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CHARACTERIZATION OF WEYL FUNCTIONS IN THE CLASS OF
OPERATOR-VALUED GENERALIZED NEVANLINNA FUNCTIONS

MUHAMED BOROGOVAC

Dedicated to Prof. Mirjana Vuković for her jubilee.

ABSTRACT. We provide the necessary and sufficient conditions for a general-
ized Nevanlinna function Q (Q ∈ Nκ (H )) to be a Weyl function (also known as
a Weyl-Titchmarch function).

We also investigate an important subclass of Nκ(H ), the functions that have
a boundedly invertible derivative at infinity Q′ (∞) := lim

z→∞
zQ(z). These func-

tions are regular and have the operator representation Q(z) = Γ̃+ (A− z)−1
Γ̃,z ∈

ρ(A), where A is a bounded self-adjoint operator in a Pontryagin space K .
We prove that every such strict function Q is a Weyl function associated with
the symmetric operator S := A|(I−P)K , where P is the orthogonal projection,

P := Γ̃
(
Γ̃+Γ̃

)−1
Γ̃+.

Additionally, we provide the relation matrices of the adjoint relation S+ of S,
and of Â, where Â is the representing relation of Q̂ := −Q−1. We illustrate our
results through examples, wherein we begin with a given function Q ∈ Nκ (H )
and proceed to determine the closed symmetric linear relation S and the boundary
triple Π so that Q becomes the Weyl function associated with Π.

1. INTRODUCTION

1.1. We denote the sets of positive integers, real numbers, and complex numbers
by N, R, and C, respectively. Let (K , [., .]) represent a Krein space. That is a
complex vector space equipped with a scalar product [., .], which is a Hermitian
sesquilinear form. It admits the following decomposition of K :

K = K+[+]K−,

where (K+, [., .]) and (K−,−[., .]) are Hilbert spaces that are mutually orthogonal
with respect to the form [., .]. Elements x,y ∈ K are orthogonal if [x,y] = 0, de-
noted by x [⊥]y. Every Krein space (K , [., .]) is associated with a Hilbert space
(K ,(., .)), defined as a direct and orthogonal sum of the Hilbert spaces (K+, [., .])
and (K−,−[., .]). The topology in the Krein space K is induced by the associated
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Hilbert space (K ,(., .)). The orthogonal companion A[⊥] of the set A is defined
by A[⊥] := {y ∈ K : x [⊥]y,∀x ∈ A}, and the isotropic part M of A is defined by
M := A∩A[⊥]. For properties of Krein spaces, one can refer to e.g., [6, Chapter V].

If the scalar product [., .] has κ ∈N negative squares, then we call it a Pontryagin
space of negative index κ. If κ = 0, then it is a Hilbert space. More information
about Pontryagin space can be found, for example, in [18].

The following definitions of a linear relation and basic concepts related to it can
be found in [1,14,24]. In the following, X , Y , and W represent Krein spaces which
include Pontryagin and Hilbert spaces.

A linear relation T : X → Y is a linear manifold T ⊆ X ×Y .
If X =Y , then T is said to be a linear relation in X . A linear relation T is closed

if it is a (closed) subspace with respect to the product topology of X ×Y . As usual,
for a linear relation or operator T : X →Y , or T ⊆ X ×Y , the symbols domT , ranT ,
and kerT represent the domain, range and kernel, respectively. Additionally, we
will use the following concepts and notation for two linear relations, T and S from
X into Y , and a linear relation U from Y into W :

mulT := {g ∈ Y : {0,g} ∈ T} ,
T ( f ) := {g ∈ Y, : { f ,g} ∈ T} ,( f ∈ D(T )),

T−1 := {{g, f} ∈ Y ×X : { f ,g} ∈ T} ,
zT := {{ f ,zg} ∈ X ×Y : { f ,g} ∈ T} ,(z ∈ C),

S+T := {{ f ,g+ k} : { f ,g} ∈ S,{ f ,k} ∈ T} ,
S+̂T := {{ f +h,g+ k} : { f ,g} ∈ S,{h,k} ∈ T} ,
S+̇T := {{ f +h,g+ k} : { f ,g} ∈ S,{h,k} ∈ T,S∩T = {0}} ,
UT := {{ f ,k} ∈ X ×W : { f ,g} ∈ T,{g,k} ∈U f or someg ∈ Y} ,
T ∗ := {{k,h} ∈ Y ×X : [ f ,h] = [g,k] f or all { f ,g} ∈ T} ,
T∞ := {{0,g} ∈ T} .

If T (0) = {0}, we say that T is single-valued linear relation, i.e. operator. The
sets of closed linear relations, closed operators, and bounded operators in X are
denoted by C̃(X), C(X), B(X), respectively.

Let A be a linear relation in a Krein space K . When X = Y = K we use the
notation A+ rather than A∗. We say that A is symmetric (selfadjoint) if it satisfies
A ⊆ A+ (A = A+).

Every point α ∈ C for which { f ,α f} ∈ A, with some f ̸= 0, is called a finite
eigenvalue, denoted by α ∈ σp(A). The corresponding vectors are eigenvectors be-
longing to the eigenvalue α. If for some z ∈ C the operator (A− z)−1 is bounded,
not necessarily densely defined in K , then z is a point of regular type of A, sym-
bolically, z ∈ ρ̂(A). If for z ∈ C the relation (A− z)−1 is a bounded operator and
ran(A− z) = K , then z is a regular point of A, symbolically z ∈ ρ(A).



CHARACTERIZATION OF WEYL FUNCTIONS ... 151

In a Pontryagin space K , an isometric operator U is called unitary if domU =
ranU = K , see [18, Definition 5.4].

According to the definition [5, Definition 1.3.7], linear relations T : K → K and
T ′ : K ′ → K ′ are unitarily equivalent if there exists a unitary operator U : K → K ′

such that T ′ = {{U(x),U(x′)} : {x,x′} ∈ T}.
Let L(H ) denote the Banach space of bounded operators in a Hilbert space

H . Recall that an operator valued function Q : D (Q) ⊂ C → L(H ) belongs to
the generalized Nevanlinna class Nκ (H ) if it is meromorphic on C\R, such that
Q(z)∗ = Q(z̄), for all points z of holomorphy of Q, and the kernel NQ (z,w) :=
Q(z)−Q(w)∗

z−w̄ has κ negative squares. A generalized Nevanlinna function Q ∈ Nκ (H )
is called regular if the operator Q(w) is boundedly invertible at least for one point
w ∈ D(Q), see [22].

We will need the following, Krein-Langer representation of generalized Nevan-
linna functions.

