CHARACTERIZATION OF WEYL FUNCTIONS IN THE CLASS OF OPERATOR-VALUED GENERALIZED NEVANLINNA FUNCTIONS

MUHAMED BOROGOVAC

Dedicated to Prof. Mirjana Vukovic for her jubilee. ´

ABSTRACT. We provide the necessary and sufficient conditions for a generalized Nevanlinna function Q ($Q \in N_{\kappa}(\mathcal{H})$) to be a Weyl function (also known as a Weyl-Titchmarch function).

We also investigate an important subclass of $N_K(\mathcal{H})$, the functions that have a boundedly invertible derivative at infinity $Q'(\infty) := \lim_{z \to \infty} zQ(z)$. These functions are regular and have the operator representation $Q(z) = \tilde{\Gamma}^+ (A - z)^{-1} \tilde{\Gamma}, z \in$ $\rho(A)$, where *A* is a bounded self-adjoint operator in a Pontryagin space *K*.

We prove that every such strict function *Q* is a Weyl function associated with the symmetric operator $S := A_{|(I-P)}\mathcal{K}$, where *P* is the orthogonal projection, $P:=\tilde{\Gamma}\left(\tilde{\Gamma}^{+}\tilde{\Gamma}\right)^{-1}\tilde{\Gamma}^{+}.$

Additionally, we provide the relation matrices of the adjoint relation S^+ of *S*, and of \hat{A} , where \hat{A} is the representing relation of $\hat{Q} := -Q^{-1}$. We illustrate our results through examples, wherein we begin with a given function $Q \in N_{\kappa}(\mathcal{H})$ and proceed to determine the closed symmetric linear relation *S* and the boundary triple Π so that *Q* becomes the Weyl function associated with Π.

1. INTRODUCTION

1.1. We denote the sets of positive integers, real numbers, and complex numbers by N, R, and C, respectively. Let (\mathcal{K}, \ldots) represent a Krein space. That is a complex vector space equipped with a scalar product $[.,.]$, which is a Hermitian sesquilinear form. It admits the following decomposition of *K* :

$$
\mathcal{K}=\mathcal{K}_+[+] \mathcal{K}_-,
$$

where $(\mathcal{K}_{+},[.,.])$ and $(\mathcal{K}_{-},-[.,.])$ are Hilbert spaces that are mutually orthogonal with respect to the form [.,.]. Elements $x, y \in \mathcal{K}$ are *orthogonal* if $[x, y] = 0$, denoted by $x[\perp]$ *y*. Every Krein space (\mathcal{K}, \ldots) is *associated* with a Hilbert space $(\mathcal{K}, (.,.)),$ defined as a direct and orthogonal sum of the Hilbert spaces $(\mathcal{K}_+, [.,.])$ and (*K*−,−[.,.]). The topology in the Krein space *K* is induced by the associated

²⁰²⁰ *Mathematics Subject Classification.* 34B20, 47B50, 47A06, 47A56.

Key words and phrases. Weyl function; ordinary boundary triple; generalized Nevanlinna function; Pontryagin space.

Hilbert space $(\mathcal{K}, (.,.))$. The *orthogonal companion* $A^{[\perp]}$ of the set *A* is defined by $A^{[\perp]} := \{ y \in \mathcal{K} : x[\perp]y, \forall x \in A \}$, and the *isotropic* part *M* of *A* is defined by *M* := *A* ∩ *A*^[⊥]. For properties of Krein spaces, one can refer to e.g., [6, Chapter V].

If the scalar product [.,.] has κ ∈ N negative squares, then we call it a *Pontryagin space of negative index* κ. If $\kappa = 0$, then it is a Hilbert space. More information about Pontryagin space can be found, for example, in [18].

The following definitions of a linear relation and basic concepts related to it can be found in [1,14,24]. In the following, *X*, *Y*, and *W* represent Krein spaces which include Pontryagin and Hilbert spaces.

A *linear relation* $T : X \to Y$ is a linear manifold $T \subseteq X \times Y$.

