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This article is dedicated to Academician Mirjana Vuković on the occasion of her 75th birthday

ABSTRACT. Inductive and projective type sequence spaces of sub- and super-
exponential growth, and the corresponding inductive and projective limits of
modulation spaces are considered as a framework for almost diagonalization of
pseudo-differential operators. Moreover, recent results of the first author and B.
Prangoski related to the almost diagonalization of pseudo-differential operators
in the context of Hörmander metrics are reviewed.

1. INTRODUCTION

The main goal of this paper is to offer a brief review of some recent results on
the almost diagonalization of pseudo-differential operators with symbols in various
projective and inductive limits of modulation spaces, and spaces of generalized
functions. The results were presented at the conference in Sarajevo dedicated to
the 75. anniversary of academician Mirjana Vuković.

Properties of pseudo-differential operators depend on the assigned classes of
symbols. Here we consider the Weyl correspondence between operators and sym-
bols, see (1.3). Apart from the classical Hörmander classes (cf. [19]), certain mod-
ulation spaces are recognized to be useful symbol classes, see [13] where the tools
of time-frequency analysis are used in approximate diagonalization of related op-
erators. This approach is thereafter developed and successfully used in different
contexts, see [5] and the references given there. Let us just mention sparse decom-
positions for Schrödinger-type propagators given in [4], and diagonalization in the
framework of tempered ultra-distributions, [24].

General results from [14] are recently extended to Hörmander metrics by the first
author and B. Prangoski in [23]. It turns out that the class of weights used in [23]
could be extended to the class of moderate weights (see subsection 2.2). The main
aim of this paper is to provide necessary background material for investigations
in that direction. This includes the introduction of new symbol classes as well as
exposition of results for approximate diagonalization in the context of Gelfand-
Shilov spaces.
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We end this section with an explanation of the idea behind the notion of approx-
imate diagonalization of operators.

1.1. Motivation

Let us start with a general and simple example of a matrix type operator on a
Hilbert space. Let ψn, n ∈ N, be a basis for a separable Hilbert space H , f =

∑n∈N anψn ∈H , and A : H →H be linear and continuous. Then

A f = ∑
n∈N

anAψn = ∑
n∈N

an ∑
m∈N

bn,mψm = ∑
m∈N

∑
n∈N

bn,manψm.

So, A can be viewed as the action of an infinite matrix on a space of sequences:

(an)n∈N→ (A f )m∈N =
(

∑
n∈N

bn,man
)

m∈N,

More generally, instead of N×N one can observe indices in Λ, a discrete subgroup
of R2d . Such group is often represented as AZ2d (Z2d is the set of integer points in
R2d), where A is a 2d-dimensional, regular matrix with determinant detA < 1. We
will also use the term lattice for such Λ.

For the sake of simplicity, consider the lattice points of the form

λ = (αk,βi) ∈ Λ, k, i ∈ Zd .

i.e. Λ = αZd×βZd . Then the time-frequency shifts of g ∈ L2(Rd) are given by

π(λ)g = παk,βig = e2παk·tg(t−βi), λ = (αk,βi), k · t = ⟨k, t⟩=
d

∑
j

k jt j.

Recall that the set G(g,Λ) = {π(λ)g;λ ∈ Λ} is a Gabor frame in L2(Rd) if for
every f ∈ L2(Rd) there exist c1,c2 > 0 such that

c1 ∑
λ∈Λ

|⟨ f ,π(λ)g⟩|2 ≤ || f ||2L2 ≤ c2 ∑
λ∈Λ

|⟨ f ,π(λ)g⟩|2 (1.1)

(⟨·, ·⟩ here denotes the scalar product in L2(Rd)). If G(g,Λ) is a frame, then there
exists a dual window γ ∈ L2(Rd) such that

f = ∑
λ∈Λ

⟨ f ,π(λ)g⟩π(λ)γ, f ∈ L2(Rd). (1.2)

If c1 = c2 then G(g,Λ) is called a tight frame and γ =Cg for some constant C > 0.
If H0(x) = e−a|x|2 , x∈Rd , a> 0, and λ∈Λ=αZd×βZd , αβ< 1, then G(H0,λ)

is a frame in L2(Rd), and its dual frame γ satisfies

|γ(x)|+ |̂γ(x)| ≤Ce−c|x|2 , x ∈ Rd .

Such frames are also referred as superframes. For the details we refer to [15,21,25].
Moreover, it is well known (see [5, Theorem 3.2.21]) that for g(x) = e−π|x|2 , x∈Rd ,
the set

G(g,Λ) = G(g,α,β) = {π(λ)g;λ ∈ Λ}
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is a Gabor frame for L2(Rd) if and only if αβ < 1. We also mention that if α > 0
and g ∈W (Rd) are such that

a≤ ∑
k∈Zd

|g(x−αk)|2 ≤ b, x ∈ Rd ,

then there exists β0 = β0(α) such that G(g,α,β) is the frame for all β≤ β0. Here,
W (Rd) is the Wiener space which consists of function that are locally bounded,
and globally in L1(Rd). For details we refer to [5] (see Section 3).