Theorem 1.1. A function Q : D(Q) ⊂ C → L(H ) is a generalized Nevanlinna
function of some index κ if and only if it has a representation of the form

Q(z) = Q(w)∗+(z− w̄)Γ+
w

(
I +(z−w)(A− z)−1

)
Γw,z ∈ D (Q) , (1.1)

where, A is a self-adjoint linear relation in some Pontryagin space (K , [., .]) of
index κ̃ ≥ κ;Γw : H → K is a bounded operator; w ∈ ρ(A)∩C+ is a fixed point
of reference. This representation can be chosen to be minimal, that is

K = c.l.s.
{

Γzh : z ∈ ρ(A) ,h ∈ H
}

(1.2)

where
Γz :=

(
I +(z−w)(A− z)−1

)
Γw. (1.3)

If realization (1.1) is minimal, then κ̃ = κ. In that case D(Q) = ρ(A) and the triple
(K , A, Γw) is uniquely determined (up to unitary equivalence).

The linear relation A in (1.1) is called a representing relation (operator) of Q.
Such operator representations were developed by M. G. Krein and H. Langer, see
e.g. [19, 20] and later converted to representations in terms of linear relations, see
e.g. [15, 17].

Functions Q ∈ Nκ(H ) which fulfill the condition⋂
z∈D(Q)

ker
Q(z)−Q(w̄)

z− w̄
= {0} (1.4)

for one, and hence for all, w ∈ D(Q), are called strict, see e.g. [3, p. 619].
In what follows, S denotes a closed symmetric relation or operator, not neces-

sarily densely defined in a separable Pontryagin space (K [., .]), and S+ denotes
an adjoint linear relation of S in (K [., .]). For definitions and notation of concepts
related to an ordinary boundary triple Π for the linear relation S+, see e.g. [5,9,10].
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We copy some of those definitions here with adjusted notation. For example, the
operator denoted by Γ2 in [9] is denoted by Γ0 in [5,10] and here, while Γ1 denotes
the same operator in all papers. Elements of S+ are denoted by f̂ , ĝ, . . ., where e.g.

f̂ :=
(

f
f ′

)
= { f , f ′}. Let

Rz := Rz(S+) = ker
(
S+− z

)
, z ∈ ρ̂(S),

be the defect subspace of S. Then

R̂z :=
{(

fz
z fz

)
: fz ∈ Rz

}
, R := (domS)[⊥] , R̂ :=

{(
0
f

)
: f ∈ R

}
. (1.5)

Definition 1.1. [9, Definition 2.1] A triple Π = (H ,Γ0,Γ1), where H is a Hilbert
space and Γ0,Γ1 are bounded operators from S+ to H , is called an ordinary bound-
ary triple for the relation S+ if the abstract Green’s identity[

f ′,g
]
−
[

f ,g′
]
=
(
Γ1 f̂ ,Γ0ĝ

)
H −

(
Γ0 f̂ ,Γ1ĝ

)
H ,∀ f̂ , ĝ ∈ S+, (1.6)

holds, and the mapping Γ : f̂ →
(

Γ0 f̂
Γ1 f̂

)
from S+ to H ×H is surjective.

The operator Γ is called the boundary or reduction operator.

An extension S̃ of S is called proper, if S ⊊ S̃ ⊆ S+. The set of proper extensions
of S is denoted by Ext S. Two proper extensions S0, S1 ∈ Ext S are called disjoint if
S0 ∩S1 = S, and transversal if, additionally, S0+̂S1 = S+ .

Each ordinary boundary triple is naturally associated with two self-adjoint ex-
tensions of S, defined by Si := kerΓi, i = 0,1, i.e., we have Si = S+i , i = 0,1, see [9,
p. 4425].

Under above notation, the function

/0 ̸= ρ(S0) ∋ z 7→ γz =
{{

Γ0 f̂z, fz
}

: f̂z ∈ R̂z(S+)
}

is called the γ-field associated with the boundary triple Π = (H ,Γ0,Γ1), and the
function

/0 ̸= ρ(S0) ∋ z 7→ M(z) =
{{

Γ0 f̂z,Γ1 f̂z
}

: f̂z ∈ R̂z(S+)
}

(1.7)

is called the Weyl function associated with the boundary triple Π = (H ,Γ0,Γ1), see
e.g. [5, 9, 13]. Let us mention that functions γz : H → Rz are bijections and satisfy
the formula (1.3).

1.2. The following is a summary of the results presented in this paper. Basic
concepts of the Weyl function and γ-field of the symmetric operator S in the Hilbert
space setting were introduced in the classical papers, see [13, 14]. For later devel-
opments in the field of boundary relations and Weyl functions, we refer the reader
to [2, 4, 9, 12].

In this paper, we prove a characterization of the Weyl functions in the class
of operator valued regular generalized Nevanlinna functions. Therefore, we use
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operator (relation) representations in the Pontryagin space (K , [., .]) setting of the
regular generalized Nevanlinna function Q ∈ Nκ (H ). We denote by A the repre-
senting self-adjoint relation of Q and by Â the representing self-adjoint relation of
Q̂ =−Q−1.

In Section 2, in Proposition 2.1 and Example 2.1, we show how to derive the
strict part of a generalized Nevanlinna function. It is well known that a strict func-
tion need not to be invertible, see e.g. [11]. In Example 2.1, we see that a regular
function Q need not to be strict.

In Theorem 2.1, one of the main results of the paper, we give a characterization
of the Weyl functions in terms of regular and strict generalized Nevanlinna func-
tions. In Theorem 2.1 (b), we prove the more difficult converse part. It is a gener-
alization of the converse part of [13, Theorem 1] in several levels. Namely, in the
converse part of [13, Theorem 1], authors start with a Krein Q -function of a given
symmetric operator S in a Hilbert space. This means they assume the existence of
the symmetric operator S, and then they prove the existence of the corresponding
boundary triple that has the Weyl function equal to the given Q -function.

We solve a more general problem. We only assume that a regular and strict
generalized Nevanlinna function is given, i.e. we do not assume the existence of
a symmetric operator or relation S. We first have to prove the existence of the
symmetric linear relation S in a Pontryagin space to be in a position to find the
corresponding triple. In order to prove the existence of the symmetric relation S,
we use much later results from [22].

Similar issues were studied for the definitizable matrix function, see [2, Theorem
3.5].

Section 3 can be viewed as an application of [7] in the area of boundary triples
and Weyl functions. In this section, we deal with an important subclass of regular
functions Q ∈ Nκ (H ), the functions that have a boundedly invertible derivative
Q′ (∞) := lim

z→∞
zQ(z). We are again focused on finding a symmetric operator S and

a boundary triple Π for a given function Q. We start with such a function Q with
the representing bounded operator A, and in Theorem 3.1 we prove that there exists
a symmetric operator S such that Q is the Weyl function corresponding to S and A.
Hence, here we also give a solution of the converse problem. Moreover, we give
matrix representations of A, Â, S, and S+. Theorem 3.1 also gives us useful new
relationships between linear relations A, Â, S, S+ and R̂ associated with a given
function Q ∈ Nκ(H ).

In Corollary 3.1, we prove that Â, A and S+ are R -regular extensions of S if the
corresponding function Q is strict and Q′ (∞) is boundedly invertible.

