely, we say that

Definition 1.4. A finitely generated group G is strongly defined by types if for any
group H isotypic to G every elementary embedding G → H is an isomorphism.

Miasnikov and Romanovsky in the paper [9] proved that
1) every virtually polycyclic group is strongly defined by its types;
2) every finitely generated metabelian group is strongly defined by its types;
3) every finitely generated rigid group is strongly defined by its types. In particular,

every free solvable group of finite rank is strongly defined by its types.
R. Sclinos (unpublished) proved that finitely generated homogeneous groups are

defined by types. Moreover, finitely generated co-hopfian and finitely presented
hopfian groups are defined by types. Nevertheless, the main problem in the area
remains widely open:

Problem 1.1. [11] Is it true that every finitely generated group is defined by types?

In the recent paper [2] Gvozdevsky proved that any field of finite transcendence
degree over a prime subfield is defined by types. Also he gave several interest-
ing examples of certain countable isotypic but not isomorphic structures: totally
ordered sets, rings, and groups.

This paper is devoted to the following theorem:

Theorem A. For any prime p two Abelian p-groups A1 and A2 with separable re-
duced parts are isotypic if and only if their divisible parts and their basic subgroups
are elementarily equivalent.

We hope that it is the first step towards the description of all groups isotypic to
a given Abelian group.
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2. ELEMENTARY EQUIVALENCE OF ABELIAN GROUPS

Definition 2.1. Two groups are called elementarily equivalent if their first order
theories coincide.

Elementary equivalent Abelian groups were completely described in 1955 by
Wanda Szmielew in [14] (see also Eclof and Fisher, [3]).

To formulate her theorem we need to introduce a set of special invariants of
Abelian groups.

Let A be an Abelian group, p a prime number, A[p] be the subgroup of A, con-
taining all elements of A of the orders p or 1 (it is the so-called p-socle of the
group A), kA be the subgroup of A, containing all elements of the form ka, a ∈ A.

The first invariant is

D(p;A) := lim
n→∞

dim((pnA)[p]) for every prime p.

Note that for every n ∈ N the subgroup (pnA)[p] consists of elements which are
annulated being multiplied by p, therefore it is a vector space over the field Zp. So
dim(pnA)[p] is for every n ∈ N a well-defined cardinal number.

Since pn+1A ⊂ pnA, then (pn+1A)[p]⊂ (pnA)[p], therefore

dim(pn+1A)[p]⩽ dim(pnA)[p] for all n ∈ N.
Consequently we have a non-increasing sequence of cardinal numbers, which has
a smallest element.

Thus for any Abelian group A and any prime p the invariant D(p;A) is well-
defined.

The second invariant is

T f (p;A) := lim
n→∞

dim(pnA/pn+1A).

This invariant is also well-defined for any prime p and any Abelian group A.

The third invariant is

U(p,n−1;A) := dim((pn−1A)[p]/(pnA)[p]),

which is called the Ulm invariant, it defines the number of copies of Zpn in A.

The last invariant is Exp(A) which is the exponent of A (the smallest natural
number n such that ∀a ∈ Ana = 0).

Theorem 2.1 (Szmielew theorem on elementary classification of Abelian groups).
Two Abelian groups A1 and A2 are elementarily equivalent if and only if their
elementary invariants D(p; ·), T f (p; ·), U(p,n−1; ·) and Exp(·) pairwise coincide
(more precisely, they are either finite and coincide or simultaneously are equal to
infinity).
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3. ABELIAN p-GROUPS, THEIR STRUCTURE AND ELEMENTARY

EQUIVALENCE

Let p be some prime number, A be an Abelian p-group.
It is said that an element a∈A is divisible by a positive integer n (denoted as n | a)

if there is an element x ∈ A such that nx = a. A group D is called divisible if n | a
for all a ∈ D and all natural n. The groups Q and Z(p∞) are examples of divisible
groups. Any divisible subgroup is a direct summand of a group. A group A is
called reduced if it has no nonzero divisible subgroups.

A subgroup G of a group A is called pure if the equation nx = g ∈ G is solvable
in G whenever it is solvable in the entire group A. In other words, G is pure if and
only if

∀n ∈ Z nG = G∩nA.
A subgroup B of a group A is called a p-basic subgroup if it satisfies the follow-

ing conditions:
(1) B is a direct sum of cyclic p-groups and infinite cyclic groups;
(2) B is pure in A;
(3) A/B is p-divisible.

Every group, for every prime p, contains p-basic subgroups [4].
Now we focus on p-groups, where p-basic subgroups are particularly important.

If A is a p-group and q is a prime different from p, then evidently A has only one
q-basic subgroup, namely 0. Therefore, in p-groups we may refer to the p-basic
subgroups simply as basic subgroups, without confusion.