Next we introduce pseudo-differential operators. Let π(λ)g, λ ∈ Λ ⊂ R2d , be a
tight frame, and for f ,φ ∈ L2(Rd) we consider expansions

f (t) = ∑
λ∈Λ

aλπ(λ)g(t), φ(t) = ∑
λ∈Λ

bλπ(λ)g(t), t ∈ Rd .

The Weyl-Hörmander pseudodifferential operator (or the Weyl transform) aw

with the symbol a ∈ S ′
(
R2d

)
(see subsection 2.1 for the notation) is defined by

aw f (x) =
∫
R2d

a
(

x+ y
2

,ξ

)
e2πi(x−y)·ξ f (y)dydξ, f ∈ S(Rd). (1.3)

Then we have

⟨aw(t,D) f (t),φ(t)⟩= ⟨ ∑
(k,i)∈Z2d

ak, jaw(t,D)παk,βig(t), ∑
(p,q)∈Z2d

bp,qπαp,βqg(t)⟩

= ∑
k,i

∑
(p,q)∈Z

ak,ibp,q⟨aw(t,D)παk,βig(t),παp,βqg(t)⟩.

If we denote by A = AZ2d×Z2d the infinite dimensional matrix of the dimension
Z2d×Z2d with elements

⟨aw(t,D)παk,βig(t),παp,βqg(t)⟩, (k, i),(p,q) ∈ Z2d ,

then

⟨aw(t,D) f (t),φ(t)⟩= (ak,i)1×Z2d A(bp,q)Z2d×1, (k, i),(p,q) ∈ Z2d ,

where the expansion of f and φ is clear.
In such a way we may represent aw as a matrix type operator whose properties

are determined by the matrix elements. Asymptotic decay estimates of these ele-
ments away from diagonal are related to mapping properties of the corresponding
operator. For that reason the term approximate diagonalization is used to describe
techniques based on these observations.

Thus, the goal is to characterize the decrease of the matrix A far from its diago-
nal. In the continuous case, instead of a matrix, we use an integral representation,
namely the short-time Fourier transform (STFT), as it will be explained in Section
2.
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2. PRELIMINARIES

In this section we fix general notation, and then proceed with basic facts on
weight functions, short-time Fourier transform, modulation spaces, and pseudo-
differential operators.

2.1. Notation

By Z,N,N0,R and C we denote the sets of all integers, positive integers, non-
negative integers, reals, and complex numbers, respectively. For x = (x1, . . . ,xd) ∈
Rd , and a multi-index α = (α1, . . . ,αd) ∈ Nd

0 , we use the notation: |x| := (x2
1 +

. . .+ x2
d)

1/2, xα := ∏
d
j=1 xα j

j , |α| := α1 + . . .+αd , α! := α1! · · ·αd!, Dα = Dα
x :=

Dα1
1 · · ·D

αd
d , where Dα j

j :=(−i∂/∂x j)
α j ( j = 1, . . . ,d). We write capital letters X ,Y,Z, ..

for elements in R2d , and A ≲ B means A≤ cB for a suitable constant c > 0.
The symbol K ⊂⊂ V for an open V ⊂ Rd means that K is a compact subset of

V . By ↪→ we denote continuous embeddings between two Banach spaces. The
norm in Lp

(
Rd

)
is denoted by ∥ · ∥p, 1 ≤ p ≤ ∞, and the corresponding sequence

spaces will be denoted by lp. The Fourier transform F of a function f ∈ L1 will be
denoted by

f̂ (ξ) =
∫
Rd

f (x)e−2πixξdx (F −1 f (ξ) = F f (−ξ)).

S(Rd) denotes the Schwartz space of infinitely smooth (C∞(Rd)) functions which,
together with their derivatives, decay at infinity faster than any inverse polynomial.
Its dual space of tempered distributions is denoted by S ′(Rd).

The function f belongs to the weighted space Lp
v (Rd) if f v∈ Lp(Rd), 1≤ p≤∞,

where v is a weight function, see below.

2.2. Weights

A function v is called a weight function, or simply a weight, if it is locally
bounded, non-negative, even and continuous on Rd . Recall,
a) v is submultiplicative if, v(x+ y)≲ v(x)v(y), x,y ∈ Rd ,
b) v is subconvolutive if v−1 ∈ L1 and (v−1 ∗ v−1)(x)≲ v−1(x), x ∈ Rd .
c) m is moderate if there exists submultiplicative weight v such that,

m(x+ y)≲ v(x)m(y), x,y ∈ Rd .

Clearly, if m is submultiplicative than it is also moderate. By Mv we denote the
set of all v− moderate weights.

Example 2.1. Standard examples of weight functions are given by

ma,b,c,t(x) = ea|x|b(1+ |x|)c(log(e+ |x|))t , a,c, t ∈ R, b≥ 0, x ∈ Rd . (2.1)

Properties of ma,b,c,t are given in the following Lemma from [16] (see also [7]).
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Lemma 2.1. If m = ma,b,c,t is given by (2.1) then
a) m is submultiplicative if a,c, t ≥ 0, and 0≤ b≤ 1,
b) m is subconvolutive if a > 0,c, t ∈ R, and 0 < b < 1,
c) m is moderate if a,c, t ∈ R, and 0≤ b≤ 1.