In Section 4, we make use of the abstract results of sections 2 and 3. In examples
4.1 and 4.3, the functions have a boundedly invertible derivative Q′(∞), i.e. they
satisfy the assumptions of Theorem 3.1. Therefore, we apply Theorem 3.1 to find
the closed symmetric relation S and the corresponding ordinary boundary triple
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Π in each of the examples so that Q is the Weyl function associated with Π. In
Example 4.3, we use Theorem 3.1 also to find relation matrices R̂ , Â, S and S+ for
the given function Q ∈ Nκ(H ) represented by A.

In Example 4.2 we prove that the strict part Q̃ of the function Q used in Example
2.1 is indeed a Weyl function corresponding to some symmetric relation S and the
corresponding boundary triple Π.

2. CHARACTERIZATION OF WEYL FUNCTIONS IN THE SET OF REGULAR

GENERALIZED NEVANLINNA FUNCTIONS Nκ(H )

2.1 We will need the following lemma and proposition.

Lemma 2.1. [8, Lemma 4.2] Let Q ∈ Nκ (H ) be a minimally represented function
by a triplet (K ,A,Γw) in representation (1.1).

(i) If z ∈ D(Q), then

kerΓz = kerΓw =: kerΓ;∀w ∈ D(Q),

(ii) kerΓ =

{
h ∈ H :

Q(z)−Q(w̄)
z− w̄

h = 0, ∀z,∀w ∈ D(Q)

}
.

According to Lemma 2.1 we can introduce the Hilbert space H̃ := (kerΓ)⊥ and
operators γ̃w := (Γw)|H̃ .

Proposition 2.1. Let Q∈Nκ (H ) be a function minimally represented by (1.1) with
operators Γz : H → K defined by (1.3) that satisfy (1.2). Then the following hold:

(i) Operators Γz,z ∈ D(Q) are one-to-one if and only if the function Q(z) : H →
H is strict.

(ii) For every function Q ∈ Nκ (H ) minimaly represented by (1.1) with the triple
(K ,A,Γw), there exists a unique, up to multiplicative constant, strict function
Q̃ ∈ Nκ

(
H̃
)

defined by (1.1) with the triple (K ,A, γ̃w). Functions Q and Q̃
have the same number of positive squares as well.

Proof. (i) This is an obvious consequence of the previous lemma.
(ii) Since, for every w ∈ D(Q) = D

(
Q̃
)
, the operator γ̃w : H̃ → ranΓw coincides

with Γw everywhere except on ker Γw, the Pontryagin space defined by (1.2) with
γ̃w instead Γw coincides with K . Because γ̃w,∀w ∈ D(Q̃), are injections⋂

z,w∈D(Q̃)

ker
Q̃(z)− Q̃(w̄)

z− w̄
= /0.

holds, i.e., Q̃ is a strict function. The representing relation A remains the same
because functions γ̃w,∀w ∈ D(Q) do not change anything in K .
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For elements h,k ∈ H = H̃ (+)kerΓ we have the corresponding unique orthog-
onal decomposition h = h̃(+)h0 ∧ k = k̃(+)k0. Therefore,[

Q̃(z)− Q̃(w̄)
z− w̄

h̃, k̃
]
=
[
γ̃zh̃, γ̃wk̃

]
= [Γzh,Γwk] .

This means that the numbers of both negative and positive squares of Q and of Q̃
are the same. □

The function Q̃ ∈ Nκ(H̃ ), introduced in Proposition 2.1, will be referred to as
the strict part of Q. Additionally, we will call the Hilbert space H̃ the domain of
the strict part Q̃.

Example 2.1. Consider the following regular matrix function

Q(z) =
( z

2 −1 z
2

z
2

z
2 +1

)
.

Then for vector h =

(
1
−1

)
,

N(z,w)h =
Q(z)−Q(w̄)

z− w̄
h = 0,∀w,z ∈ D(Q).

Therefore, this is an example of a regular function that is not strict.
Our task is to find the strict part Q̃ of Q.

Let us switch from the basis e1 =

(
1
0

)
, e2 =

(
0
1

)
to the new ortho-normal

basis f1 =
1√
2

(
1
−1

)
, f2 =

1√
2

(
1
1

)
. With respect to the new basis, we have

Q(z) =
(

0 −1
−1 z

)
∧ f1 =

(
1
0

)
∧ f2 =

(
0
1

)
∧h =

√
2 f1.

According to Proposition 2.1, we can introduce the domain of Q̃ by H̃ = l.s.{ f2}.
Then, if we denote by P|H̃ the orthogonal projection onto H̃ we get the strict part
of Q

Q̃(z) = P|H̃ Q(z)|H̃ = z,z ∈ D(Q).

Recall that the strict part preserves the numbers of positive and negative squares. □
Later, in Example 4.2, we will find the corresponding triple of Q̃, and we will

show that Q̃ is the corresponding Weyl function.
2.2 Most of the statements in the first part of the following theorem about the

Weyl function Q are already known, as cited. We added a proof of regularity of Q
in order to obtain a characterization. Part (b) is more interesting. In part (b) we start
from a generalized Nevanlinna function Q and under the condition of regularity of
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Q we prove the existence of a simple closed operator S so that Q becomes a Weyl
function of S. Part (b) is a generalization of the converse part of [13, Theorem 1].

Theorem 2.1. (a) Let S, {0} ⊆ S ⊊ A, be a simple closed symmetric operator in
a Pontryagin space K of index κ. Let A+ = A, ρ(A) ̸= /0, let Π = (H ,Γ0,Γ1)
be an ordinary boundary triple for S+ (A = kerΓ0), and let Q(z) be the Weyl
function of A corresponding to Π. Assume that Q(w) is invertible for at least
one point w ∈ D(Q).

Then Q ∈ Nκ (H ), Q is a regular and strict function uniquely determined by
the relation A in the minimal representation of the form (1.1).

(b) Conversely, let Q ∈ Nκ (H ) be a regular and strict function given by a minimal
representation (1.1) with a representing relation A.

Then there exists a unique closed simple linear operator S, {0} ⊆ S ⊊ A ⊊
S+ and there exists an ordinary boundary triple Π = (H ,Γ0,Γ1) for S+ such
that A = kerΓ0. The function Q(z) is the Weyl function of A corresponding to
Π.

(c) In this case, the following hold:
(i) The representing relation Â of Q̂ :=−Q−1 satisfies Â = kerΓ1.

(ii) A and Â are transfersal extensions of S := A∩ Â.

Proof. (a) The assumptions are appropriate. Namely, the existence of the boundary
triple Π=(H ,Γ0,Γ1), with A := kerΓ0, has been proven in [9, Proposition 2.2 (2)].
The existence of the corresponding (well defined) Weyl function with bounded
values Q(z) has been proven in [9, p. 4427].

