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ABSTRACT. In the article, we use the subset sum formula over a finite abelian
group on the product of finite groups to derive the number of restricted partitions
of elements in the group and to count the number of compositions over finite
abelian groups. Later, we apply the formula for the multisubset sum problem
on a group Zn to produce a new technique for studying restricted partitions of
positive integers.

1. INTRODUCTION

The subset sum problem is important in cryptography, coding theory and theory
of complexity. Let G be an abelian group and let S ⊆ G. Let i be a positive integer.
The problem is to determine the number of subsets of S with i elements in which
the elements sum up to the g. For general S it is known to be NP-complete. On the
other hand, if S = G the problem is solved first by Li and Wan in [4] by use of sieve
technique and later by Kosters in [3] using character theory. A. Muratović-Ribić
and Q. Wang extended this result to the multisubset sum problem where elements
in the multisubsets can be repeated at most j times. In the first section, we con-
sider formulas for the number of certain restriced partitions over direct products
of the groups and the formula for the number of compositions of an element over
finite abelian groups. In the second section, we apply the formula for the multi-
subset problem to provide a new formula for restricted partitions over integers and
introduce a new technique in the study of partitions over integers.

1.1. Partitions of finite abelian groups

Let G be a finite abelian group of order n and g ∈ G some fixed element. In [5]
an exact formulais given for the multisubset sum problem in G of the element
g with i parts where each part repeats at most j times. This number is denoted
by M(G, i, j,g). More precisely M(G, i, j,g) = #{{a1,a2, . . . ,ai}| a1,a2, . . . ,ai ∈
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G, a1+a2+. . .+ai = g, each element at can be repeated at most j times}.
The special case when j = 1 was denoted by N(G, i,g) and it is known as the subset
sum problem. We have (see [3])

N(G, i,g) =
1
n ∑

s|gcd(exp(G),i)
(−1)i+i/s

(
n/s
i/s

)
∑

d|gcd(s,e(g))
µ(s/d)#G[d]

where exp(G) is the exponent of G, e(g) = max{d : d | exp(G),g ∈ dG}, µ is
the Möbius inversion function, and G[d] = {h ∈ G : dh = 0} is d-torsion of G.
On the other hand, taking j ≥ i, we can dismiss the restriction on the number of
repetitions of elements. Note that multisubset sum problem is actually the same
problem of number of partitions of integers, i.e. we look for the number of sums
a1 + a2 · · ·+ ai = g where the order of sumands is not important. Thus we will
call this sum a partition of the element g. In the following section, we will use the
following results.

Corollary 1.1 (Corollary 2, [5].). Let G be a finite abelian group of size n and let
g ∈ G. Then the number of partitions of g over G with at most i parts is

A(G, i,g) =
1
n ∑

s|gcd(exp(G),i)

(
n/s+ i/s−1

i/s

)
∑

d|gcd(s,e(g))
µ(s/d)#G[d]

where exp(G) is the exponent of G, e(G) = max{d : d | exp(G),g ∈ dG}, µ is the
Möbius inversion function, and G[d] = {h ∈ G : dh = 0} is d-torsion of G.

Also, we use the result in [5] on page 422 for the explicit number of partitions
without zero element with i parts of the element g ∈ G.

M(G\{0}, i,g) = 1
n ∑

s|gcd(exp(G),i)

(
n/s+ i/s−1

i/s

)
∑

d|gcd(s,e(g))
µ(s/d)#G[d]

− ∑
s|gcd(exp(G),i−1)

(
n/s+(i−1)/s−1

(i−1)/s

)
∑

d|gcd(s,e(g))
µ(s/d)#G[d]).

We will consider the product of the groups G=G1×G2×·· ·×Gk and restricted
subset sums problem in G.

Theorem 1.1. Let G1,G2, . . . ,Gk be finite abelian groups and G its direct product,
i.e. G = G1 ×G2 ×·· ·×Gk and let g = (g1,g2, . . . ,gk) ∈ G. Let i be a positive in-
teger. Consider subsets a1,a2, . . . ,ai in G of i elements where at = (at1,at2, ...,atk),
ats ∈ Gs for t = 1,2, . . . , i and s = 1,2, . . . ,k, that sum to g = (g1,g2, . . . ,gk), i.e.,

(g1,g2, . . . ,gk) = (a11, . . . ,a1k)+(a21, · · · ,a2k)+ · · ·+(ai1, · · · ,aik)

such that in the partition of the s-th coordinate positions, gs = a1s +a2s + · · ·+aks
and all elements a1s, . . . ,aks are distinct. The number of such subsets is

N(G1, i,g1) ·N(G2, i,g2) · · ·N(Gk, i,gk) · (i!)k−1.
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Proof. Consider a partition of the element g with i parts g= a1+a2+ . . .+ai of the
elements in G where all elements are distinct. It is easy to see that every partition
of g uniquely determines partitions of g1,g2, . . . ,gk with

g = (g1, . . . ,gk) = a1 +a2 + · · ·+ai

= (a11, . . . ,a1k)+ · · ·+(ai1, . . . ,aik) = (a11 + . . .ai1, . . . ,a1k + · · ·+aik).