In addition, if v is arbitrary submultiplicative weight then there exists r > 0 such
that v(x)≲ er|x|, x ∈ Rd .

In this paper we consider weights of the form

ms
r(x) = er|x|1/s

, r > 0, s > 0 x ∈ Rd . (2.2)

By Lemma 2.1 it follows that ms
r = mr,1/s,0,0 is submultiplicative and subconvolu-

tive if r > 0 and s > 1.
Let us briefly discuss subconvolutivity of ms

r, since it will be used later on.
Clearly, (ms

r)
−1 = ms

−r ∈ L1(Rd). For the case r > 0 and 0 < s ≤ 1, [5, Lemma
1.3.5] gives

ms
−r ∗ms

−r(x)≤Cms
−2−1/sr(x), x ∈ Rd . (2.3)

Indeed, note that simple inequality |x+ y|1/s ≤ 2
1−s

s (|x|1/s + |y|1/s), x,y ∈ Rd , im-
plies that

ms
r(x+ y)≤ ms

2
1−s

s r
(x)ms

2
1−s

s r
(y), x,y ∈ Rd .

or equivalently

ms
−r(x− y)ms

−r(y)≤ ms
−2

s−1
s r

(x), x,y ∈ Rd .

Then we obtain

ms
−r ∗ms

−r(x) =
∫
Rd

ms
−r(x− y)ms

−r(y)dy

≤
∫
Rd

ms
−r/2(x− y)ms

−r/2(y)ms
−r/2(y)dy ≲ ms

−2−1/sr(x), x ∈ Rd . (2.4)

2.3. STFT and modulation spaces

By ( f ,ϕ) we denote the dual pairing between f ∈ S ′(Rd) and ϕ ∈ S(Rd), and
the dual pairing in the context of Gelfand-Shilov type spaces in Section 4.

Let

π(Z)g(t) = MξTxg(t) = e2πit·ξg(t− x), g ∈ S
(
Rd

)
\{0}, Z = (x,ξ) ∈ R2d .

The short-time Fourier transform (STFT) of f ∈ S ′
(
Rd

)
with respect to a given

window g ∈ S
(
Rd

)
\{0} is defined as

Vg f (x,ξ) = ⟨ f ,π(Z)g⟩=
∫
Rd

f (t)g(t− x)e−2πitξdt.

The same formula over R2d is given by



108 STEVAN PILIPOVIĆ, NENAD TEOFANOV, AND FILIP TOMIĆ

Vg f (X ,Ξ) =
∫
R2d

f (t1, t2)g((t1, t2)− (x1,x2))e−2πi(t1,t2)·(ξ1,ξ2)dt1dt2, (2.5)

where X = (x1,x2) and Ξ = (ξ1,ξ2).
The (cross-)Wigner distribution is given by

W ( f ,g)(x,ξ) =
∫
Rd

f (x− t
2
)g(x+

t
2
)e−2πiξtdt, f ,g ∈ L2(Rd), (2.6)

and when g ∈ S
(
Rd

)
it extends to f ∈ S ′

(
Rd

)
by duality.

If X = (x1,x2) and Ξ = (ξ1,ξ2) belong to R2d , we write

W ( f ,g)(X ,Ξ)

=
∫
R2d

f ((x1,x2)−
(t1, t2)

2
)g((x1,x2)+

(t1, t2)
2

)e−2πi(t1,t2)·(ξ1,ξ2)dt1dt2.

We recall that for f ∈ S ′
(
Rd

)
and g ∈ S

(
Rd

)
,

W ( f ,g)(x,ξ) = 2de4πixξVg∗ f (2x,2ξ), x,ξ ∈ Rd ,

holds, where g∗(x) = g(−x) (see [12]).
Modulation spaces are introduced by imposing mixed Lebesgue spaces norm to

the STFT as follows.
Let 1 ≤ p,q ≤ ∞ and m ∈ Mv, and let g ∈ S

(
Rd

)
\{0}. Then the weighted

modulation space Mp,q
m

(
Rd

)
consists of f ∈ S ′

(
Rd

)
with the property

∥ f∥Mp,q
m

=

(∫
Rd

(∫
Rd
|Vg f (x,ξ)|p |m(x,ξ)|p dx

)q/p
dξ

)1/q

< ∞, (2.7)

with obvious changes if p,q = ∞. It is a Banach space with the norm ∥ · ∥Mp,q
m

, and
it is well known that the definition does not depend on the choice of the window
g ∈ S

(
Rd

)
\{0} in the sense that different Schwartz functions yield equivalent

norms.
The original source for modulation spaces is [9], see also [12], and the recent

monograph [5].

2.4. Pseudo-differential operators

We end this section with some remarks on the Weyl-Hörmander pseudo-differential
operators given by (1.3). By a straightforward calculation one can show that for
f ∈ S ′

(
Rd

)
formula (1.3) is (in the weak sense) equivalent to

⟨aw f ,g⟩= ⟨a,W (g, f )⟩ g ∈ S
(
Rd

)
,

where W is the Wigner distribution given by (2.6). It is well known that the map-
ping

aw : S(Rd)→ S ′(Rd)

is continuous.
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The relation between aw and the STFT is given by the use of the symplectic
structure on Rd . This is an important observation when considering metrics differ-
ent than the Euclidean ones, see Section 5.