If $X = Y$, then *T* is said to be a *linear relation in* X. A linear relation *T* is closed if it is a (closed) subspace with respect to the product topology of $X \times Y$. As usual, for a linear relation or operator $T : X \to Y$, or $T \subseteq X \times Y$, the symbols dom *T*, ran *T*, and ker*T* represent the domain, range and kernel, respectively. Additionally, we will use the following concepts and notation for two linear relations, *T* and *S* from *X* into *Y*, and a linear relation *U* from *Y* into *W*:

$$
\begin{aligned}\n\text{mul } T &:= \{ g \in Y : \{ 0, g \} \in T \}, \\
T(f) &:= \{ g \in Y, : \{ f, g \} \in T \}, (f \in D(T)), \\
T^{-1} &:= \{ \{ g, f \} \in Y \times X : \{ f, g \} \in T \}, \\
zT &:= \{ \{ f, zg \} \in X \times Y : \{ f, g \} \in T \}, (z \in \mathbb{C}), \\
S + T &:= \{ \{ f, g + k \} : \{ f, g \} \in S, \{ f, k \} \in T \}, \\
S \hat{+} T &:= \{ \{ f + h, g + k \} : \{ f, g \} \in S, \{ h, k \} \in T \}, \\
S + T &:= \{ \{ f + h, g + k \} : \{ f, g \} \in S, \{ h, k \} \in T, S \cap T = \{ 0 \} \}, \\
UT &:= \{ \{ f, k \} \in X \times W : \{ f, g \} \in T, \{ g, k \} \in U \text{ for some } g \in Y \}, \\
T^* &:= \{ \{ k, h \} \in Y \times X : [f, h] = [g, k] \text{ for all } \{ f, g \} \in T \}, \\
T_{\infty} &:= \{ \{ 0, g \} \in T \}.\n\end{aligned}
$$

If $T(0) = \{0\}$, we say that T is *single-valued* linear relation, i.e. *operator*. The sets of closed linear relations, closed operators, and bounded operators in X are denoted by $\tilde{C}(X)$, $C(X)$, $B(X)$, respectively.

Let *A* be a linear relation in a Krein space *K*. When $X = Y = X$ we use the notation *A* ⁺ rather than *A* ∗ . We say that *A* is *symmetric* (*selfadjoint*) if it satisfies $A \subseteq A^+$ ($A = A^+$).

Every point $\alpha \in \mathbb{C}$ for which $\{f, \alpha f\} \in A$, with some $f \neq 0$, is called a *finite eigenvalue*, denoted by $\alpha \in \sigma_p(A)$. The corresponding vectors are *eigenvectors belonging to the eigenvalue* α . If for some $z \in \mathbb{C}$ the operator $(A - z)^{-1}$ is bounded, not necessarily densely defined in *K* , then *z* is a *point of regular type of A*, symbolically, $z \in \hat{\rho}(A)$. If for $z \in \mathbb{C}$ the relation $(A - z)^{-1}$ is a bounded operator and $\overline{\text{ran}(A-z)} = \mathcal{K}$, then *z* is a *regular point of A*, symbolically $z \in \rho(A)$.

In a Pontryagin space *K*, an isometric operator *U* is called *unitary* if dom $U =$ ran $U = K$, see [18, Definition 5.4].

According to the definition [5, Definition 1.3.7], linear relations $T : \mathcal{K} \to \mathcal{K}$ and $T': \mathcal{K}' \to \mathcal{K}'$ are unitarily equivalent if there exists a unitary operator $U: \mathcal{K} \to \mathcal{K}'$ such that $T' = \{ \{ U(x), U(x') \} : \{x, x'\} \in T \}.$

Let $L(\mathcal{H})$ denote the Banach space of bounded operators in a Hilbert space *H*. Recall that an operator valued function $Q : \mathcal{D}(Q) \subset \mathbb{C} \to \mathcal{L}(\mathcal{H})$ belongs to the *generalized Nevanlinna class* $N_{\kappa}(\mathcal{H})$ if it is meromorphic on $\mathbb{C}\backslash\mathbb{R}$, such that $Q(z)^* = Q(\bar{z})$, for all points *z* of holomorphy of *Q*, and the kernel $N_Q(z, w) :=$ *Q*(*z*)−*Q*(*w*) ∗ $\frac{D-Q(W)}{Z-\overline{W}}$ has κ negative squares. A generalized Nevanlinna function *Q* ∈ *N*_κ (*H*) is called *regular* if the operator $Q(w)$ is boundedly invertible at least for one point $w \in \mathcal{D}(Q)$, see [22].