According to the terminology of [3, p. 619], the assumption that the closed
linear relation S is simple means

K = c.l.s.
{

Rz(S+) : z ∈ ρ(A)
}
. (2.1)

The relationship between one-to-one operators γz ∈ [H ,Rz],z ∈ ρ(A), of the γ-
field γ and the Weyl function has been established by [9, (2.13)]

Q(z)−Q∗ (w)
z− w̄

= γ
+
w γz, ∀w,z ∈ ρ(A), (2.2)

where, according to [9, (2.6)], γ-filed satisfies

γz =
(

I +(z−w)(A− z)−1
)

γw. (2.3)

For all h,k ∈ H ,(
Q(z)−Q∗ (w)

z− w̄
h,k
)
=
(
γ
+
w γz(h),k

)
= [γz(h),γw(k)] = [ f ,g] , f ∈ Rz,g ∈ Rw.

Because (K , [., .]) given by (2.1) is a Pontryagin space with a negative index κ,
we conclude that Q has κ negative squares. Because Q(z) are bounded operators,
Q ∈ Nκ (H ) holds.
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Let us note that the corresponding claim for Weyl families and generalized
Nevanlinna families has been proven in [4, Theorem 4.8].

From (2.2) and (2.3) it follows that

Q(z) = Q(w̄)+(z− w̄)γ+w
(

I +(z−w)(A− z)−1
)

γw,z ∈ ρ(A) . (2.4)

Because γz(H )=Rz, according to (2.1) and (2.3), the minimality condition (1.2)
is fulfilled with A = kerΓ0 and with γ-field (2.3). Then, according to Theorem 1.1,
the state space K , the representing relation A, the γ-field and the function Q given
by (2.4) are uniquely determined (up to unitary equivalence).

By the definition of a γ-field, the operators γz : H → Rz are one-to-one for all
z ∈ D(Q). Then, according to Proposition 2.1 (i), the function Q(z) is strict.

Let us prove that the function Q is regular. According to our assumptions, there
exists at least one point w̄ ∈ D(Q) such that Q̂(w̄) :=−Q(w̄)−1 is an operator. Be-
cause of the symmetry of the function Q, Q(w)−1 is also an operator. According to
definition (1.7) of the Weyl function, it is obvious that D(Q̂(z)) = ranΓ1 = H ,∀z ∈
D(Q). Therefore

(
−Q(w)−1

)∗
= (−Q(w)∗)−1 = (−Q(w̄))−1 is an operator. This

further means that Q̂(w) is a closed operator. It is also defined on entire H , i.e.,
Q̂(w) is bounded operator. This proves that Q(w) is boundedly invertible operator.
By definition Q is a regular function. This completes the proof of (a).

(b) The assumption that Q ∈ Nκ (H ) is a regular function with the representing
relation A in the minimal representation (1.1) includes that (1.2) and (1.3) hold,
and ρ(A) ̸= /0. According to [22, Proposition 2.1], the inverse Q̂ =−Q−1 ∈ Nκ (H )
admits the representation

Q̂(z) = Q̂(w)+(z−w) Γ̂
+
w
(
I +(z−w)(Â− z)−1)

Γ̂w, (2.5)

where w ∈ ρ(A)∩ρ(Â) is an arbitrarily selected point of reference,

Γ̂w :=−ΓwQ(w)−1, (2.6)

and
(Â− z)−1 = (A− z)−1 −ΓzQ(z)−1

Γ
+
z̄ , ∀z ∈ ρ(A)∩ρ(Â) (2.7)

holds.
According to Proposition 2.1 (i), the assumption that Q ∈ Nκ (H ) is a strict

function means that operators Γz,z ∈ D(Q), in representation (1.1) are one-to-one.
We need to prove that there exists a closed symmetric relation S, a boundary

triple Π = (H ,Γ0,Γ1) and a corresponding Weyl function M(z) = Q(z).
We define the closed symmetric relation S by

S := A∩ Â. (2.8)

Because representations (1.1) and (2.5) are uniquely determined, the linear relation
S is also uniquely determined. This also means that the self-adjoint relation A is an
extension of S.
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The linear relation S defined by (2.8) has equal (finite or infinite) defect numbers
in the separable Pontryagin space K because it has a self-adjoint extension A within
K . Let us denote that defect number by d(S). We already observed that Γz : H →
Γz(H ), z ∈ ρ(A), are one-to-one operators. Therefore, dimH = d(S).

We can here apply [9, Proposition 2.2]. Therefore, there exists a boundary triple
Π̃= (H̃ ,Γ0,Γ1) for S+ such that A= kerΓ0, with a γ-field γz,z∈ ρ(A), that satisfies
(2.3).

According to [9, Proposition 2.2 (3)], γz : H̃ → Rz = γz(H̃ ),∀z ∈ ρ(A), is a one-
to-one operator. Recall that γz and H̃ were introduced so that dim(H̃ ) = d(S)
holds. This means dim(H̃ ) = dim H = d(S). Therefore, we can consider H = H̃ ,
hence Π̃ = (H ,Γ0,Γ1).

Let M(z) be the Weyl function corresponding to Π̃ = (H ,Γ0,Γ1). Then M(z)
and γ(z) satisfy [9, (2.13)]. According to [9, Remark 2.2], the operator valued
function M(z) is a Q-function of S represented by A = ker Γ0 in some Pontryagin
space K̃ . (For a definition of the Q-function of S see e.g. [21].) The minimal
Pontryagin space of the Q-function M(z) is given by means of γz(H ) = Rz(S+),
which is

K̃ := c.l.s.
{

Rz(S+) : z ∈ ρ(A)
}
⊆ K . (2.9)

According to [9, (2.13)] and (2.3)

M (z) = M(w)∗+(z− w̄)γ+w
(

I +(z−w)(A− z)−1
)

γw,z ∈ ρ(A) . (2.10)

Let us now use the so called εz-model, see [20,23]. According to that model, we
can identify the building blocks of K̃ with γz(h)(h∈H , z∈ ρ(A)), and the building
blocks of K with Γz(h),(h ∈ H , z ∈ ρ(A)). Therefore, we can define one-to-one
operator U : K̃ → K by

U (γz(h)) = Γz(h), ∀h ∈ H , ∀z ∈ ρ(A),

and we can set

[γz(h),γw(k)] = [Γz(h),Γw(k)] , ∀h,k ∈ H , ∀z,w ∈ ρ(A).

Obviously, the operator U is a unitary operator. Therefore, the spaces K̃ and K
are unitarily equivalent. This, together with H = H̃ , means that the representations
(1.1) and (2.10), both represented by the same relation A, are unitarily equivalent.
In other words, we can consider Q = M.

According to (2.9), by definition S is a simple relation with respect to K̃ = K .
We know that a simple linear relation S is an operator.