For (ξ,η) ∈ R2d we denote j(ξ,η) = (η,−ξ), Let g ∈ S
(
Rd

)
\{0}. Recall that

Lemma [12, Lemma 14.5.1] implies the following formula:

|(aw
π(X)g,π(Y )g)|=

∣∣∣∣VΦa
(

X +Y
2

, j(Y −X)

)∣∣∣∣ , X ,Y ∈ R2d , (2.8)

where Φ =W (g,g) ∈ S
(
R2d

)
. By the change of variables we obtain∣∣VΦσ(U,V )

∣∣= ∣∣∣∣〈σ
w

π

(
U− j−1(V )

2

)
g,π

(
U +

j−1(V )

2

)
g
〉∣∣∣∣ , (2.9)

U,V ∈ R2d . Note that the standard symplectic form on R2d is related to j by

[(x,ξ),(y,η)] = ⟨ j(x,ξ),(y,η)⟩= ⟨ξ,y⟩−⟨x,η⟩, x,y,ξ,η ∈ Rd .

Also,
[(x,ξ),(y,η)] =

[
y η

]
·
[

0 I
−I 0

]
·
[

x
ξ

]
, x,y,ξ,η ∈ Rd ,

where the standart symplectic matrix
[

0 I
−I 0

]
is 2d× 2d block matrix and I is

d×d identity matrix.

3. NOVEL SPACES FOR SYMBOLS OF PSEUDO-DIFFERENTIAL OPERATORS

To extend results from [23] into the framework of Gelfand–Shilov spaces given
in [5] (see Section 4) we need a careful preparation. This section contains original
material, namely the construction of particular Wiener-amalgam spaces W (L∞,As

r )

which are used in the definition of new modulation spaces M̃∞
pro j,s and M̃∞

ind,s.
Then the symbols of pseudo-differential operators are distributions from M̃∞

pro j,s

or M̃∞
ind,s.

3.1. Spaces of sequences

We introduce spaces of sequences which are convenient for our investigations.
We note that these sequences are considered in [26] in the context of mapping
properties of the Bargmann transforms (cf. [26, Definition 3.1]).

Let Λ be a discrete subgroup of Rd , and

ms
r(·) = er|·|1/s

, r,s > 0. (3.1)

Then the sequence a = (aλ)λ∈Λ belongs to the Banach space l∞
ms

r
(Λ) if

||a||r,s = ∥ams
r∥∞ = sup

λ∈Λ

|aλ|er|λ|1/s
< ∞.

We will use the notation As
r = l∞

ms
r
(Λ).
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It is well known that l∞
v (Λ) is Banach algebra with respect to convolution if and

only if v is subconvolutive (see [7]). Since ms
r is not subconvolutive when 0 < s≤ 1

(see (2.3)), it follows that As
r is not a convolution algebra.

We collect some of the basic properties of As
r in the following Lemma.

Lemma 3.1. Let s,r > 0.
i) If 0 < r1 < r2 then As

r2
↪→ As

r1
↪→ l1 where ↪→ denotes continuous embedding.

Moreover, this embedding is compact.
ii) As

r is involutive, i.e., if a ∈ As
r then a∗ = (a−λ)λ∈Λ ∈ As

r and ||a∗||r,s = ||a||r,s.
iii) As

r is solid, i.e., if b ∈ As
r and aλ ≤ bλ for all λ ∈ Λ then a ∈ As

r and ||a||r,s ≤
||b||r,s.

iv) Let a,b ∈ As
r and c = a∗b. Then there exists c ∈ (0,1] (depending on s) such

that
∥c∥cr,s ≲ ∥a∥r,s∥b∥r,s. (3.2)

Proof. We only prove i) and iv) since ii) and iii) are straightforward.
i) The compactness of the embedding is the consequence of the Köthe theory of
sequence spaces since the weights satisfy e(r1−r2)|λ|1/s → 0 as |λ| → ∞.
iv) Note that Lemma 2.1 and (2.3) implies that there exists c ∈ (0,1] (c = 1 for
s > 1 or c = 2−1/s for 0 < s≤ 1) such that

ms
−r ∗ms

−r(x)≲ ms
−cr(x) x ∈ Rd . (3.3)

Therefore, if c = (cλ)λ∈Λ we obtain

|cλ| ≤ ∑
µ∈Λ

|aλ−µ||bµ| ≤ ∥a∥r,s∥b∥r,s(ms
−r ∗ms

−r(λ))

≲ ∥a∥r,s∥b∥r,sms
−cr(λ), λ ∈ Λ, (3.4)

which implies |cλ|ms
cr(λ) ≲ ∥a∥r,s∥b∥r,s, λ ∈ Λ. The claim follows by taking the

supremum over λ. □

We introduce the Frechét space (FS− space) and the dual Frechet space (DFS−
space) of sequences, respectively, by taking the projective and inductive limit topolo-
gies:

As
pro j = lim←−

r→∞

As
r , As

ind = lim−→
r→0

As
r , s > 0.

These spaces are nuclear, and by Lemma 3.1 it follows that the spaces As
pro j and

As
ind are closed under convolution for any s > 0. Moreover, for a given r0 > 0 we

have
As

pro j ↪→ As
r0
↪→ As

ind ↪→ l1, s > 0.