We will need the following, Krein-Langer representation of generalized Nevanlinna functions.

Theorem 1.1. A function $Q : \mathcal{D}(Q) \subset \mathbb{C} \to L(\mathcal{H})$ is a generalized Nevanlinna *function of some index* κ *if and only if it has a representation of the form*

$$
Q(z) = Q(w)^{*} + (z - \bar{w}) \Gamma_{w}^{+} \left(I + (z - w)(A - z)^{-1} \right) \Gamma_{w}, z \in \mathcal{D}(Q), \quad (1.1)
$$

where, A is a self-adjoint linear relation in some Pontryagin space $(\mathcal{K}, \lbrack \cdot, \cdot \rbrack)$ of *index* $\tilde{\kappa} \geq \kappa$; $\Gamma_w : \mathcal{H} \to \mathcal{K}$ *is a bounded operator;* $w \in \rho(A) \cap \mathbb{C}^+$ *is a fixed point of reference. This representation can be chosen to be minimal, that is*

$$
\mathcal{K} = c.l.s. \left\{ \Gamma_z h : z \in \rho(A), h \in \mathcal{H} \right\}
$$
 (1.2)

where

$$
\Gamma_z := \left(I + (z - w)(A - z)^{-1}\right)\Gamma_w.
$$
\n(1.3)

If realization (1.1) is minimal, then $\tilde{\kappa} = \kappa$. In that case $\mathcal{D}(Q) = \rho(A)$ and the triple (*K* , *A*, Γ*w*) *is uniquely determined (up to unitary equivalence).*

The linear relation *A* in (1.1) is called a *representing relation (operator)* of *Q*. Such operator representations were developed by M. G. Krein and H. Langer, see e.g. [19, 20] and later converted to representations in terms of linear relations, see e.g. [15, 17].

Functions $Q \in N_{\kappa}(\mathcal{H})$ which fulfill the condition

$$
\bigcap_{z \in D(Q)} \ker \frac{\mathcal{Q}(z) - \mathcal{Q}(\bar{w})}{z - \bar{w}} = \{0\}
$$
\n(1.4)

for one, and hence for all, $w \in \mathcal{D}(Q)$, are called *strict*, see e.g. [3, p. 619].

In what follows, *S* denotes a closed symmetric relation or operator, not necessarily densely defined in a separable Pontryagin space $(\mathcal{K}[.,.])$, and S^+ denotes an adjoint linear relation of *S* in $(\mathcal{K}[\cdot,\cdot])$. For definitions and notation of concepts related to an ordinary boundary triple Π for the linear relation S^+ , see e.g. [5,9,10]. We copy some of those definitions here with adjusted notation. For example, the operator denoted by Γ_2 in [9] is denoted by Γ_0 in [5,10] and here, while Γ_1 denotes the same operator in all papers. Elements of S^+ are denoted by \hat{f}, \hat{g}, \dots , where e.g.

$$
\hat{f} := \begin{pmatrix} f \\ f' \end{pmatrix} = \{f, f'\}.
$$
 Let

$$
\mathcal{R}_z := \mathcal{R}_z(S^+) = \ker(S^+ - z), z \in \hat{\rho}(S),
$$

be the *defect subspace* of *S*. Then

$$
\hat{\mathcal{R}}_z := \left\{ \begin{pmatrix} f_z \\ z f_z \end{pmatrix} : f_z \in \mathcal{R}_z \right\}, \ \mathcal{R} := (\text{dom } S)^{[\perp]}, \ \hat{\mathcal{R}} := \left\{ \begin{pmatrix} 0 \\ f \end{pmatrix} : f \in \mathcal{R} \right\}. \tag{1.5}
$$