We need the following facts about basic subgroups.

Theorem 3.1. [13] Assume that B is a subgroup of a p-group A, B =
∞⊕

n=1
Bn, and

Bn is a direct sum of groups Z(pn). Then B is a basic subgroup of A if and only if
for every integer n > 0, the subgroup B1⊕·· ·⊕Bn is a maximal pn-bounded direct
summand of A.

Any Abelian p-group A is a direct sum of its divisible part D (isomorphic to⊕
κ0

Z(p∞)) and its reduced part A with a basic subgroup

B =
∞⊕

n=1

(⊕
κn

Z(pn)

)
.

The basic subgroup B is dense in A in its p-adic topology.
An infinite system L = {ai}i∈I of elements of the group A is called independent

if every finite subsystem of L is independent. An independent system M of A is
maximal if there is no independent system in A containing M properly. By the
rank r(A) of a group A we mean the cardinality of a maximal independent system
containing only elements of infinite and prime power orders. The final rank of
a basic subgroup B of a p-group A is the infimum of the cardinals r(pnB).
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Definition 3.1. Given a ∈ A, the greatest nonnegative integer r for which prx = a,
is solvable for some x ∈ A, is called the p-height hp(a) of a. If prx = a is solvable
whatever r is, a is of infinite p-height, hp(a) = ∞. If it is completely clear from
the context which prime p is meant, we call hp(a) simply the height of a and write
h(a).

Definition 3.2. A reduced Abelian p-group A is called separable, if it does not
contain any non-zero elements of infinite height.

For a reduced p-group A the first Ulm subgroup of A is

A1 =
∞⋂

n=1

pnA,

it is the subgroup of A consisting of all elements of A of infinite height. Therefore
a reduced A is separable if and only if A1 = 0.

Proposition 3.1. [4] An element a of prime power order belongs to a finite direct
summand of A if and only if ⟨a⟩ contains no elements of infinite height.

Theorem 3.2. [1] Suppose that B is a subgroup of p-group A,

B = B1 ⊕B2 ⊕·· ·⊕Bn ⊕ . . . ,

where
Bn ∼=

⊕
µn

Z(pn).

The subgroup B is a basic subgroup of A if and only if

A = B1 ⊕B2 ⊕·· ·⊕Bn ⊕ (B∗
n + pnA),

where n ∈ N,
B∗

n = Bn+1 ⊕Bn+2 ⊕ . . . .

Since the group B has a basis, and the quotient group A/B is a direct sum of
groups isomorphic to Z(p∞) (i. e. A/B also has a generating system which can
be easily described) then it is natural to combine these generating systems and to
obtain one for A.

We write
B =

⊕
i∈I

⟨ai⟩ and A/B =
⊕
j∈J

C∗
j , where C∗

j = Z(p∞).

If the direct summand C∗
j is generated by cosets c∗j1, . . . ,c

∗
jn, . . . modulo B with

pc∗j1 = 0, pc∗j,n+1 = c∗jn (n = 1,2, . . . ), then, by the purity of B in A, in the group A
we can pick out c jn ∈ c∗jn of the same order as c∗jn. Then we get the following set
of relations:

pc j1 = 0, pc j,n+1 = c jn = b jn (n ≥ 1,b jn ∈ B),

where b jn must be of order ≤ pn, since o(c jn) = pn.
The system {ai,c jn}i∈I, j∈J,n∈ω will be called a quasibasis of A.
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Proposition 3.2. [5] If {ai,c jn} is a quasibasis of the p-group A, then every a ∈ A
can be written in the following form:

a = s1ai1 + · · ·+ smaim + t1a j1n1 + · · ·+ tra jrnr , (3.1)

where si and t j are integers, no t j is divisible by p, and the indices i1, . . . , im as well
as j1, . . . , jr are distinct. The condition (3.1) is unique in the sense that an element
a uniquely defines the terms sai and tc jn.

Definition 3.3. The final rank finr(A) of a p-group A is the minumum of all cardi-
nal numbers rank(pnA), n = 1,2, . . . (see Sele, [13]).

Example 3.1. If
A = B = B1 ⊕B2 ⊕·· ·⊕Bn ⊕ . . . , Bn =

⊕
µn

Z(pn),

then
rank(pnA) = rank(Bn+1 ⊕ . . .) =

∞

∑
i=n+1

µi

and therefore finr(A) = 0 if and only if ExpA = 0, finr(A) = ∞ if and only if
ExpA = ∞ (see [4], § 35).

Let us now concentrate on elementary equivalence of two Abelian p-groups with
separable reduced parts.

Suppose that A=D⊕A, where A is reduced and separable (i. e., does not contain
any elements of infinite height) and has B as its basis subgroup.

Assume also that
D ∼=

⊕
κ0

Z(p∞), Bk ∼=
⊕
κk

Z(pk), k = 1, . . . ,n, . . . .