3.2. Wiener amalgam spaces related to As
r

Next we introduce the Wiener-Amalgam space related to As
r when r,s > 0.
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Let C ∈ R2d be an open relatively compact set containing the origin, and let Λ

be a lattice in R2d such that R2d =
⋃

λ∈Λ(λ+C). For a locally bounded function F
on R2d we set

Fλ = sup
Y∈λ+C

|F(Y )|, λ ∈ Λ. (3.5)

Then F belongs to the Banach space W (L∞,As
r ) :=W s

r if F = (Fλ)λ
∈ As

r (Λ), and
the norm in W s

r is given by ∥F∥W s
r
= ∥Fλ∥r,s. In particular, W s

r contains locally
bounded functions whose decay rate at infinity is bounded by ms

−r(·) = e−r|·|1/s
.

Remark 3.1. Note that W s
r =W (L∞,As

r ) =W (L∞, l∞
ms

r
(Λ)) = L∞

ms
r
(R2d). Moreover,

by Lemma 3.1 it follows that As
r ↪→ l1, and therefore

W s
r ↪→W (L∞, l1) :=W (l1),

where W (l1) is the Wiener space defined by (Fλ)λ∈Λ ∈ l1 (see (3.5)).
If g∈W (l1) and the lattice Λ is sufficiently dense in R2d , then G(g,Λ) is a frame

for L2(Rd) (see [12] for details).

By taking the projective and inductive limits we obtain

W s
pro j = lim←−

r→∞

W s
r =W

(
L∞,As

pro j
)

and W s
ind = lim−→

r→0
W s

r =W (L∞,As
ind) .

We can prove the following Lemma.

Lemma 3.2. Let s > 0. W s
pro j and W s

ind are involutive algebras with respect to
convolution. In particular,

∥F ∗G∥W s
cr
≲ ∥F∥W s

r
∥G∥W s

r
, r > 0, (3.6)

where c ∈ (0,1] as in part iv) of the Lemma 3.1.

Proof. Directly from the definition it follows that W s
r is an involutive algebra.

Note that part iv) of Lemma 3.1 implies that As
r ∗As

r ↪→ As
cr. Then [8, Theorem

3] implies that W s
r ∗W s

r ↪→W s
cr and the statement follows. □

3.3. Modulation spaces related to As
r

We end the section by introducing modulation spaces with respect to As
r . For a

symbol a on R2d we define

G(a)(Y ) = sup
X∈R2d

|VΦ(a)(X ,Y )|, Y ∈ R2d ,

where Φ =W (g,g), for a given window g ∈ S(Rd)\{0}.
We say that a ∈ M̃∞,As

r (R2d) if G(a)◦ j ∈W s
r , where j(ξ,η) = (η,−ξ), (ξ,η) ∈

R2d .
The space M̃∞,As

r (R2d) is a Banach space with the norm given by

∥σ∥M̃∞,As
r = ∥G(σ)◦ j∥W s

r
.

To shorten the notation we will write M̃∞,As
r (R2d) := M̃∞

r,s.
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Again, we consider the corresponding projective and inductive limit spaces

M̃∞
pro j,s = lim←−

r→∞

M̃∞
r,s and M̃∞

ind,s = lim−→
r→0

M̃∞
r,s.

It can be proved that these spaces are related to the standard modulation spaces
as given in (2.7) in the following way.

Proposition 3.1. Let g ∈ S(Rd)\{0}, and Φ =W (g,g). Then

M̃∞
pro j,s =

⋂
r>0

M∞,∞
1⊗ms

r
and M̃∞

ind,s =
⋃
r>0

M∞,∞
1⊗ms

r
,

where
M∞,∞

1⊗ms
r
= { f ∈ S ′(R2d) | sup

X ,Ξ∈R2d
|VΦ f (X ,Ξ)|er|Ξ|1/s

< ∞}.

The class of symbols M̃∞,As
r (R2d) is an appropriate choice when dealing with pse-

udo-differential operators on Gelfand-Shilov type spaces with Hörmander metrics.

4. APPROXIMATE DIAGONALIZATION IN GELFAND-SHILOV SPACES

In this section we first recall the definition of standard Gelfand-Shilov spaces,
and then recall the results from [4] and [5] which are necessary when extending
results from Section 5 to weights that decay at infinity faster then the inverse of
any polynomial. Basic facts of Gelfand-Shilov spaces can be found in the original
source [11].

Let s, t,A,B > 0. We start with the Banach space Ss,A
t,B

(
Rd

)
consisting of func-

tions f ∈C∞(Rd) with the finite norm

|| f ||S s,A
t,B

= sup
α,β∈Nd

0 ,x∈Rd

∣∣xα∂β f (x)
∣∣

A|α|B|β|α!tβ!s
.

Then, by taking projective and inductive limits we obtain

Σ
s
t = lim←−

A>0,B>0
Ss,A

t,B ; Ss
t = lim−→

A>0,B>0
SS,A

t,B .