Definition 1.1. [9, Definition 2.1] *A triple* $\Pi = (\mathcal{H}, \Gamma_0, \Gamma_1)$ *, where* \mathcal{H} *is a Hilbert space and* Γ_0 , Γ_1 *are bounded operators from* S^+ *to* H *, is called an ordinary boundary triple for the relation S*⁺ *if the abstract Green's identity*

$$
[f',g] - [f,g'] = (\Gamma_1 \hat{f}, \Gamma_0 \hat{g})_{\mathcal{H}} - (\Gamma_0 \hat{f}, \Gamma_1 \hat{g})_{\mathcal{H}}, \forall \hat{f}, \hat{g} \in S^+, \tag{1.6}
$$

holds, and the mapping Γ : $\hat{f} \rightarrow \left(\begin{array}{c} \Gamma_0 \hat{f} \\ \Gamma \hat{f} \end{array}\right)$ $\Gamma_1 \hat{f}$ *from* S^+ *to* $H \times H$ *is surjective. The operator* Γ *is called the boundary or reduction operator.*

An extension \tilde{S} of *S* is called proper, if $S \subsetneq \tilde{S} \subseteq S^+$. The set of proper extensions of *S* is denoted by *Ext S*. Two proper extensions S_0 , $S_1 \in Ext$ *S* are called *disjoint* if $S_0 \cap S_1 = S$, and *transversal* if, additionally, $S_0 \hat{+} S_1 = S^+$.

Each ordinary boundary triple is naturally associated with two self-adjoint extensions of *S*, defined by $S_i := \ker \Gamma_i, i = 0, 1, \text{ i.e., we have } S_i = S_i^+, i = 0, 1, \text{ see } [9,$ p. 4425].

Under above notation, the function

$$
\mathbf{0} \neq \mathbf{0}(S_0) \ni z \mapsto \gamma_z = \left\{ \left\{ \Gamma_0 \hat{f}_z, f_z \right\} : \hat{f}_z \in \hat{\mathcal{R}}_z(S^+) \right\}
$$

is called the *γ-field* associated with the boundary triple $\Pi = (\mathcal{H}, \Gamma_0, \Gamma_1)$, and the function

$$
\mathbf{0} \neq \mathbf{p}(S_0) \ni z \mapsto M(z) = \left\{ \left\{ \Gamma_0 \hat{f}_z, \Gamma_1 \hat{f}_z \right\} : \hat{f}_z \in \hat{\mathcal{R}}_z(S^+) \right\} \tag{1.7}
$$

is called the *Weyl function* associated with the boundary triple $\Pi = (\mathcal{H}, \Gamma_0, \Gamma_1)$, see e.g. [5, 9, 13]. Let us mention that functions $\gamma_z : \mathcal{H} \to \mathcal{R}_z$ are bijections and satisfy the formula (1.3).

1.2. The following is a summary of the results presented in this paper. Basic concepts of the Weyl function and γ-field of the symmetric operator *S* in the Hilbert space setting were introduced in the classical papers, see [13, 14]. For later developments in the field of boundary relations and Weyl functions, we refer the reader to [2, 4, 9, 12].

In this paper, we prove a characterization of the Weyl functions in the class of operator valued regular generalized Nevanlinna functions. Therefore, we use operator (relation) representations in the Pontryagin space $(\mathcal{K}, [., .])$ setting of the regular generalized Nevanlinna function $Q \in N_{\kappa}(\mathcal{H})$. We denote by A the representing self-adjoint relation of Q and by \hat{A} the representing self-adjoint relation of $\hat{Q} = -Q^{-1}.$

In Section 2, in Proposition 2.1 and Example 2.1, we show how to derive the strict part of a generalized Nevanlinna function. It is well known that a strict function need not to be invertible, see e.g. [11]. In Example 2.1, we see that a regular function *Q* need not to be strict.

In Theorem 2.1, one of the main results of the paper, we give a characterization of the Weyl functions in terms of regular and strict generalized Nevanlinna functions. In Theorem 2.1 (b), we prove the more difficult converse part. It is a generalization of the converse part of [13, Theorem 1] in several levels. Namely, in the converse part of [13, Theorem 1], authors start with a Krein *Q* -function of a given symmetric operator *S* in a Hilbert space. This means they assume the existence of the symmetric operator *S*, and then they prove the existence of the corresponding boundary triple that has the Weyl function equal to the given *Q* -function.

