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LINEAR MAPS PRESERVING THE CULLIS DETERMINANT OF
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To Mirjana Vuković on the occasion of her birthday

ABSTRACT. In this paper we give an explicit description of linear maps pre-
serving the Cullis determinant of rectangular matrices of the size (n+ 1)× n.
Unlike the result about the ordinary determinant, it appears that linear preservers
of Cullis determinant can be singular. We provide the corresponding examples
and characterize the case when these maps are non-singular.

1. INTRODUCTION

The determinant of a matrix is a classical object of investigations in Linear Al-
gebra and its applications. Usually only the determinant of square matrices is con-
sidered, but different attempts to generalize the notion of determinant to the set of
rectangular matrices have been done for a long time. Cullis introduced the con-
cept of determinant (he called it determinoid) of a rectangular matrix in his mono-
graph [2] and it is presumably the first published generalization of the determinant
to the rectangular case. Several properties known for the classical determinant are
studied and shown to be valid for the Cullis determinant in [2, §5, §27, §32], and
we recall some of them below. Algebraic characterization of the Cullis determinant
can be found in [1, 7].

In 1966 Radić [11] independently proposed a definition of the determinant of a
rectangular matrix, which is equivalent to the Cullis definition, and since that, in
some papers it is called Radić’s determinant [1] or Cullis-Radić determinant [6].
After that there were several other generalizations of the determinant of a square
matrix to rectangular matrices given, for example, in [10, 12, 13].

The notion of determinant has been studied in many contexts and one of them is
the investigation of linear maps preserving the determinant. The first result in this
direction dates back to 1897 and is due to Frobenius [4].
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Theorem 1.1 (Frobenius, [4, §7, Theorem I]). Let S : Mn(C)→ Mn(C) be a bijec-
tive linear map satisfying det(S(X)) = det(X) for all X ∈ Mn(C). Then there exist
matrices M,N ∈ Mn(C) with det(MN) = 1 such that

S(X) = MXN for all X ∈ Mn(C) or S(X) = MX tN for all X ∈ Mn(C).

This result by Frobenius prompted the investigation of so-called linear preserver
problems concerning the characterization of linear operators on matrix spaces that
leave certain functions, subsets, relations, etc., invariant. The research started by
Frobenius was continued in the works by Schur, Dieudonné, Dynkin and others.
One may see [9] for an extensive survey.

In this paper we provide an analog of Frobenius theorem for the Cullis deter-
minant in the case of (n+1)×n matrices. We would like to draw the attention to
the following three important features of the Cullis determinant. Unlike the result
by Frobenius, it appears that linear preservers of the Cullis determinant can be sin-
gular (see Example 4.2). Moreover, our characterization theorem is valid both in
singular and non-singular cases, and we underline that the form of the maps in the
characterization result is the same in singular and non-singular cases. Moreover,
we obtain the complete characterization of non-singular linear preservers of the
Cullis determinant.

Our paper is organized as follows. Section 2 contains basic definitions and no-
tations used in the paper as well as the main properties of Cullis determinants. In
Section 3 we formulate and prove the main result, namely the complete character-
ization of all linear maps preserving the Cullis determinant over an arbitrary field
is provided. Section 4 contains various natural examples and counter-examples of
such maps including the examples of singular maps preserving the Cullis deter-
minant as well as the characterization of non-singular maps preserving the Cullis
determinant.

2. PRELIMINARIES

We denote by Mnk(F) the set of all n×k matrices with the entries from a certain
field F and write Mn(F) = Mnn(F). Onk ∈ Mnk(F) denotes the matrix with all
entries equal zero. By X(i, j) we denote the element of a matrix X lying on the
intersection of its i-th row and j-th column. We omit the subscripts if this cannot
lead to a misunderstanding. Let us denote by Ei j ∈Mn+1(F) a matrix, whose entries
are all equal to zero besides the entry on the intersection of the i-th row and the j-th
column, which is equal to one.