Let us denote Ss
t,∗ for Σs

t or Ss
t . Also, the usual notation for isotropic spaces is

S s(Rd) for S s
s (Rd),s≥ 1/2, and Σs(Rd) for Σs

s(Rd),s > 1/2.
The following results from [5] give rise to approximate diagonalization when

considering the Euclidean metrics.

Theorem 4.1. [5, Theorem 5.2.7] Let s > 0,m ∈Mv
(
Rd

)
,g ∈ M1

v⊗1
(
Rd

)
\{0}

such that
∥∂αg∥L1

v(Rd) ≲C|α|(α!)s, α ∈ Nd ,

for some C > 0. If f ∈C∞
(
Rd

)
the following conditions are equivalent:

(i) There exists a constant C > 0 such that

|∂α f (x)|≲ m(x)C|α|(α!)s, x ∈ Rd ,α ∈ Nd .
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(ii) There exists a constant ε > 0 such that

|Vg f (x,ξ)|≲ m(x)e−ε|ξ| 1s , x,ξ ∈ R2d ,α ∈ Nd .

Theorem 4.2. [5, Theorem 5.2.10] Let s≥ 1/2 and m ∈Mv
(
R2d

)
.

a) If 1/2≤ s let g ∈ Ss
s
(
Rd

)
.

b) If 1/2 < s let g ∈ Σs
s
(
Rd

)
.

Assume the following growth condition on the weight v:

v(z)≲ eε|z|1/s
, z ∈ R2d ,

for every ε > 0.
Let a ∈C∞

(
R2d

)
. Then the following are equivalent:

(i) The symbol a satisfies

|∂αa(z)|≲ m(z)C|α|(α!)s, z ∈ R2d ,α ∈ N2d .

(ii) There exists ε > 0 such that

|⟨aw
π(z)g,π(w)g⟩|≲ m

(
w+ z

2

)
e−ε|w−z| 1s , z,w ∈ R2d . (4.1)

Theorem 4.3. [5, Theorem 5.2.12] Let s≥ 1/2, g ∈ Ss
s
(
Rd

)
, m ∈Mv

(
R2d

)
, and

let G(g,Λ) be a Gabor superframe for L2
(
Rd

)
. If a∈C∞

(
R2d

)
, then the following

properties are equivalent:
(i) There exists ε > 0 such that the estimate (4.1) holds.

(ii) There exists ε > 0 such that

|⟨aw
π(µ)g,π(λ)g⟩|≲ m

(
λ+µ

2

)
e−ε|λ−µ| 1s , λ,µ ∈ Λ.

Now we state a result on approximate diagonalization in the spirit of [14]. The
proof follows from a careful inspection of the proofs of Theorems 4.1, 4.2, and 4.3,
and will be given elsewhere.

Here below As
∗ denotes As

pro j or As
ind , W s

∗ stands for W s
pro j or W s

ind , and by M̃∞
∗,s

we denote M̃∞
pro j,s or M̃∞

ind,s.

Theorem 4.4. [5, Theorem 5.2.12] Let s≥ 1/2 and g ∈ S s
s (Rd). Then the follow-

ing are equivalent:
a) a ∈ M̃∞

∗,s,
b) There exists H ∈W s

∗ such that

|⟨aw
π(X)g,π(Y )g⟩| ≤ H(Y −X), X ,Y ∈ R2d , (4.2)

c) There exists a sequence h ∈ As
∗(Λ) such that

|⟨aw
π(µ)g,π(ν)g⟩| ≤ h(ν−µ), µ,ν ∈ Λ.
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5. EXTENSIONS ON THE SPACES WITH THE HÖRMANDER METRIC

In this section we present some general results from [23] in the context of tem-
pered distributions, and symbol classes S(M,g), see (5.1). Extension of these re-
sults to Gelfand-Shilov spaces and their dual spaces of tempered ultradistributions
is a highly nontrivial task and will be the subject of our future investigations.

Before explaining the main results, we need to recall necessary notions related
to the geometry in the observed spaces. We refer to [20] for more details on the
subject.

We assume that a Riemannian metric g on R2d is a Borel measurable section of
the 2-covariant tensor bundle T 2T ∗R2d that is symmetric and positive-definite at
every point. The corresponding quadratic forms are denoted by the same symbol:
gX(T ) := gX(T,T ), T ∈ TXR2d . For each X ∈ R2d , we identify R2d with TXR2d

that sends every Y ∈ R2d to the directional derivative in direction Y at X . Let
T ∈ R2d\{0}. We denote by ∂T the vector field on R2d given by the directional
derivative in direction T at every point X ∈ R2d . We denote by σ : R2d → R2d the
isomorphism induced by the symplectic form; notice that tσ=−σ, σX ∈L(R2d ,R),
σX(T ) = [X ,T ], T ∈ R2d . Let g be a Riemannian metric on R2d and, for X ∈ R2d ,
denote by QX : R2d → R2d the isomorphism induced by gX . In particular, QX is
2d× 2d diagonal matrix with elements qX(E j,E j) where {E j}2d

j=1 is the basis of
R2d .

For X ∈R2d , set Qσ
X := tσQ−1

X σ :R2d→R2d and let gσ
X(T,S) := ⟨Qσ

X T,S⟩, T,S∈
R2d . Then gσ is again a Riemannian metric on R2d called the symplectic dual of g;
it is also given by

gσ
X(T ) = sup

S∈R2d\{0}
[T,S]2/gX(S).