(c) (i) According to [9, (2.3)], there exists a bijective correspondence between
proper extensions S̃ ∈ Ext S and closed sub-spaces θ in H ×H defined by

Sθ ∈ Ext S ⇔ θ := ΓSθ =

{(
Γ0 f̂
Γ1 f̂

)
: f̂ ∈ Sθ

}
∈ C̃ (H ). (2.11)
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Then the Krein (a.k.a. Krein-Naimark) formula

(Sθ − z)−1 = (A− z)−1 +Γz (θ−Q(z))−1
Γ
+
z̄ (2.12)

holds. Let us set Sθ := Â, where Â is the linear relation that represents the inverse
function Q̂ in representation (2.5). Then according to (2.7), the pair: Sθ = Â,θ =
OH (a zero function on H ), satisfies (2.12). Because the correspondence defined
by (2.11) is a bijection, it follows

θ = ΓÂ =

{(
Γ0 f̂

0

)
: f̂ ∈ Â

}
. (2.13)

Therefore, Â = kerΓ1 =: S1. This proves (ii).
(ii) S := A∩ Â has been defined in (b). It suffices to prove S+ ⊆ kerΓ0+̂kerΓ1.
Assume k̂ ∈ S+ and ĥ = Γk̂. Then, because Γ is surjective, we have(

h
h′

)
=

(
0
h′

)
+

(
h
0

)
= Γt̂ +Γr̂, t̂ ∈ ker Γ0, r̂ ∈ ker Γ1.

Hence, ŝ := k̂− t̂ − r̂ ∈ S ⊆ ker Γ0, i.e. k̂ := (ŝ+ t̂)+ r̂ =: û+ r̂ ∈ ker Γ0+̂ker Γ1.
This proves S+ ⊆ kerΓ0+̂kerΓ1. □

Corollary 2.1. Let K be a Pontryagin space of negative index κ and let M(z) be
the Weyl function associated with the ordinary boundary triple Π = (H ,Γ0,Γ1). If
M̂ :=−M−1 exists then relations Si := kerΓi, i = 1,2, satisfy

(S1 − z)−1 = (S0 − z)−1 + γ̂zγ
+
z̄ ,z ∈ ρ(S0)∩ρ(S1), (2.14)

where γz and γ̂z are γ-fields associated with S0 and S1, respectively.

Proof. By definition of the Weyl function, the operator Γ1 is for M̂ what Γ0 is for
M. According to Theorem 2.1 (c), Â = S1. Therefore, we can substitute S0 and
S1 for A and Â into (2.7), respectively. Hence, we can rewrite (2.6) with w = z,
Γw = γz, Γ̂w = γ̂z and substitute (2.6) into (2.7) to obtain (2.14). □

2.3. Identity (2.14) gives us a relationship between resolvents of A = kerΓ0
and Â := kerΓ1 when S := A∩ Â and A is the representing relation of the Weyl
function Q, i.e. of the regular and strict generalized Nevanlinna function Q. In
the following proposition, we will establish a direct relationship between any two
closed linear relations A and B that satisfy ρ(A)∩ρ(B) ̸= /0. Then we will apply it
to the representing relations A and Â of Q and Q̂, respectively.

Recall, for the defect subspace of a linear relation T we use the notation

R̂z (T ) =
{(

t
zt

)
∈ T
}
.

Proposition 2.2. Let A and B be linear relations in a Krein space K , let B be a
closed relation, and ρ(A)∩ρ(B) ̸= /0. Then

A ⊆ B∔ R̂z (A+̂B) ,∀z ∈ ρ(A)∩ρ(B) . (2.15)
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Equality holds if and only if A = B.

Proof. For z ∈ ρ(A)∩ ρ(B) and for every
(

f
f
′

)
∈ A we have

(
f

f
′ − z f

)
∈

A− z. Because z ∈ ρ(B), and B is closed, there exists
(

g
g
′

)
∈ B such that

f
′ − z f = g

′ − zg ⇒ f
′ −g

′
= z( f −g)

holds. Therefore(
f
f
′

)
−
(

g
g
′

)
=

(
f −g
f
′ −g

′

)
=

(
f −g

z( f −g)

)
∈ R̂z (A+̂B) .

Thus (
f
f
′

)
=

(
g
g
′

)
+

(
f −g

z( f −g)

)
. (2.16)

The sum (2.16) is direct because 0 ̸=
(

t
zt

)
∈ B ∩ R̂z (A+̂B) ⇒ z ∈ σp (B),

which contradicts the assumption z ∈ ρ(B). This proves (2.15).
To prove the second claim, let us assume A = B∔ R̂z (A+̂B) ,z ∈ ρ(A)∩ρ(B).

Then for S := A∩B we have

S = B ⊆ A ⇒ A+̂B = A ⇒ R̂z (A+̂B) = /0 ⇒ A = B.

The converse implication follows from R̂z (B) = {0}. □

Corollary 2.2. Let Q ∈ Nκ(H ) be a regular strict function and let A and Â be the
representing relations of Q, and Q̂ :=−Q−1, respectively. For S = A∩ Â,

A ⊆ Â+̇R̂z
(
S+
)
,∀z ∈ ρ(A)∩ρ(Â).

holds. Equality holds if and only if A = Â.

Proof. The regularity of Q implies ρ(A)∩ρ(Â) ̸= /0. According to Theorem 2.1
(c)(ii), we can substitute S+ for A+̂Â. Then both claims follow from Proposition
2.2. □

Obviously, the relations A and Â can exchange places in the above corollary.

3. WEYL FUNCTION Q ∈ Nκ(H ) WITH BOUNDEDLY INVERTIBLE Q
′
(∞)

3.1 A significant part of this paper is about the class of functions Q ∈ Nκ(H )

that are holomorphic at ∞, i.e. the functions Q for which there exists Q
′
(∞) :=

lim
z→∞

zQ(z).

Lemma 3.1. [7, Lemma 3] A function Q ∈ Nκ(H ) is holomorphic at ∞ if and only
if Q(z) has a representation
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Q(z) = Γ̃
+ (A− z)−1

Γ̃,z ∈ ρ(A) , (3.1)

with a bounded operator A. In this case

Q
′
(∞) := lim

z→∞
zQ(z) =−Γ̃

+
Γ̃, (3.2)

where the limit denotes convergence in the Banach space of bounded operators
L(H ).

Recall, see [7, Proposition 1], that the operator Γ̃ used in (3.1) can be expressed
as

Γ̃ = (A− z)Γz,∀z ∈ ρ(A) . (3.3)
Then the representation (3.1) is minimal, if and only if

K = c.l.s.
{
(A− z)−1

Γ̃h : z ∈ ρ(A) ,h ∈ H
}
.

The decomposition of the function Q ∈ Nκ(H ) in [7, Remark 1] shows us the
important role representations of the form (3.1) play in research of the function
Q ∈ Nκ(H ).

The following lemma from [7] will be frequently needed in this paper.