We introduce the basic definitions and concepts following [5].
By I we denote the set {1, . . . ,n} of indices, and by K we denote its subset

{1, . . . ,k} ⊆ I (k ≤ n). By SI
K we denote the set of injections from K to I which has

the cardinality |SI
K |= n!

(n−k)! .

Definition 2.1. Given an injection σ ∈ SI
K , we denote by sgnnk(σ) the product
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s · (−1)∑
k
l=1(σ(l)−l),

where s = sgn(π) is the sign of the permutation

π =

(
i1 . . . ik

σ(1) . . . σ(k)

)
,

here σ(K) = {i1, . . . , ik}, and i1 < i2 < .. . < ik.

Definition 2.2 ( [5], Theorem 13). Let n ≥ k, X ∈Mnk(F). Then Cullis determinant
detnk(X) of X is defined to be the function:

detnk(X) = ∑
σ∈SI

k

sgnnk(σ)X(σ(1),1)X(σ(2),2) . . .X(σ(k),k).

Recall properties of detnk which will be used in this paper (see [2, §5, §27, §32]
or [5] for detailed proofs):

Theorem 2.3 ( [5, Theorem 13, Theorem 16]).
(1) For X ∈ Mn(F), detnn(X) = det(X).
(2) For X ∈ Mnk(F), detnk(X) is a linear function of columns of X.
(3) If a matrix X ∈ Mnk(F) has two identical columns or one of its columns is a

linear combination of other columns, then detnk(X) is equal to zero.
(4) For X ∈ Mnk(F), interchanging any two columns of X changes the sign of

detnk(X).
(5) Adding a linear combination of columns to another column does not change

detnk.
(6) For X ∈ Mnk(F), detnk(X) can be calculated using the Laplace expansion

along a column of X.

If X ∈ Mn+1n(F), then we denote its Cullis determinant detn+1n(X) by dC(X).

3. LINEAR MAPS PRESERVING dC

In this section we obtain the explicit description of linear maps preserving the
Cullis determinant. We start with the formulation of the main result of our paper
for which we need the following definitions.

Definition 3.1. For every matrix X ∈ Mn(F) by R+(X) we denote the matrix
R+(X) =

(
O1n
X

)
∈ Mn+1n(F), obtained by adjoining to X the vector (0, . . . ,0) as

a first row.

Definition 3.2. For every matrix X ∈ Mn+1n(F) by R−(X) ∈ Mn(F) we denote the
matrix obtained from X by deleting of the first row.

Definition 3.3. For every vector x ∈ Fn we denote by F(x) =
(

xt

On

)
∈ Mn+1n(F) the

matrix obtained by adjoining the row vector xt to the square zero matrix as a first
row.
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Definition 3.4. By Φ ∈ Mn+1(F) we denote the matrix Φ =

( 1 0 ··· 0
1 1 ··· 0
...

...
. . . 0

1 0 ··· 1

)
.

Now we are ready to formulate our main result.

Theorem 3.5. Let F be an arbitrary field. Then a linear map

T : Mn+1n(F)→ Mn+1n(F)

satisfies dC(T (X)) = dC(X) for all X ∈ Mn+1n(F) if and only if there exist matrices
M,N ∈ Mn(F) with det(MN) = 1 and a linear map α : Mn+1n(F)→ M1n(F) such
that

T (X) = Φ ·F(α(Φ−1X))+Φ ·R+(M(R−(Φ−1X))N) ∀X ∈ Mn+1n(F) (3.1)

or

T (X) = Φ ·F(α(Φ−1X))+Φ ·R+(M(R−(Φ−1X))tN) ∀X ∈ Mn+1n(F). (3.2)

In order to prove this theorem we establish the following relation connecting the
usual determinant and the (n+1)×n Cullis determinant.

Definition 3.6. Let X ∈ Mn+1n(F). Then C+(X) := (R+(X t))t , namely

C+(X) =
(
On+11 X

)
∈ Mn+1(F).