We solve a more general problem. We only assume that a regular and strict generalized Nevanlinna function is given, i.e. we do not assume the existence of a symmetric operator or relation *S*. We first have to prove the existence of the symmetric linear relation *S* in a Pontryagin space to be in a position to find the corresponding triple. In order to prove the existence of the symmetric relation *S*, we use much later results from [22].

Similar issues were studied for the definitizable matrix function, see [2, Theorem 3.5].

Section 3 can be viewed as an application of [7] in the area of boundary triples and Weyl functions. In this section, we deal with an important subclass of regular functions $Q \in N_{\kappa}(\mathcal{H})$, the functions that have a boundedly invertible derivative $Q'(\infty) := \lim zQ(z)$. We are again focused on finding a symmetric operator *S* and *z*→∞ a boundary triple Π for a given function *Q*. We start with such a function *Q* with the representing bounded operator *A*, and in Theorem 3.1 we prove that there exists a symmetric operator *S* such that *Q* is the Weyl function corresponding to *S* and *A*. Hence, here we also give a solution of the converse problem. Moreover, we give matrix representations of A , \hat{A} , S , and S^+ . Theorem 3.1 also gives us useful new relationships between linear relations *A*, \hat{A} , *S*, S^+ and $\hat{\mathcal{R}}$ associated with a given function $Q \in N_{\kappa}(\mathcal{H})$.

In Corollary 3.1, we prove that \hat{A} , A and S^+ are \mathcal{R} -regular extensions of S if the corresponding function Q is strict and $Q'(\infty)$ is boundedly invertible.

In Section 4, we make use of the abstract results of sections 2 and 3. In examples 4.1 and 4.3, the functions have a boundedly invertible derivative $Q'(\infty)$, i.e. they satisfy the assumptions of Theorem 3.1. Therefore, we apply Theorem 3.1 to find the closed symmetric relation *S* and the corresponding ordinary boundary triple Π in each of the examples so that *Q* is the Weyl function associated with Π. In Example 4.3, we use Theorem 3.1 also to find relation matrices $\hat{\mathcal{R}}$, \hat{A} , S and S^{+} for the given function $Q \in N_{\kappa}(\mathcal{H})$ represented by A.

In Example 4.2 we prove that the strict part \tilde{Q} of the function Q used in Example 2.1 is indeed a Weyl function corresponding to some symmetric relation *S* and the corresponding boundary triple Π.

2. CHARACTERIZATION OF WEYL FUNCTIONS IN THE SET OF REGULAR GENERALIZED NEVANLINNA FUNCTIONS $N_{\kappa}(\mathcal{H})$

2.1 We will need the following lemma and proposition.

Lemma 2.1. *[8, Lemma 4.2] Let* $Q \in N_{\kappa}(\mathcal{H})$ *be a minimally represented function by a triplet* $(\mathcal{K}, A, \Gamma_w)$ *in representation (1.1).*

(i) *If* $z \in \mathcal{D}(Q)$ *, then*

$$
\ker \Gamma_z = \ker \Gamma_w =: \ker \Gamma; \forall w \in \mathcal{D}(Q),
$$

(ii)
$$
\ker \Gamma = \left\{ h \in \mathcal{H} : \frac{\mathcal{Q}(z) - \mathcal{Q}(\bar{w})}{z - \bar{w}} h = 0, \forall z, \forall w \in \mathcal{D}(Q) \right\}.
$$

According to Lemma 2.1 we can introduce the Hilbert space $\tilde{\mathcal{H}} := (\ker \Gamma)^{\perp}$ and operators $\tilde{\gamma}_w := (\Gamma_w)_{|\tilde{\mathcal{H}}}$.