Lemma 3.2. [7, Lemma 4] Let Γ̃ : H → K be a bounded operator and let Γ̃+ :
K → H be its adjoint operator. Assume also that Γ̃+Γ̃ is a boundedly invertible
operator in the Hilbert space (H ,(., .)). Then for the operator

P := Γ̃
(
Γ̃
+

Γ̃
)−1

Γ̃
+ (3.4)

the following statements hold:
(i) P is an orthogonal projection in the Pontryagin space (K , [., .]).

(ii) The scalar product [., .] does not degenerate on PK = Γ̃H and therefore it
does not degenerate on Γ̃(H )

[⊥]
= ker Γ̃+.

(iii) ker Γ̃+ = (I −P)K .
(iv) The Pontryagin space K can be decomposed as a direct orthogonal sum of

Pontryagin spaces i.e.

K = (I −P)K [+]PK . (3.5)

3.2 Let
K := K1 [+]K2

be a Pontryagin space with nontrivial Pontryagin subspaces Kl, l = 1, 2, and let
El : K → Kl, l = 1, 2, be orthogonal projections. Let T be a linear relation in
K = K1 [+]K2. If for any projection Ei, i = 1,2, Ei (D(T )) ⊆ D(T ) holds, then
according to [8, Lemma 2.2] the following four linear relations can be defined

T j
i :=

{(
ki

k j
i

)
: ki ∈ D(T )∩Ki, k j

i ∈ E jT (ki)

}
⊆ Ki ×K j, i, j = 1, 2.
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In this notation the subscript “i” is associated with the domain subspace Ki, the

superscript “ j” is associated with the range subspace K j. For example
(

k1
k2

1

)
∈

T 2
1 . We will use “[+]” to denote adjoint relations of T j

i . Therefore

T 2
1 ⊆ K1 ×K2 ⇒ T 2

1
[+] ⊆ K2 ×K1.

Hence, for the linear relation T and decomposition K := K1 [+]K2, we can assign
the following relation matrix (

T 1
1 T 1

2
T 2

1 T 2
2

)
.

We obtain
T =

(
T 1

1 +T 2
1
)
+̂
(
T 1

2 +T 2
2
)
.

Lemma 3.3. . Let Q ∈ Nκ (H ) satisfy conditions of Lemma 3.1. Then

B := A|(I−P)K +̇({0}×PK )⊆ (I −P)K ×K (3.6)

holds, where projection P is defined by (3.4). Then

z ∈ ρ(A)∩ρ(Â)⇒ K ⊆ (B− z)(I −P)K , (3.7)

and
z ∈ ρ(A)∩ρ(Â)⇒ z ∈ ρ(B) .

Proof. Assume z ∈ ρ(A)∩ ρ(Â). Then, according to (2.5) and [7, Theorem 3],
z ∈ ρ(Â) if and only if z ∈ ρ(Ã), where

Ã := (I −P)A|(I−P)K .

Therefore, for any f = (I −P) f +P f ∈ K there exists g ∈ (I −P)K , such that

(I −P) f =
(
(I −P)A|(I−P)K − z(I −P)

)
g.

Also, there exists k ∈ K such that

Pk = P f −PA|(I−P)K g ⇒ P f = PA|(I−P)K g+Pk

holds. We will also use the identity: (I −P)A|(I−P)K +PA|(I−P)K = A|(I−P)K .
Now we have,

f = (I −P) f +P f

=
(
(I −P)A|(I−P)K − z(I −P)

)
g+PA|(I−P)K g+Pk

=
(
A|(I−P)K − z(I −P)

)
g+Pk ∈ (B− z(I −P))g ∈ (B− z)(I −P)K .

This proves (3.7).
Let us prove that for z ∈ ρ(A)∩ρ(Â) and f ∈ (I −P)K

(B− z) f = 0 ⇒ f = 0
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holds. Indeed, we already mentioned that z∈ ρ(A)∩ρ(Â)⇒ z∈ ρ((I−P)A|(I−P)K ).
Now we have for f ∈ (I −P)K :

0 = (B− z) f =
(
A|(I−P)K +̇({0}×PK )− z

)
f ⇒

⇒
(
(I −P)A|(I−P)K − z

)
f = 0.

Because z ∈ ρ
(
(I −P)A|(I−P)K

)
, it follows that f = 0. This further means that

(B− z)−1 is an operator. Relation B is closed as a sum of a bounded and closed
relation. Then, because of (3.7) the closed operator (B− z)−1 is bounded. This
proves z ∈ ρ(B). □

Now we can prove the following lemma.

Lemma 3.4. Let Q ∈ Nκ (H ) satisfy conditions of Lemma 3.1. Then the represent-
ing relation Â of Q̂ :=−Q−1 satisfies

Â = A|(I−P)K +̇Â∞, (3.8)

where
Â∞ = {0}×PK .

Proof. Because Γ̃+Γ̃ is boundedly invertible, according to Lemma 3.2 the scalar
product [., .] does not degenerate on the subspace P(K ) = Γ̃(H ). According to [7,
Theorem 3], there exists Q̂(z) := −Q(z)−1,z ∈ ρ(A)∩ (Â). Let Q̂ be represented
by a self-adjoint linear relation Â in representation (2.5). Then Â satisfies (2.7).

Let us now observe the linear relation B given by (3.6), and let us find the resol-
vent (B− z)−1, which exists according to Lemma 3.3. Let us select a point z∈ ρ(B)
and a vector

f ∈ K = (B− zI)(I −P)K ,

and let us find (B− z)−1 f .
According to Lemma 3.3 there exists an element g := (B− z)−1 f ∈ (I −P)K .

According to definition (3.6) of B and PK = Γ̃H ,

{g, f + zg} ∈ A|(I−P)K +̇
(
{0}× Γ̃H

)
holds. This means that for some h ∈ H

f + zg = Ag+ Γ̃h

holds. Then we have
Ag− zg = f − Γ̃h.

Hence,
g = (A− z)−1 f − (A− z)−1

Γ̃h.
Because Γ̃+(I −P) = 0, we have

0 = Γ̃
+g = Γ̃

+ (A− z)−1 f − Γ̃
+ (A− z)−1

Γ̃h = Γ̃
+ (A− z)−1 f −Q(z)h.

According to (3.3),
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Γ
+
z̄ f = Γ̃

+ (A− z)−1 f .
Therefore,

h = Q(z)−1
Γ
+
z̄ f .

This and (3.3) gives

(B− z)−1 f = g = (A− z)−1 f −Γzh = (A− z)−1 f −ΓzQ(z)−1
Γ
+
z̄ f ,

which proves that formula (2.7) holds for the linear relation B ⊆ (I −P)K ×K
defined by (3.6). Therefore, (B− z)−1 = (Â− z)−1, and

Â = B = A|(I−P)K +̇({0}×PK ) .

Because A is a single valued, the sum is direct, and Â∞ = ({0}×PK ), i.e. repre-
sentation (3.8) of Â holds. □

Note, identity (3.8) derived here by means of the operator valued function Q ∈
Nκ (H ) corresponds to identity [16, (3.5)] which was derived for a scalar function
q ∈ Nκ. Also note that Â∞ = {0}×PK holds according to [7, Proposition 5] too.