Theorem 3.7. Suppose that X ∈ Mn+1n(F). Then

dC(X) = (−1)n det

(
n+1

∑
i=1

Ei1 +C+(X)

)
. (3.3)

Proof. For any matrix of the form Y =

(
X

1
...
1

)
∈ Mn+1(F) by Laplace expansion

along the last column we get

det(Y ) = (−1)n det

(
n+1

∑
i=1

Ei1 +C+(X)

)
.

For every σ ∈ S{1,...,n+1}
{1,...,n} consider σ̃ ∈ Sn+1 defined as follows: σ̃(i) = σ(i) for

every 1 ≤ i ≤ n and σ̃(n+1) = j, where j is the unique element of {1, . . . ,n+1}\
σ({1, . . . ,n}). Then sgn(σ̃) = sgnn+1n(σ), because ∑l(σ(l)− l) = n+1− j, which

is equal to the difference between the number of inversions in
(

i1 ... ik
σ(1) ... σ(k)

)
from

the definition of sgnn+1n(σ) and the number of inversions of the permutation σ̃.

Therefore by the definitions of the Cullis determinant of X and the determinant
of Y we get
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dC(X) = ∑
σ∈S{1,...,n+1}

{1,...,n}

sgnn+1n(σ)X(σ(1),1)X(σ(2),2) . . .X(σ(n),n)

= ∑
σ∈S{1,...,n+1}

{1,...,n}

sgn(σ̃)Y(σ̃(1),1) . . .Y(σ̃(n),n)Y(σ̃(n+1),n+1)

= ∑
τ∈Sn+1

sgn(τ)Y(τ(1),1) . . .Y(τ(n),n)Y(τ(n+1),n+1)

= det(Y ) = (−1)n det

(
n+1

∑
i=1

Ei1 +C+(X)

)
. □

Observe that for the matrix Φ introduced in Definition 3.4

det(Φ) = 1, Φ

( 1
0
...
0

)
=

( 1
1
...
1

)
, and Φ

−1 =

 1 0 ··· 0
−1 1 ··· 0

...
...

. . . 0
−1 0 ··· 1

 .

Let Y = (yi j)∈Mn+1(F) satisfy yi1 = 1 for all i= 1, . . . ,n+1. Then the first column
of the matrix Φ−1Y is equal to the vector (1,0, . . . ,0)t .

Theorem 3.8. Let T : Mn+1n(F)→ Mn+1n(F) be a linear map. Then T preserves
the Cullis determinant if and only if

det(E11 +C+(U(X))) = det(E11 +C+(X)). (3.4)

for all X ∈ Mn+1n(F), where U : Mn+1n(F)→ Mn+1n(F) is the linear map defined
by

U(X) = Φ
−1 ·T (ΦX). (3.5)

Proof. It is straightforward to see that U is linear.
To prove necessity, suppose that T preserves dC . Then consider the following

sequence of equalities: det(E11 +C+(U(X))) =

= det(E11 +C+(Φ−1T (ΦX)))

= det(Φ) ·det(E11 +C+(Φ−1 ·T (ΦX))) (since det(Φ) = 1)

= det(Φ(E11 +C+(Φ−1 ·T (ΦX))))

= det(ΦE11 +Φ ·C+(Φ−1 ·T (ΦX)))

= det(ΦE11 +C+(T (ΦX))) (since
C+(Φ−1 ·T (ΦX)) = Φ−1 ·C+(T (ΦX)))

= det(
n+1

∑
i=1

Ei1 +C+(T (ΦX))) (since Φ ·E11 =
n+1

∑
i=1

Ei1)

= (−1)n dC(T (ΦX)) (by the equality (3.3))

= (−1)n dC(ΦX) (since T preserves dC)
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= (−1)n · (−1)n det(
n+1

∑
i=1

Ei1 +C+(ΦX)) (by the equality (3.3))

= det(Φ−1)det((
n+1

∑
i=1

Ei1 +C+(ΦX))) (since det(Φ−1) = 1)

= det(Φ−1(
n+1

∑
i=1

Ei1 +C+(ΦX)))

= det(E11 +Φ
−1C+(ΦX)) (since Φ

−1
n+1

∑
i=1

Ei1·= E11)

= det(E11 +Φ
−1

ΦC+(X)) (since C+(Φ ·X) = Φ ·C+(X))

= det(E11 +C+(X)).