Therefore, a partition of g produce unique set of partitions of g1,g2, . . . ,gk. On the
other hand, if we have given partitions of g1,g2, . . . ,gk say

gs = as1 +as2 + · · ·+asi

then we can obtain a partition of g with

g = (g1, . . . ,gk) = (a11, . . . ,a1k)+ · · ·+(ai1, . . . ,aik)

= (a11 + . . .ai1, . . . ,a1k + · · ·+aik).

If we keep the ordering in the partition of g1 lfor instance g1 = a11+a12+ · · ·+a1i
and permute the elements in the rest of the partitions of g2, . . . ,gk we will obtain a
set of ordered k-tuples

(a11,a2π2(1), . . . ,aiπk(1)), (a12,a2π2(2), . . . ,aiπk(2)), . . . (ai1, . . . ,aiπk(i))

which also sums to the element g and this is a different partition of g. Therefore,
from the set of the partitions of the elements g1 ∈ G1,g2 ∈ G2, . . . ,gk ∈ Gk of i parts
where all parts are distinct we can make (i!)k−1 different partitions of the element
g = (g1,g2, . . . ,gk) ∈ G. Therefore there are

N(G1, i,g1) ·N(G2, i,g2) · · ·N(Gk, i,gk) · (i!)k−1

partitions of g with distinct elements in each coordinate. □

Corollary 1.2. Let G = G1 ×G2 ×·· ·×Gk and let g = (g1,g2, . . . ,gk) ∈ G. Then

N(G1, i,g1) ·N(G2, i,g2) · · ·N(Gk, i,gk) · (i!)k−1 ≤ N(G, i,g).

Further, consider the problem of compositions over a finite abelian group G. A
composition of an element is a solution of the equation x1 +x2 + · · ·+xi = g. Note
that order matters, and the number of compositions with all distinct parts (with
possibly zero included) is i!N(G, i,g).

To find the formula for the compositions with possible repetitions, in the equa-
tion x1+x2+ · · ·+xi = g, for any choice of x1,x2, . . . ,xi−1 there is a unique xi such
that ∑

i
s=1 xs = g so we can deduce that the number of compositions without restric-

tion is |G|i−1. To find the number of compositions without zero element consider
the case when in x1 + x2 + ...+ xi = g there are s nonzero elements and i− s zero
elements. Let C(s,g) be the number of compositions of g with s nonzero parts.
Choosing s positions for nonzero elements there are is

(i
s

)
C(s,g) compositions of

g with s nonzero elements. Therefore
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i

∑
s=0

(
i
s

)
C(s,g) = |G|i−1

which gives a recursive formula for C(i,g).

2. NEW APPROACH TO STUDY RESTRICTED PARTITIONS OVER INTEGERS

2.1. Introduction

A partition of a positive integer n is a way of writing of n as a sum of positive
integers, where the order of integers is irrelevant. In number theory and combi-
natorics, besides constructing partitions, it is important to determine their number.
They occur in the study of the symmetric polynomials and of the symmetric groups
and in group representation theory in general.

The number of partitions of a given integer n is denoted by p(n). Partitions are
defined for non-negative integers where the only partition of the zero is the empty
set. The generating function of p(n) is

∞

∑
n=0

p(n)xn =
∞

∑
j=0

(1+ x j + x2 j + . . .+ xk j + . . .) =
∞

∏
j=0

(1− x j)−1.

Using the expansion of the generating function the first approximation of p(n)

was given by Hardy and Ramanujan p(n)∼ 1
4n
√

3
exp

(
π

√
2n
3

)
, n → ∞.

Restricted partitions are partitions with a fixed number of summands or with a
given bound on summands. Thus we can consider the partitions of an integer n
with k parts. Its number is denoted by pk(n).

One can recover the function p(n) by p(n) = ∑
n
k=0 pk(n). The generating func-

tion for such partitions is ∑n≥0 pk(n)xn = xk
∏

k
i=1

1
(1−xk)

. More generally, for a given
subset t of positive integers, the generating function of the p(n) whose parts be-
long to T is ∏t∈T (1− xt)−1. Using this result, Hardy in [2] used the expansion
of ∏

3
i=1(1− xi)−1 = 1

6(1−x)3 +
4

(1−x)2 +
17

72(1−x) + · · · and found that the number of
partitions r(n) of n whose parts are 1,2 or 3 is

r(n) =
(n+3)2

12
− 7

72
+

(−1)n

8
+

2
8

cos
2nπ

3
. (2.1)

It is easy to verify that the sum ofthe last three numbers is less than 1
2 and thus r(n)

is the integer closest to (n+3)2

12 .
To every partition we can adjoin its Young table. It is common that summands in

the partitions are written in nondecreasing order. If the partition is a1 +a2 + . . .+
ak = n then a1 ≤ a2 ≤ ·· · ≤ ak. We draw rectangulars of the dimensions 1× ak,
1× ak−1, . . . ,1× a1 one below the other to obtain a Young table. A Young table
flipped across the diagonal forms a Young table of the conjugate partition. We can
conclude that the number of partitions whose parts are 1, 2 or 3 is equivalent to the
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number of partitions of n with at most three parts. Note that the number of rows in
a Young table is the number of parts.