The Riemannian metric g is said to be a Hörmander metric [18] (i.e., an ad-
missible metric in the terminology of [2, 20]) if the following three conditions are
satisfied:

(i) (slow variation) There exist C0 ≥ 1 and r0 > 0 such that

gX(X−Y )≤ r2
0⇒C−1

0 gY (T )≤ gX(T )≤C0gY (T ),

for all X ,Y,T ∈ R2d ;
(ii) (temperance) There exist C0 ≥ 1 and N0 ≥ 0 such that

(gX(T )/gY (T ))
±1 ≤C0(1+gσ

X(X−Y ))N , for all X ,Y,T ∈ R2d ;

(iii) (the uncertainty principle) gX(T )≤ gσ
X(T ), for all X ,T ∈ R2d .

Next we need an admissibility condition. For a given metric g, a positive Borel
measurable function M on R2d is said to be g-admissible if there are C ≥ 1, r > 0
and N ≥ 0 such that
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gX(X−Y )≤ r2⇒C−1M(Y )≤M(X)≤CM(Y ), and

(M(X)/M(Y ))±1 ≤C(1+gσ
X(X−Y ))N , for all X ,Y ∈ R2d .

All the constants mentioned above are called admissibility constants.
Given a g-admissible weight M, the space of symbols S(M,g) is defined as the

space of all a ∈C∞(R2d) for which

∥a∥(k)S(M,g) = sup
l≤k

sup
X∈R2d

T1,...,Tl∈R2d\{0}

|a(l)(X ;T1, . . . ,Tl)|
M(X)∏

l
j=1 gX(Tj)1/2

< ∞, ∀k ∈ N. (5.1)

With this system of seminorms, S(M,g) becomes a Fréchet space. One can
always regularize the metric making it smooth without changing the notion of g-
admissibility of a weight and the space S(M,g); the same can be done for any
g-admissible weight (see [18]).

For any symbol a ∈ S(R2d), we consider the Weyl quantization aw, see (1.3).
This correspondence extends to symbols in S ′(R2d) in a usual manner, and in this
case aw : S(R2d)→ S ′(R2d) is a continuous mapping. For any a ∈ S(M,g) with
a g-admissible weight M, the operator aw is continuous on S(R2d) and uniquely
extends to an operator on S ′(R2d) (cf. [18]).

5.1. The symplectic short-time Fourier transform

We extended in [22] the short time Fourier transform to the spaces of functions
over the ground space equipped with the Hörmader metrics with the aim to ana-
lyze the almost diagonalization of a class of pseudo differential operators that is,
the estimate of the action of a pseudo-differential operator on wave packages ac-
commodated to the involved metrics.

We denote by Fσ the symplectic Fourier transform on R2d :

Fσ f (X) =
∫
R2d

e−2πi[X ,Y ] f (Y )dY, f ∈ L1(R2d);

recall that FσFσ = Id. ([X ,Y ] is the symplectic product)
Let ϕ ∈ S(R2d) and set ϕX := ϕ(X), X ∈ R2d . We define the symplectic short-

time Fourier transform Vϕ f of f ∈ S ′(R2d) with respect to ϕ as

Vϕ f (X ,Ξ) := Fσ( f ϕX)(Ξ) = ⟨ f ,e−2πi[Ξ,·]
ϕX⟩, X ,Ξ ∈ R2d .

When f ∈ L1
(1+|·|)−s(R2d) for some s≥ 0 (| · | is (any) norm on R2d), we have

Vϕ f (X ,Ξ) =
∫
R2d

e−2πi[Ξ,Y ] f (Y )ϕX(Y )dY.

The mapping Ξ 7→e−2πi[Ξ,·], from R2d to the space of φ such that ∥φ(α)(·)(1+| ·
|)−1∥L∞ < ∞, for every α∈Nd

0 , is well-defined and smooth. Therefore the mapping

(X ,Ξ) 7→ e−2πi[Ξ,·]
ϕX , from R2d×R2d → S(R2d),

is strongly Borel measurable. Consequently, the function
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(X ,Ξ) 7→ Vϕ f (X ,Ξ) from R2d×R2d → C,

is always Borel measurable, and if ϕ is of class C k, 0≤ k ≤ ∞, then

Vϕ f ∈Ck(R2d×R2d), 0≤ k ≤ ∞.

For the study of Vϕ, we consider the Fréchet space

lim←−
s→∞

L∞

(1+|·|)s(R2d×R2d),

and the inductive limit (LB)-spaces,

lim−→
s→∞

L∞

(1+|·|)−s(R2d×R2d), and lim−→
s→∞

L1
(1+|·|)−s(R2d×R2d).