To prove sufficiency, suppose that condition (3.4) holds for the map U. Then
consider the following sequence of equalities, which is similar to the previous one

dC(T (X)) = (−1)n det(∑
i

Ei1 +C+(Φ ·U(Φ−1X)))

= (−1)n det(Φ−1) ·det(∑
i

Ei1 +C+(Φ ·U(Φ−1X)))

= (−1)n det(Φ−1(∑
i

Ei1 +C+(Φ ·U(Φ−1X))))

= (−1)n det(E11 +C+(U(Φ−1X))) = (−1)n det(E11 +Φ
−1X)

= (−1)n det(Φ) ·det(E11 +Φ
−1X) = (−1)n det(Φ(E11 +Φ

−1X))

= (−1)n det(∑
i

Ei1 +X) = (−1)n · (−1)n dC(X) = dC(X). □

Now we describe all linear maps acting on Mn+1n(F) and satisfying the condi-
tion (3.4). For this, we need again Definitions 3.1 and 3.2.

Lemma 3.9. Suppose that S : Mn(F) → Mn(F) is a linear map such that
det(S(X)) = det(X) for all X ∈ Mn(F) and α : Mn+1n(F) → M1n(F) is the linear
map. Then the linear map T : Mn+1n(F)→ Mn+1n(F) defined by

T (X) = F(α(X))+R+(S(R−(X))),

satisfies the condition (3.4).

Proof. For any Y ∈ Mn(F) by applying the Laplace expansion of det(E11+C+(X))
along the first column we obtain

det(E11 +C+(Y )) = det(R−(Y )) (3.6)

and hence it does not depend on the first row of Y . Then by applying the equality
(3.6) to Y = T (X) and X we get
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det(E11 +C+(T (X)))=det(R−(T (X)))=detR−((F(α(X))+R+(S(R−(X)))))

=det(R−(R+(S(R−(X)))))=det(S(R−(X)))=det(R−(X))

=det(E11 +C+(X)).

Here the 3-rd equality follows from the definition of R− and α. Therefore, T (X)
satisfies the condition (3.4). □

We can also immediately obtain a similar result concerning linear maps preserv-
ing dC .

Lemma 3.10. Suppose that S : Mn(F) → Mn(F) is a linear map such that
det(S(X)) = det(X) for all X ∈ Mn(F) and α : Mn+1n(F) → M1n(F) is the linear
map. Then the linear map T : Mn+1n(F)→ Mn+1n(F) defined by

T (X) = Φ ·F(α(Φ−1X))+Φ ·R+((R−(S(Φ−1X))))

preserves dC.

Proof. Define U(X) by
U(X) = Φ

−1 ·T (ΦX).

Then we get
U(X) = F(α(X))+R+(S(R−(X))).

Hence U(X) satisfies the condition (3.4) by Theorem 3.9. Therefore T (X) pre-
serves dC by Theorem 3.8. □

Lemma 3.11. Suppose that M ∈Mk(F) and det(M)= 0. Then there exists a nonzero
matrix N ∈ Mk(F) with det(N) = 0 such that det(M+N) ̸= 0.

Proof. Denote rk(M)= r. Since det(M)= 0, we have r < n. Then there exists N
with rk(N)=n−r such that M+N is invertible. Following that, det(M+N) ̸=0 and
det(N)=0 because rk(N)<n. Therefore N satisfies the required conditions. □

Lemma 3.12. Suppose that A ∈ Mn+1n(F) and

det(E11 +C+(A+X)) = det(E11 +C+(X)) (3.7)

for all X ∈ Mn+1n(F). Then R−(A) is the zero matrix.