1. For the first invariant D(p;A) let us fix some n ∈ N and represent A as

A = D⊕B1 ⊕B2 ⊕·· ·⊕Bn ⊕ (B∗
n + pnA)

as in Theorem 3.2.
Then

pnA = (pnD)⊕ pn(B∗
n + pnA) = D⊕ pn(B∗

n + pnA),
therefore

dim pnA[p] = κ0 +dim pn(B∗
n + pnA)[p]

and
lim
n→∞

dim pnA[p] = κ0 +finr(B),

since
∞⋂

n=1
pnA = 0.

2. The second invariant is

lim
n→∞

dim(pnA/pn+1A) = lim
n→∞

dim(pnD/pn+1D⊕ pnA/pn+1A)

= lim
n→∞

dim(pnA/pn+1A)

= lim
n→∞

dim(pnA/pn+1A)
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= lim
n→∞

dim
(

pnB1/pn+1B1 + · · ·+ pnBn+1/pn+1Bn+1

+ pn(B∗
n+1 + pn+1A)/pn+1(B∗

n+1 + pn+1A)
)

= lim
n→∞

(κn+1 +κn+2 + · · ·) = finr(B).

3. The third invariant is

U(p,n−1;A) := dim((pn−1A)[p]/(pnA)[p]) = κn.

Therefore two Abelian p-groups are elementarily equivalent if and only if their
basic subgroups are elementarily equivalent and either these subgroups are both
unbounded or they are bounded and in this case the divisible parts are elementarily
equivalent. In its turn elementary equivalence of divisible parts means that either
both of them contain a finite number of Z(p∞) in the direct sum and are isomorphic,
or both of them contain an infinite number of Z(p∞) in the direct sum. The same
is true for any direct summand Bi of the basic subgroups.

4. TYPES OF ELEMENTS

Suppose that the decomposition A = D ⊕ A is fixed. Suppose also that we
have m-tuple (g1, . . . ,gm) of elements of A and its type tp(g1, . . . ,gm). If gi =
di + ai, i = 1, . . . ,m, is a decomposition of these elements with respect to the di-
rect summands D and A, then tp(d1, . . . ,dm,a1, . . .am) contains tp(g1, . . . ,gm) =
tp(d1+a1, . . . ,dm+am). Therefore we always can assume that we study only types
tp(d1, . . . ,dℓ,a1, . . . ,am), d1, . . . ,dℓ ∈ D, a1, . . . ,am ∈ A.

Let us for some fixed decomposition A = D⊕A have d1, . . . ,dℓ ∈ D and
a1, . . . ,am ∈ A. The elements d1, . . . ,dℓ generate a direct summand

⟨d1, . . . ,dℓ⟩= D1 ∼=
⊕
n0

Z(p∞) in D.

Knowing tp(d1, . . . ,dℓ) we can easily define n0: it is k−1, where k is the minimal
natural number such that there exist a subset {m1, . . . ,mk}⊂{1, . . . , ℓ}, α1, . . . ,αk ∈
Z, 0 ⩽ αi < ord(dmi), α1, . . . ,αk are not all zeros, such that

α1dm1 + · · ·+αkdmk = 0.

Now let us study the elements a1, . . . ,am. All these elements have finite heights.
Suppose that

ord(ai) = pti , h(ai) = psi , i = 1, . . . , ℓ.
Let us take instead of every ai an element bi such that psibi = ai. Then every bi has
the height 0 and therefore generates a direct summand

ai ∈ ⟨bi⟩ ∼= Z(pti+si).

If we take the subgroup B = ⟨b1, . . . ,bm⟩, it is a finite subgroup of A. Since A
does not contain any elements of infinite height and B is finite, then the heights of
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all nonzero elements of B in A are bounded, therefore B is embedded in a direct
summand of A. This summand is finite and is isomorphic to

B1 ⊕·· ·⊕Bq, where Bi ∼=
⊕

ni

Z(pi).

Of course all ni are defined by formulas with a1, . . . ,am as parameters.
Also, we can find a basic subgroup B of A such that B is a direct summand of B.
Now we are ready to prove the main theorem (Theorem A).

Proof. Let A1 and A2 be two Abelian p-groups with elementarily equivalent divisi-
ble parts and elementarily equivalent basic subgroups, A1 = D1⊕A1, A2 = D2⊕A2
be their decompositions in the direct sum of divisible and reduced separable sub-
groups, (d1, . . . ,dℓ,a1, . . . ,am) be a tuple of element of A1, where d1, . . . ,dℓ ∈ D1
and a1, . . . ,am ∈ A1. These elements generate (in the sense above) a direct sum-
mand of A1, isomorphic to

C =Cd ⊕Cr ∼=
⊕
n0

Z(p∞)⊕
m⊕

t=1

(⊕
nt

Z(pt)

)
.