Theorem 3.1. Let Q∈Nκ (H ) be holomorphic at infinity with boundedly invertible
Q

′
(∞) and let Q be minimally represented by (3.1)

Q(z) = Γ̃
+ (A− z)−1

Γ̃,z ∈ ρ(A) ,

with a bounded operator A. Then, relative to decomposition (3.5)

K1 [+]K2 := (I −P)K [+]PK ,

the following hold:

(i) A =

(
Ã (I −P)A|PK

PA|(I−P)K PA|PK

)
, where Ã = (I −P)A|(I−P)K .

(ii) Â = A|I−P+̇({0}×PK ) =

(
Ã 0
0 Â∞

)
,

(iii) S = A|(I−P)K , R = PK . S is a symmetric, closed, bounded operator.

(iv) S+ =

(
Ã (I −P)A|PK

(I −P)K ×PK PK ×PK

)
.

(v) Rz =

{(
−(Ã− z)−1APxP

xP

)
: xP ∈ PK

}
, K = c.l.s.{Rz : z ∈ ρ(A)}, i.e. S

is simple.
(vi) If additionally, Γ̃ is a one-to-one operator, then Q is the Weyl function asso-

ciated with (S,A) and S+ = A+̂Â = A+̇R̂ .

Proof. (i) The relation matrix of the operator A, with respect to decomposition
(3.5), is obviously

A =

(
(I −P)A|(I−P)K (I −P)A|PK

PA|(I−P)K PA|PK

)
= A|(I−P)K +̇A|PK . (3.9)
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(ii) According to [7, Theorem 3 (ii)], the function Q is regular. Therefore, there
exists the inverse function Q̂ and the representing relation Â. According to (3.8),
the condition (I −P)D(Â) ⊆ D(Â) is satisfied. Hence, according to [8, Lemma
2.2], there exists a relation matrix of Â relative to decomposition (3.5). Let that
relation matrix be

Â =

(
Â1

1 Â1
2

Â2
1 Â2

2

)
,

where Â
j
i ⊆ Ki ×K j, i, j = 1,2. According to Lemma 3.4

Â(0) = PK . (3.10)

Therefore, Â(0) is an ortho-complemented subspace of K . According to [24, The-
orem 2.4],

Â = Âs
˙[+]Â∞, (3.11)

where Âs is a self-adjoint densely defined operator in Â(0)
[⊥]

= (I−P)K , ran Âs ⊆
(I −P)K and denotes direct orthogonal sum of sub-spaces.

For g ∈ (I −P)K , from (3.8) and (3.11), it follows that(
(I −P)A|(I−P)K [+̇]PA|(I−P)K

)
g+Pk0 = Asg[+̇]Pk

for some k0,k ∈ K . Obviously:

Asg = (I −P)A|(I−P)K g = Ãg. (3.12)

Obviously Â∞ ⊆ PK ×PK and Â∞ = Â+
∞ . Hence, the relation matrix of Â is

Â =

(
Ã 0
0 Â∞

)
, (3.13)

.
(iii) Let us now find S = A∩ Â. According (3.13), we have

Â =

{(
xI−P

ÃxI−P + p

)
: xI−P ∈ (I −P)K , p ∈ PK

}
.

Since domS = (I −P)K , elements of A∩S satisfy(
xI−P

AxI−P

)
=

(
xI−P

ÃxI−P +PAxI−P

)
∈ Â,

thus S = A|(I−P)K .
By definition R = ((I −P)K )[⊥] = PK and Â∞ = R̃ .
S is a closed symmetric relation in the Pontryagin space K because it is the

intersection of such relations A and Â. S is a bounded operator as a restriction of
bounded operator A. This proves (iii).

(iv) Now when we know S, we can find S+ by definition. It is as claimed in (iv).
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(v) By solving equation (S+− z)
(

xI−P
xP

)
=

(
0
0

)
, i.e., by solving equation(

Ã− z (I −P)A|PK
(I −P)K ×PK PK ×PK − z

)(
xI−P
xP

)
=

(
0
0

)
we obtain

Rz =

{(
−(Ã− z)−1(I −P)APxP

xP

)
: xP ∈ PK

}
.

According to [7, Theorem 4], the function Q̂2 (z) := Γ̃
+
2 (Ã− z)−1Γ̃2 ∈ Nκ2 (H ),

with Γ̃2 := (I −P)AΓ̃
(
Γ̃+Γ̃

)−1, has κ2 negative squares, where κ2 is the negative
index of (I −P)K . Then

(I −P)K = c.l.s.
{
(Ã− z)−1

Γ̃2H , z ∈ ρ(Ã)
}
. (3.14)

It is easy to verify

(Ã− z)−1(I −P)APK = (Ã− z)−1
Γ̃2H = (Ã− z)−1(I −P)AΓ̃(Γ̃+

Γ̃)−1H .

According to (3.14) we have(
fI−P
fP

)
[⊥]

(
−(Ã− z)−1(I −P)APxP

xP

)
,∀z ∈ ρ(A)⇒

(
fI−P
fP

)
=

(
0
0

)
.

This further means
K = c.l.s.{Rz : z ∈ ρ(A)} .

Hence, S = A|(I−P)K is a simple operator in K .
(vi) If Γ̃ is one-to-one, then according to (3.3), kerΓz = {0},∀z ∈ ρ(A). Accord-

ing to Proposition 2.1 (i), the function Q is strict. According to Theorem 2.1 (b),
Q is the Weyl function of A corresponding to the boundary triple Π = (H ,Γ0,Γ1)
that satisfies A = kerΓ0. The second claim of (vi) follows from Theorem 2.1 (c).

The claim A+̇R̂ = S+ we can see by comparing elements of the two relations.
Indeed, for an arbitrary f = fI−P + fP ∈ K ,{(

fI−P + fP
Ã fI−P +(I −P)A fP +PA fI−P +PA fP +PK

)}
=

=

{(
fI−P + fP

Ã fI−P +(I −P)A fP +PK +PK

)}
obviously holds, where we use claim (iv) for S+ on the right hand side of the
equation. □

Recall that an extension S̃ ∈Ext S is R -regular if S̃+̂R̂ is a closed linear relation
in K ×K , see [9, Definition 3.1].

Corollary 3.1. Let Q ∈ Nκ(H ) be a strict function that satisfies the conditions of
Theorem 3.1. Then A, Â, and S+ are R -regular extensions of S.
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Proof. The extension A is R -regular because, according to Theorem 3.1 (vi), S+ =

A+̇R̂ and it is a closed relation in K ×K .
From Â = S+̇R̂ and R̂ +̂R̂ = R̂ , it follows that Â = Â+̂R̂ . Since Â is closed, it

is the R -regular extension of S. By the same token, S+ is R -regular. □

4. EXAMPLES

In the following examples we will show how to use results from sections 2 and
3 to find a closed symmetric operator S and a reduction operator Γ for a given
generalized Nevanlinna function Q so that Q becomes the Weyl function related to
S and Γ. We will also express S and S+ in terms of the representing operator A of
the function Q.