Proof. We prove by contradiction. Suppose that there exists A ∈ Mn+1n(F) which
satisfies the conditions of the lemma and R−(A) ̸= 0. By substitution of the zero
matrix instead of X to (3.7) we get that det(E11+C+(A)) = det(E11) = 0 and there-
fore det(R−(A)) = 0 by the equality (3.6). By Lemma 3.11 applied to R−(A), we
can find a matrix N with det(N) = 0 such that det(N +R−(A)) ̸= 0 and therefore

det(E11 +C+(A+R+(N)) = det(N +R−(A)) ̸= 0.
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On other hand, due to the conditions of the lemma and Laplace expansion of the
matrix (E11 +C+(R+(N))) along the first column,

det(E11 +C+(A+R+(N))) = det(E11 +C+(R+(N))) = det(N) = 0,

which is a contradiction. □

Lemma 3.13. Suppose that T : Mn+1n(F)→Mn+1n(F) is the map satisfying condi-
tion (3.4). Then for every X ∈ Mn+1n(F) with nonzero R−(X) the matrix R−(T (X))
is also nonzero.

Proof. Suppose that T : Mn+1n(F)→ Mn+1n(F) is a map satisfying condition (3.4)
and A ∈ Mn+1n(F) is a matrix such that R−(T (A)) = 0. Then the following se-
quence of equalities holds:

det(E11 +C+(A+X)) = det(E11 +C+(T (A+X)))

= det(E11 +C+(0+T (X))) = det(E11 +C+(X))

for every X ∈ Mn+1n(F). Hence by Lemma 3.12 we get that R−(A) = 0. □

Lemma 3.14. Suppose that T : Mn+1n(F)→ Mn+1n(F) is the map satisfying con-
dition (3.4). Then for every Y ∈ Mn(F) there exists X ∈ Mn(F) such that

R−(T (R+(X))) = Y.

Proof. By Lemma 3.13 the linear map S : Mn(F)→ Mn(F) defined by

S(X) = R−(T (R+(X)))

is injective. Hence it is a bijection, and for every Y ∈ Mn(F) there exists a matrix
Z ∈ Mn(F) such that R−(T (R+(Z))) = Y. Hence we can set X = R+(Z). □

Definition 3.15. By Z ⊂ Mn+1n(F) we denote the set of the matrices of the form(
xt

Onn

)
, where x ∈ Fn.

Lemma 3.16. Suppose that T : Mn+1n(F)→ Mn+1n(F) is a linear map satisfying
condition (3.4). Then T (Z)⊂ Z.

Proof. We prove by contradiction. Suppose there exists a nonzero matrix Z ∈ Z
such that R−(T (Z)) is nonzero. Hence by Lemma 3.14 there exists B∈Mn(F) such
that R−(T (R+(B))) = −R−(T (Z)). Observe that B ̸= 0 since R−(T (Z)) ̸= 0. Let
us consider

C = R+(B)+Z ∈ Mn+1n(F).
Then R−(C) ̸= 0, but R−(T (C)) = 0, which contradicts Lemma 3.13. □

Theorem 3.17. Suppose that T is a linear map satisfying condition (3.4). Then
there exists a linear map S : Mn(F) → Mn(F) preserving the determinant and a
linear map α : Mn+1n(F)→ M1n(F) such that

T (X) = F(α(X))+R+(S(R−(X)))

for all X ∈ Mn+1n(F).
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Proof. From the condition (3.4) by expanding det(E11 +C+(X)) along the first
column we have that det(R−(T (X))) = det(R−(X)) for all X ∈ Mn+1n. Therefore,
the linear map S : Mn(F)→ Mn(F) defined by

S(X) = R−(T (R+(X)))

preserves the determinant.
Suppose that X ∈ Mn+1n(F). Consider the following equality:

X =
(

X(1,1) ... X(1,n)
On

)
+

(
O1n

X(2,1) ... X(2,n)
X(n+1,1) ... X(n+1,n)

)
.