We can simultaneously limit the number and size of parts. If the partition n
is having at most M parts and all summands are less than or equal to N then its
Young table fits in a M ×N rectangle. The number of such partitions we denote
by p(N,M;n). Then it satisfies a recursive formula p(N,M;n) = p(N,M−1;n)+
p(N − 1,M;n−M). Note that the number of partitions of n into exactly M parts
whose sumanads are less or equal to the N is given by p(N,M;n)− p(N,M−1;n).

2.2. Application of the multisubset sum problem to partitions of integers

Consider now some positive integer g and let n > g. Identify notation for
ḡ = g((mod n)) ∈ Zn with g. Using the fact that g = g+ jn (mod n) we can con-
clude that the following holds.

Theorem 2.1.

A(Zn, i,g) = p(n−1, i;g)+ p(n−1, i;g+n)+ · · · p(n−1, i;g+(i−1)n).

A similar formula holds if we use partitions with exactly i parts instead lessthan
or equal to i.

Denote by pe(i,n− 1;k) the number of partitions of an integer k with exactly i
parts where the summands are less than or equal to n−1.

Theorem 2.2. Let n be a positive integer and 1 ≤ j < i ≤ n. Then

pe(i,n−1; jn) = pe(i,n−1;(i− j)n).

Proof. Put the Young table Y of the partition α of a number jn in i× (n−1) grid.
Add a column at the end of the grid to obtain i× n grid T . Note that T \Y has a
(i− j)n squares and it is the Young table of the partition of (i− j)n rotated for 180◦

with exactly i parts where each summand is less than n.

Since T \Y is uniquely determined by Y , there is a one to one correspondence
between the partitions on jn and partitions of (i− j)n with i parts whose summands
are less than n. □

Corollary 2.1. Note that if the number of parts in the partitions is at most i then
p(i,n−1; jn) = p(i,n−1;(i− j)n).

Proof. Indeed,

p(i,n−1; jn) = pe(i,n−1; jn)+ pe(i−1,n−1; jn)+ . . . pe(1,n−1; jn) =
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pe(i,n−1;(i− j)n)+ pe(i−1,n−1;(i− j)n)+ · · ·+ pe(1,n−1;(i− j)n) =
= p(i,n−1;(i− j)n). □

If we apply the equation in Theorem 2.1 for g = 0 we obtain that

A(n, i;0) = 1+ p(i,n−1;n)+ p(i,n−1;2n)+ · · ·+ p(i,n−1;(i−1)n), (2.2)

where the Corollary 2.1. implies the simmetry of summands.

3. SPECIAL CASES

Consider the case i = 2. Thus we consider a partition with at most two parts.
Apply the equation (2.2) to G = Zn

1+ p(2,n−1;n) = A(n,2,0).

We have exp(G) = n, g = 0, e(g) = n. If n is odd number then

A(G,2,0) =
1
n

(
n+1

2

)
=

n+1
2

,

and thus p(2,n−1;n) = n−1
2 . If n is even then

A(G,2,0) =
1
n

(
n+1)n

2
+

n
2
(−1+2)

)
=

n+2
2

,

so we have p(2,n−1;n) = ⌊n
2⌋. These results can be obtained directly and they are

well known.
Now consider the case i = 3. Here we will rather use a formula for the number

of partitions with exactly 3 parts.
Then we have

M(Zn \{0},3,0) = pe(n−1,3,0)+ pe(n−1,3,n)+ pe(n−1,3;2n).

Using Theorem 2.2. we have that pe(n−1,3,n) = pe(n−1,3;2n). Further, evalu-
ating M(Zn \{0},3;0) we have that

pe(n−1,3,n) =


n2

12 , n ≡ 0 mod 6
(3n+5)(n+1)

12 , n ≡ 1 mod 6 or n ≡ 5 mod 6,
n2−4

12 , n ≡ 2 mod 6 or n ≡ 4 mod 6,
n2

12 , n ≡ 3 mod 6

which is a more precise result than given in the equation (2.1).

Open problem: Apply this approach to obtain more interesting results on the
problem of determining the number of restricted partitions of integers.



APPLICATIONS OF THE MULTISUBSET SUM PROBLEM OVER FINITE ABELIAN GROUPS 101

REFERENCES

[1] Andrews, George E., The Theory of Partitions, Cambridge University Press, 1976.
[2] G.H. Hardy, E.M. Wright An Introduction to the Theory of Numbers, Oxford at the Clerendon

Press, 4th edition United Kingdom, 1960.
[3] M. Kosters, The subset problem for finite abelian groups, J. Combin. Thery Ser. A 120(2013),

527-530.
[4] Li and D. Wan, Counting subset sums of finite abelian groups, J. Combin. Thery Ser. A 199

(2012), no. 1, 170-182.
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