Example 4.1. Given function the Q(z) :=−1
z , Q∈N0(C). Find the corresponding

symmetric linear realton S, S+ and the triple Π = (C,Γ0,Γ1).

This function is holomorphic at ∞ and
Q

′
(∞) := lim

z→∞
zQ(z) =−IC

is a boundedly invertible operator, i.e. the conditions of Theorem 3.1 are satisfied.
It is also easy to verify that Q is a strict function in D(Q). According to Lemma
3.1, the minimal representation of Q is of the form

Q(z) = Γ̃
+ (A− z)−1

Γ̃,z ∈ ρ(A) ,

where A is a bounded operator, and Q
′
(∞) =−Γ̃+Γ̃ =−IC = (−1) ∈ C1×1.

We know, and it is easy to verify, that in the representation of the function
Q(z) :=−1

z , the minimal state space is K = C, the representing operator is

A = (0) =
{(

f
0

)
: f ∈ C

}
⊆ C2,

the resolvent is (A− z)−1 =−1
z IC, and Γ̃+ = Γ̃ = (1) ∈ C1×1 holds. According to

(3.4), P = IC. Because PK = K , according to Theorem 3.1, S = A|(I−P)K ∩ Â ={(
0
0

)}
. Then according to Theorem 3.1 (v), Rz = PK = K . Because Γ̃ is

a one-to-one operator, according to Theorem 3.1 (vi), Q(z) := −1
z is the Weyl

function associated with S and A.
We also know that in the same state space K = C, there exists a linear relation

Â that minimally represents Q̂(z) = −Q−1 (z) = zIC, and R̂ = ({0}×C) ⊆ C2.
According to Theorem 3.1 (iii), Â = Ã ˙[+]R̂ = R̂ .

Then, according to Theorem 2.1 (c) (ii), S+ = A+̂Â = C2.

Now we need to define the reduction operator Γ =

(
Γ0
Γ1

)
: S+ → H 2 that will

satisfy identity (1.6) and
A = kerΓ0 ∧ Â = kerΓ1.
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Because, M = Q ∈ N0(C), the space K = C is endowed with the usual definite
scalar product. We can easily verify that the reduction operator that satisfies the
above condition is defined by

Γ

(
f
f
′

)
=

(
f
′

− f

)
. □

Example 4.2. In Example 2.1 we derived a strict part Q̃(z) = z from a non-strict
matrix Nevanlinna function. Because the strict part remains a Nevanlinna func-
tion and it becomes a strict function, according to Theorem 2.1 (b) there exist a
reduction operator Γ and a boundary triple Π that correspond to Q̃(z) = z.

To accomplish this task, we can use results of Example 4.1, because −Q̃(z)−1 =
−1

z . This means that Γ0 and Γ1 exchange roles, i.e., in this example

Γ

(
f
f
′

)
:=
(

f
f
′

)
.

Therefore, now we have

A = ker Γ0 =

{(
0
f
′

)
: f

′ ∈ H̃
}
∧ Â = ker Γ1 =

{(
f
0

)
: f ∈ H̃

}
,

where H̃ =C. Then S = A∩ Â =

{(
0
0

)}
,S+ = H̃ 2. Obviously ker(S+− zI) =

H̃ . This implies R̂z (S+) =
{(

f
z f

)
: f ∈ H̃

}
. Thus

Γ0

(
f

z f

)
= f ∧Γ1

(
f

z f

)
= z f .

By the definition of the Weyl function, see (1.7), it follows that Q̃(z) = z, i.e. Q̃(z)
is indeed the Weyl function corresponding to the reduction operator Γ. □

Note that in [5, Example 2.4.2], the authors start from the symmetric relation S
and the reduction operator Γ to find the corresponding Weyl function M, while in
this example we do the converse work, we start from the strict part Q̃ to find Γ and
S. At the end we verified that Q̃ is indeed the Weyl function corresponding to those
Γ and S.

In the following example, we will show how to use Theorem 3.1 to find linear
relations S, Â and S+ for a given function Q.

Example 4.3. Given the function

Q(z) =

( −(1+z)
z2

1
z

1
z

1
1+z

)
∈ N2(C2)

and its operator representation

Q(z) = Γ̃
+ (A−z)−1

Γ̃,
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where the fundamental symmetry J, and operators A, Γ and Γ+ are, respectively:

J=

 0 1 0
1 0 0
0 0 −1

 ,A=

 0 1 0
0 0 0
0 0 −1

 , Γ̃=

 0.5 −1
1 0
0 −1

 , Γ̃+=

(
1 0.5 0
0 −1 1

)
,

our task is to find linear relations S, Â and S+.

It is easy to verify that the function Q satisfies the conditions of Theorem 3.1.
Indeed, the limit (3.2) gives

Γ̃
+

Γ̃ =

(
1 −1
−1 −1

)
,
(
Γ̃
+

Γ̃
)−1

=

(
0.5 −0.5
−0.5 −0.5

)
.

Then, by means of formula (3.4), we get

P =

 0.75 0.125 0.25
0.5 0.75 −0.5
0.5 −0.25 0.5

 , I −P =

 0.25 −0.125 −0.25
−0.5 0.25 0.5
−0.5 0.25 0.5

 .

According to Theorem 3.1 (iii), we can find S:

S = A(I −P) =

 −0.5 0.25 0.5
0 0 0

0.5 −0.25 −0.5

 .

Ã := (I −P)A(I −P) =

 −0.25 0.125 0.25
0.5 −0.25 −0.5
0.5 −0.25 −0.5

=−(I −P).

By solving equation Px = x and then using the fact (I −P)K [⊥]PK , we obtain

(I −P)K = l.s.


 −1

2
2

 ; PK = l.s.


 3

2
2

 ,

 1
0
1

 .

According to Theorem 3.1 (ii) we have

Â = Ã ˙[+]R̂ =−II−P
˙[+]({0}×PK ) .

The equivalent, developed form of the linear relation Â is:

Â

 f1
f2
f3

=

(
f1

4
− f2

8
− f3

4

) −1
2
2

+ c1

 3
2
2

+ c2

 1
0
1

 ,

where f =

 f1
f2
f3

 ∈ K = C3, and ci ∈ C, i = 1,2, are arbitrary constants.

The easiest way to obtain the developed form of S+ is to use Theorem 3.1 (vi)
representation S+ = A+̇R̂ . We get
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S+ f =

 0 1 0
0 0 0
0 0 −1

 f1
f2
f3

+PK =

 f2
0

− f3

+ c1

 3
2
2

+ c2

 1
0
1

 ,

where f and ci ∈ C, i = 1,2, are as before. □
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