This equality is equivalent to the following equality using R+ and R− :

X =
(

X(1,1) ... X(1,n)
On

)
+R+(R−(X)). (3.8)

Apply T to both sides of the equality (3.8):

T (X) = T
((

X(1,1) ... X(1,n)
On

))
+T (R+(R−(X))).

Then use the equality (3.8) for T (R+(R−(X)))

T (X) = T
((

X(1,1) ... X(1,n)
On

))
+
(

T (R+(R−(X)))(1,1) ... T (R+(R−(X)))(1,n)
On

)
+R+(R−(T (R+(R−(X))))).

Then substitute S(X) instead of R−(T (R+(X)))

T (X) = T
((

X(1,1) ... X(1,n)
On

))
+
(

T (R+(R−(X)))(1,1) ... T (R+(R−(X)))(1,n)
On

)
+R+(S(R−(X))). (3.9)

If we define β : Mn+1n(F)→ Mn+1n(F) by

β(X) = T
((

X(1,1) ... X(1,n)
On

))
+
(

T (R+(R−(X)))(1,1) ... T (R+(R−(X)))(1,n)
On

)
,

then from the equality (3.9) we get

T (X) = β(X)+R+(S(R−(X))).

β is a linear map, because it is represented as a sum of a projection and a linear
map. By Lemma 3.16, T

((
X(1,1) ... X(1,n)

On

))
∈ Z and therefore β(X) ∈ Z. Hence

there exists a linear map α : Mn+1n(F)→ M1n(F) such that

β(X) = F(α(X))

for all X ∈ Mn+1n(F), which finishes the proof. □

Now, we are ready to prove the main result.

Proof of Theorem 3.5. From Lemma 3.10 it follows that every linear map of the
form (3.1) or (3.2) preserves dC .
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Consider the map T : Mn+1n(F)→ Mn+1n(F) which is linear and satisfies
dC(T (X)) = dC(X) for all X ∈ Mn+1n(F). By Theorem 3.17 there exists a linear
map S : Mn(F)→ Mn(F) preserving the determinant and there exists a linear map
α : Mn+1n(F)→ M1n(F) such that

T (X) = F(α(X))+R+(S(R−(X)))

for all X ∈Mn+1n(F). Now apply Frobenius theorem (Theorem 1.1) to the map S to
obtain the required result. Note that although Theorem 1.1 was originally proved
only for the field C of complex numbers, its statement is true for any field. Indeed,
if the map preserves the determinant, then it is bijective by [8, Lemma 7] and it
preserves the set of matrices with the zero determinant, i.e., the set of singular
matrices. Then one can apply the Dieudonné theorem, see [3, Theorem 3], and
observe that only multiplication X 7→ AXB with square matrices A,B such that
det(AB) = 1 preserves the determinant. □

4. EXAMPLES OF LINEAR MAPS PRESERVING dC

Example 4.1. Suppose N ∈ Mn(F), det(N) = 1. Then T : Mn+1n(F)→ Mn+1n(F)
defined by T (X) = XN preserves dC .

Proof. It is possible to represent the right multiplication by N according to the
formula (3.1). Indeed, let us consider

α(X) =
(
(XN)(1,1) . . . (XN)(1,n)

)
and M is equal to the unit matrix. We get

T (X) = Φ(F(α(Φ−1X))+R+((R−(Φ−1X))N))

= Φ

( (XN)(1,1) ... (XN)(1,n)
On

)
+

 0 ... 0
(XN)(2,1)−(XN)(1,1) ... (XN)(2,n)−(XN)(1,n)

...
...

...
(XN)(n+1,1) ... (XN)(n+1,n)−(XN)(1,n)




= Φ


(XN)(1,1) ... (XN)(1,n)

(XN)(2,1)−(XN)(1,1) ... (XN)(2,n)−(XN)(1,n)

...
...

...
(XN)(n+1,1) ... (XN)(n+1,n)−(XN)(1,n)

= XN.