Therefore if
D1 =

⊕
κ0

Z(p∞), D2 =
⊕
κ′

0

Z(p∞)

and

B1 =
∞⊕

t=1

(⊕
κt

Z(pt)

)
, B2 =

∞⊕
t=1

⊕
κ′

t

Z(pt)

 ,

then for all i = 0,1, . . . ,m
ni ⩽ κi = κ′

i or κi,κ′
i are both infinite.

So we can denote

A1 = D1 ⊕A1 = (Cd ⊕C̃d)⊕ (Cr ⊕ B̃(1)
1 ⊕·· ·⊕ B̃(m)

1 )⊕ (B(m+1)
1 + pmA1) =C⊕C̃1.

Similarly the group A2 can be decomposed as

A2 = D2 ⊕A2 ∼= (Cd ⊕C̃′
d)⊕ (Cr ⊕ B̃(1)

2 ⊕·· ·⊕ B̃(m)
2 )⊕ (B(m+1)

2 + pmA2) =C⊕C̃2

and
C̃1 ≡ C̃2.

Therefore we have (d′
1, . . . ,d

′
ℓ,a

′
1, . . . ,a

′
m) ∈C ∈ A2 (the same as

(d1, . . . ,dℓ,a1, . . . ,am) ∈C ∈ A1 such that
tp(d′

1, . . . ,d
′
ℓ,a

′
1, . . . ,a

′
m) = tp(d1, . . . ,dℓ,a1, . . . ,am).

Therefore A1 and A2 are isotypic. □

Remark 4.1. From [4], Theorem 77.3, it follows that any countable reduced sep-
arable Abelian p-group is a direct sum of cyclic groups. Therefore for countable
groups with separable reduced parts isotypicity coincides with isomorphism.

For non-countable Abelian p-groups with separable reduced parts there are many
examples of isotypical and non-isomorphic groups.
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5. STRONG HOMOGENEITY

Definition 5.1. A model M is called ω-strongly homogeneous, if for any a1, . . . ,an,
b1, . . . ,bn ∈M if tp(a1, . . . ,an) = tp(b1, . . . ,bn), then there exists an automorphism
ϕ ∈ AutM such that ϕ(ai) = bi, i = 1, . . . ,n.

From the proof of Theorem A we can derive the following corollary:
Corollary 5.1. For any prime p any Abelian p-group A with a separable reduced
part is ω-strongly homogeneous.

Proof. Let us take our group A and a1, . . . ,an,b1, . . . ,bn ∈ A with tp(a1, . . . ,an) =
tp(b1, . . . ,bn). According to the previous considerations we can (without loss of
generality) assume, that a1, . . . ,ak,b1, . . . ,bk ∈D, where D is the divisible part of A,
and ak+1, . . . ,an ∈ A1, bk+1, . . . ,bn ∈ A2, where A1 and A2 are reduced and A =
D⊕A1 = D⊕A2.

Since tp(a1, . . . ,ak)= tp(b1, . . . ,bk), these elements are contained in isomorphic
minimal direct summands of D:

D1 ∼= D2 ∼=
⊕
ℓ

Z(p∞).

In these groups a1, . . . ,ak and b1, . . . ,bk are such elements that for any α1, . . . ,αk ∈
Z the linear combinations α1a1 + · · ·+αkak and α1b1 + · · ·+αkbk have the same
orders. Therefore there exists an isomorphism ϕ1 : D1 → D2 such that ϕ1(ai) = bi
for all i = 1, . . . ,k.

Since D = D1 ⊕ D′
1 = D2 ⊕ D′

2, where D′
1
∼= D′

2, the isomorphism ϕ can be
extended up to an automorphism ϕ2 ∈ AutD.

Now let us consider the elements ak+1, . . . ,an ∈ A1 and bk+1, . . . ,bn ∈ A2. Since
tp(ak+1, . . . ,an) = tp(bk+1, . . . ,bn), these elements are contained in isomorphic
minimal direct summands B1 of A1 and B2 A2, respectively.

By the same reasons, since for any αk+1, . . . ,αn ∈ Z the linear combinations
αk+1ak+1+ · · ·+αnan and α1b1+ · · ·+αkbk have the same orders and heights, there
exists an isomorphism ϕ3 : B1 → B2 such that ϕ3(ai) = bi for all i = k+1, . . . ,n.

Since A1 = B1 ⊕C1 and A2 = B2 ⊕C2, where C1 ∼= C2, we can extend ϕ3 up to
an isomorphism ϕ4 : A1 → A2.

Since A = D⊕A1 = D⊕A2, the mappings ϕ2 and ϕ4 give us the required auto-
morphism ϕ. □
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