Proposition 2.1. *Let* $Q \in N_{k}(H)$ *be a function minimally represented by (1.1) with operators* $\Gamma_z: \mathcal{H} \to \mathcal{K}$ *defined by (1.3) that satisfy (1.2). Then the following hold:*

- (i) Operators Γ_z , $z \in \mathcal{D}(Q)$ are one-to-one if and only if the function $Q(z)$: $\mathcal{H} \rightarrow$ *H is strict.*
- (ii) *For every function* $Q \in N_{\kappa}(\mathcal{H})$ *minimaly represented by (1.1) with the triple* $(\mathcal{K}, A, \Gamma_w)$, there exists a unique, up to multiplicative constant, strict function $\tilde{Q}\in N_{\mathsf{K}}\left(\tilde{\mathcal{H}}\right)$ defined by (1.1) with the triple $(\mathfrak{K},A,\tilde{\gamma}_w)$. Functions Q and \tilde{Q} *have the same number of positive squares as well.*

Proof. (i) This is an obvious consequence of the previous lemma.

(ii) Since, for every $w \in \mathcal{D}(Q) = \mathcal{D}(\tilde{Q})$, the operator $\tilde{\gamma}_w : \tilde{\mathcal{H}} \to \text{ran } \Gamma_w$ coincides with Γ_w everywhere except on ker Γ_w , the Pontryagin space defined by (1.2) with $\tilde{\gamma}_w$ instead Γ_w coincides with *K*. Because $\tilde{\gamma}_w, \forall w \in \mathcal{D}(\tilde{Q})$, are injections

$$
\bigcap_{z,w\in\mathcal{D}\left(\tilde{\mathcal{Q}}\right)}\ker\frac{\tilde{\mathcal{Q}}\left(z\right)-\tilde{\mathcal{Q}}\left(\bar{w}\right)}{z-\bar{w}}=\mathbf{0}.
$$

holds, i.e., \tilde{Q} is a strict function. The representing relation A remains the same because functions $\tilde{\gamma}_w, \forall w \in \mathcal{D}(Q)$ do not change anything in *K*.

For elements $h, k \in \mathcal{H} = \tilde{\mathcal{H}}(+)$ ker Γ we have the corresponding unique orthogonal decomposition $h = \tilde{h}(+)h_0 \wedge k = \tilde{k}(+)k_0$. Therefore,

$$
\left[\frac{\tilde{Q}(z)-\tilde{Q}(\bar{w})}{z-\bar{w}}\tilde{h},\tilde{k}\right]=\left[\tilde{\gamma}_{z}\tilde{h},\tilde{\gamma}_{w}\tilde{k}\right]=\left[\Gamma_{z}h,\Gamma_{w}k\right].
$$

This means that the numbers of both negative and positive squares of Q and of \tilde{Q} are the same. $□$

The function $\tilde{Q} \in N_{\kappa}(\tilde{\mathcal{H}})$, introduced in Proposition 2.1, will be referred to as the *strict part* of *Q*. Additionally, we will call the Hilbert space $\tilde{\mathcal{H}}$ the *domain* of the strict part *Q*˜.

Example 2.1. *Consider the following regular matrix function*

$$
Q(z) = \begin{pmatrix} \frac{z}{2} - 1 & \frac{z}{2} \\ \frac{z}{2} & \frac{z}{2} + 1 \end{pmatrix}.
$$

Then for vector h = $\begin{pmatrix} 1 \end{pmatrix}$ −1 *,*

$$
N(z, w)h = \frac{Q(z) - Q(\bar{w})}{z - \bar{w}}h = 0, \forall w, z \in \mathcal{D}(Q).
$$

Therefore, this is an example of a regular function that is not strict. Our task is to find the strict part \tilde{Q} of Q.

Let us switch from the basis $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 0 $\Big), e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 1 to the new ortho-normal basis $f_1 = \frac{1}{\sqrt{2}}$ 2 $\begin{pmatrix} 1 \end{pmatrix}$ −1 $\bigg), f_2 = \frac{1}{\sqrt{2}}$ 2 $\left(1\right)$ 1 . With respect to the new basis, we have $Q(z) = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ −1 *z* $\bigg)\wedge f_1=\left(\begin{array}{c}1\\0\end{array}\right)$ 0 $\bigg)\wedge f_2=\left(\begin{array}{c} 0\\ 1 \end{array}\right)$ 1 $\bigg)$ $\wedge h =$ √ $2f_1$.