□
In contrast, the left multiplication does not necessary preserve dC . For example,

if we take the matrix

M =

 1 1 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
...

...
...

. . .
...

0 0 0 ... 1

 ∈ Mn+1(F),

then for the matrix



LINEAR MAPS PRESERVING THE CULLIS DETERMINANT OF (n+1)×n MATRICES 57

X =

−1 0 ... 0
1 0 ... 0
0 1 ... 0
...

...
. . .

...
0 0 ... 1

 ∈ Mn+1n(F)

we have that dC(X) = (−1)n ·2 and dC(MX) = (−1)n.
Although linear preserver T in the statement of the Frobenius theorem (Theo-

rem 1.1) is required to be non-singular, this requirement can be omitted. As it was
shown in [8, Lemma 7], every linear map preserving the determinant function is
automatically non-singular.

On the contrary, a linear map preserving dC can be singular, which could be
shown using our description (Theorem 3.5).

Example 4.2. Suppose that in the setting of Theorem 3.5 α(X) = −X(1,1), and
M = N are identity matrices. Then the map T defined by the formula (3.1) is
singular. Indeed,

T (X) = Φ(F(α(Φ−1X)))+R+((R−(Φ−1X))))

= Φ(F(α(Φ−1X)))+X =

−X(1,1)

... On+1n−1
−X(1,1)

+X ,

is singular, because T (M) = 0, where M =
(
(1, . . . ,1)t On+1n−1

)
).

We can also characterize all non-singular preservers (Theorem 4.7).
Recall that by Z ⊂ Mn+1n(F) we denote the set of the matrices of the form(

xt

Onn

)
, where x ∈ Fn.

By f |M we denote a restriction of a map f on a set M.

Lemma 4.3. Suppose that U : Mn+1n(F) → Mn+1n(F) is linear map satisfying
Equation 3.4. Then U is non-singular if and only if U |Z is non-singular.

Proof. The necessity is clear. To prove sufficiency, suppose that U satisfies con-
ditions of the theorem and U(X) = 0 for some 0 ̸= X ∈ Mn+1n(F). Therefore
R−(U(X)) = 0 and by Lemma 3.13, R−((X)) = 0. Hence X ∈ Z. Finally, since
U |Z is non-singular and U(X) = 0, we get that X = 0 and therefore U is non-
singular. □

By correspondence defined in Equation 3.5 we can transfer results of Lemma 3.16
and Lemma 4.3 to linear maps preserving dC .

Definition 4.4. By E ⊂ Mn+1n(F) we denote the set of the matrices such that all
their rows are equal.

Lemma 4.5. Consider the matrix Φ, defined in Definition 3.4. Then ΦZ ∈ E for
all Z ∈ E and Φ−1E ∈ Z for all E ∈ E .

Proof. Direct computation. □
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Theorem 4.6. Suppose that T preserves dC . Then T (E) ∈ E for all E ∈ E .

Proof. By Theorem 3.8 the map U, defined by

U(X) = Φ
−1(T (ΦX)),

satisfies the equation (3.4). Hence, by Lemma 4.3, U preserves Z. Observe that T
can be obtained from U by equality

T (X) = Φ(U(Φ−1X)).

Suppose that E ∈ E . Then Φ−1E ∈ Z, by Lemma 4.5 and hence U(Φ−1E) ∈ Z
by Lemma 3.16. Therefore, by applying Lemma 4.5 we obtain

T (E) = Φ(U(Φ−1E)) ∈ E . □

Theorem 4.7. Suppose that T : Mn+1n(F)→ Mn+1n(F) is a linear map satisfying
Equation 3.4. Then T is non-singular if and only if T |E is non-singular.

Proof. Sufficiency follows from Theorem 4.6. Now suppose that T |E is non-
singular. By Theorem 3.8, the map U defined by

U(X) = Φ
−1(T (ΦX))

satisfies Equation 3.4 and is non-singular on Z. Hence, by Lemma 4.3, the map U
is non-singular and therefore T is non-singular. □
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