We note that | · | is any norm on R2d×R2d and none of these spaces depend on
the particular choice of | · |. We have the following embeddings:

S(R2d×R2d) ↪→ lim←−
s→∞

L∞

(1+|·|)s(R2d×R2d) ↪→ lim−→
s→∞

L∞

(1+|·|)−s(R2d×R2d)

↪→ lim−→
s→∞

L1
(1+|·|)−s(R2d×R2d) ↪→ S ′(R2d×R2d). (5.2)

The following assertions are proved in [22]:
(i) The sesquilinear mapping

S ′(R2d)×S(R2d)→ lim−→
s→∞

L∞

(1+|·|)−s(R2d×R2d), ( f ,ϕ) 7→ Vϕ f , (5.3)

is well-defined and hypocontinuous. Furthermore, for any bounded subset
B of S ′(R2d) there is s > 0 such that Vϕ f ∈ L∞

(1+|·|)−s(R2d), for all f ∈ B,
ϕ ∈ S(R2d), and the set of linear mappings

S(Rd)→ L∞

(1+|·|)−s(R2d×R2d), ϕ 7→ Vϕ f , f ∈ B,

is an equicontinuous subset of L(S(R2d),L∞

(1+|·|)−s(R2d×R2d)).
(ii) The sesquilinear mapping

S(R2d×R2d)→ lim←−
s→∞

L∞

(1+|·|)s(R2d×R2d), (ψ,ϕ) 7→ Vϕψ, (5.4)

is well-defined and continuous.
(iii) Under a suitable (geometric) condition, and if ϕ∈ S(R2d), then the conjugate-

linear mapping S(R2d)→ S(R2d×R2d), ψ 7→Vϕψ, is well-defined and con-
tinuous.

Our main result in [22] is devoted to the almost diagonalization of a ∈ S(M,g).
We present a result which is a consequence of the main theorem in [22]. Recall,
R2d is occupied with the symplectic structure [(x,ξ),(y,η)] = ⟨ξ,y⟩−⟨η,x⟩.

We denote by Ψ
g,L
X the topological isomorphism over the Schwartz space S(R2d),

Ψ
g,L
X : S(R2d)→ S(R2d), (Ψg,L

X ϕ)(Y ) = ϕ(QX
−1/2Y ), Y ∈ R2d ,

and we extend it, by duality, to the topological isomorphism
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Ψ
g,L
X : S ′(R2d)→ S ′(R2d), ⟨Ψg,L

X f ,ϕ⟩= |detQX |1/2⟨ f ,ϕ◦Q1/2
X ⟩. (5.5)

In the simplest case when the metric g is symplectic (g = gσ, see below), then
our main Theorem in [22] has the following form: for each N ∈ N,

R2d×R2d ∋ (X ,Ξ) 7→M((X +Ξ)/2)−1(1+g X+Ξ

2
(X−Ξ))N (5.6)

×
∣∣∣∣〈(

Ψ
g,L
X+Ξ

2
a
)w

π

(
(Q X+Ξ

2
)1/2X

)
χ,π

(
(Q X+Ξ

2
)1/2Ξ

)
χ

〉∣∣∣∣ ∈ L∞(R2d×R2d).

This is a generalization of the result of Gröchenig and Rzeszotnik [14, Theorem
4.2 (i)-(ii)], since when g is the Euclidean metric on R2d and M(X) = 1 (which
corresponds to the Hörmander class S0

0,0), then Ψ
g,L
X = Id, QX = Id, ∀X ∈ R2d and

(X ,Ξ) 7→ ⟨X−Ξ⟩N |⟨aw
π(X)χ,π(Ξ)χ⟩| ∈ L∞(R4n).

The right hand side of (5.6) can be explained by the use of simplectic and meta-
plectic transformations. Denote by Mp(R2d) and Sp(R2d) the spaces of metaplec-
tic operators and of symplectic transformations over R2d (cf. [10], [20]). Note that
the interesting approach to the analysis of metaplectic transforms is given in [6]
as well as in [10]. The so called lifting theorems using the Hörmander metric are
considered in [1] and [17].

Let Π be the surjective homomorphism Π : Mp(R2d)→ Sp(R2d). Since Q1/2
X ∈

Sp(R2d) for each X ∈ R2d , there exists Φ
g
X ∈Mp(R2d) such that

Π(Φg
X) = Q−1/2

X and (Ψg
X a)w = (Φg

X)
∗aw

Φ
g
X , a ∈ S ′(R2d), X ∈ R2d .

Let τX , X ∈ R2d , be a metaplectic operator

τ(x,ξ)κ = e2πi⟨y−x/2,ξ⟩
χ(·− x), κ(X ,Ξ) ∈ S(R2d).

Clearly, τ(x,ξ) = e−πi⟨x,ξ⟩π(x,ξ). Then, since

ΩτX Ω
∗ = τΠ(Ω)X for all Ω ∈Mp(R2d),X ∈ R2d ,

(see [10, Theorem 7.13, p. 205]) we infer that for each X ,Y ∈ R2d , π(Q1/2
Y X) is

equal to (Φg
Y )
∗π(X)Φg

Y up to a constant of modulus 1. Thus, (5.6) is equivalent to
the following: for each N ∈ N,

(X ,Ξ) 7→M((X +Ξ)/2)−1(1+g X+Ξ

2
(X−Ξ))N

×
∣∣∣〈aw

π(X)Φg
X+Ξ

2
χ,π(Ξ)Φg

X+Ξ

2
χ

〉∣∣∣ ∈ L∞(W ×R2d).
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S. Pilipović is supported by the Serbian Academy of Sciences and Arts, project
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