According to Proposition 2.1, we can introduce the domain of \tilde{Q} by $\tilde{H} = l.s.\{f_2\}$. Then, if we denote by $P_{|\tilde{H}|}$ the orthogonal projection onto \tilde{H} we get the strict part of *Q*

$$
\tilde{Q}(z) = P_{|\tilde{\mathcal{H}}} Q(z)_{|\tilde{\mathcal{H}}} = z, z \in \mathcal{D}(Q).
$$

Recall that the strict part preserves the numbers of positive and negative squares. \Box

Later, in Example 4.2, we will find the corresponding triple of \tilde{Q} , and we will show that \tilde{Q} is the corresponding Weyl function.

2.2 Most of the statements in the first part of the following theorem about the Weyl function *Q* are already known, as cited. We added a proof of regularity of *Q* in order to obtain a characterization. Part (b) is more interesting. In part (b) we start from a generalized Nevanlinna function *Q* and under the condition of regularity of *Q* we prove the existence of a simple closed operator *S* so that *Q* becomes a Weyl function of *S*. Part (b) is a generalization of the converse part of [13, Theorem 1].

Theorem 2.1. (a) *Let S*, $\{0\} \subseteq S \subseteq A$, *be a simple closed symmetric operator in a Pontryagin space K of index* κ *. Let* $A^+ = A$, $\rho(A) \neq \emptyset$ *, let* $\Pi = (\mathcal{H}, \Gamma_0, \Gamma_1)$ *be an ordinary boundary triple for* S^+ $(A = \text{ker } \Gamma_0)$ *, and let* $Q(z)$ *be the Weyl function of A corresponding to* Π*. Assume that Q*(*w*) *is invertible for at least one point* $w \in \mathcal{D}(Q)$ *.*

Then $Q \in N_{\kappa}(\mathcal{H})$, Q *is a regular and strict function uniquely determined by the relation A in the minimal representation of the form (1.1).*

(b) *Conversely, let* $Q \in N_{\kappa}(\mathcal{H})$ *be a regular and strict function given by a minimal representation (1.1) with a representing relation A.*

Then there exists a unique closed simple linear operator S, $\{0\} \subseteq S \subseteq A \subseteq$ S^+ *and there exists an ordinary boundary triple* $\Pi = (\mathcal{H}, \Gamma_0, \Gamma_1)$ *for* S^+ *such that* $A = \text{ker } \Gamma_0$ *. The function* $Q(z)$ *is the Weyl function of* A corresponding to Π*.*

- (c) *In this case, the following hold:*
	- (i) *The representing relation* \hat{A} *of* $\hat{Q} := -Q^{-1}$ *satisfies* $\hat{A} = \text{ker } \Gamma_1$ *.*
	- (ii) *A and* \hat{A} *are transfersal extensions of* $S := A \cap \hat{A}$.

Proof. (a) The assumptions are appropriate. Namely, the existence of the boundary triple $\Pi = (\mathcal{H}, \Gamma_0, \Gamma_1)$, with $A := \text{ker } \Gamma_0$, has been proven in [9, Proposition 2.2 (2)]. The existence of the corresponding (well defined) Weyl function with bounded values $O(z)$ has been proven in [9, p. 4427].

According to the terminology of [3, p. 619], the assumption that the closed linear relation *S* is *simple* means

$$
\mathcal{K} = c.l.s.\left\{\mathcal{R}_z(S^+): z \in \rho(A)\right\}.
$$
\n(2.1)

The relationship between one-to-one operators $\gamma_z \in [\mathcal{H}, \mathcal{R}_z], z \in \rho(A)$, of the γ field γ and the Weyl function has been established by [9, (2.13)]

$$
\frac{Q(z) - Q^*(w)}{z - \bar{w}} = \gamma_w^+ \gamma_z, \forall w, z \in \rho(A),
$$
\n(2.2)

where, according to [9, (2.6)], γ-filed satisfies

$$
\gamma_z = \left(I + (z - w)(A - z)^{-1}\right)\gamma_w.
$$
\n(2.3)

For all $h, k \in \mathcal{H}$,

$$
\left(\frac{Q(z)-Q^*(w)}{z-\bar{w}}h,k\right)=(\gamma_w^+\gamma_z(h),k)=[\gamma_z(h),\gamma_w(k)]=[f,g],f\in\mathcal{R}_z,g\in\mathcal{R}_w.
$$

Because (\mathcal{K}, \ldots) given by (2.1) is a Pontryagin space with a negative index κ , we conclude that *Q* has κ negative squares. Because $Q(z)$ are bounded operators, $Q \in N_{\kappa}(\mathcal{H})$ holds.

Let us note that the corresponding claim for Weyl families and generalized Nevanlinna families has been proven in [4, Theorem 4.8].

From (2.2) and (2.3) it follows that

$$
Q(z) = Q(\bar{w}) + (z - \bar{w})\gamma_w^+ \left(I + (z - w)(A - z)^{-1}\right)\gamma_w, z \in \rho(A).
$$
 (2.4)

Because $\gamma_z(\mathcal{H}) = \mathcal{R}_z$, according to (2.1) and (2.3), the minimality condition (1.2) is fulfilled with $A = \ker \Gamma_0$ and with γ -field (2.3). Then, according to Theorem 1.1, the state space *K*, the representing relation *A*, the γ-field and the function *Q* given by (2.4) are uniquely determined (up to unitary equivalence).

By the definition of a γ-field, the operators $γ_z : H \rightarrow R_z$ are one-to-one for all $z \in \mathcal{D}(Q)$. Then, according to Proposition 2.1 (i), the function $Q(z)$ is strict.

Let us prove that the function *Q* is regular. According to our assumptions, there exists at least one point $\bar{w} \in \mathcal{D}(Q)$ such that $\hat{Q}(\bar{w}) := -Q(\bar{w})^{-1}$ is an operator. Because of the symmetry of the function Q , $Q(w)^{-1}$ is also an operator. According to definition (1.7) of the Weyl function, it is obvious that $\mathcal{D}(\hat{Q}(z)) = \tan \Gamma_1 = \mathcal{H}, \forall z \in$ *D*(*Q*). Therefore $(-Q(w)^{-1})^* = (-Q(w)^*)^{-1} = (-Q(\bar{w}))^{-1}$ is an operator. This further means that $\hat{Q}(w)$ is a closed operator. It is also defined on entire H , i.e., $Q(w)$ is bounded operator. This proves that $Q(w)$ is boundedly invertible operator. By definition Q is a regular function. This completes the proof of (a).

(b) The assumption that $Q \in N_{\kappa}(\mathcal{H})$ is a regular function with the representing relation A in the minimal representation (1.1) includes that (1.2) and (1.3) hold, and $\rho(A) \neq \emptyset$. According to [22, Proposition 2.1], the inverse $\hat{Q} = -Q^{-1} \in N_{\kappa}(\mathcal{H})$ admits the representation

$$
\hat{Q}(z) = \hat{Q}(\overline{w}) + (z - \overline{w})\hat{\Gamma}^+_{w} \left(I + (z - w)(\hat{A} - z)^{-1}\right)\hat{\Gamma}_w, \tag{2.5}
$$

where $w \in \rho(A) \cap \rho(\hat{A})$ is an arbitrarily selected point of reference,

$$
\hat{\Gamma}_w := -\Gamma_w \mathcal{Q}(w)^{-1},\tag{2.6}
$$

and

$$
(\hat{A} - z)^{-1} = (A - z)^{-1} - \Gamma_z Q(z)^{-1} \Gamma_{\bar{z}}^+, \forall z \in \rho(A) \cap \rho(\hat{A})
$$
 (2.7)

holds.

According to Proposition 2.1 (i), the assumption that $Q \in N_{\kappa}(\mathcal{H})$ is a strict function means that operators Γ_z , $z \in \mathcal{D}(Q)$, in representation (1.1) are one-to-one.

We need to prove that there exists a closed symmetric relation *S*, a boundary triple $\Pi = (\mathcal{H}, \Gamma_0, \Gamma_1)$ and a corresponding Weyl function $M(z) = Q(z)$.

We define the closed symmetric relation *S* by

$$
S := A \cap \hat{A}.\tag{2.8}
$$

Because representations (1.1) and (2.5) are uniquely determined, the linear relation *S* is also uniquely determined. This also means that the self-adjoint relation *A* is an extension of *S*.

158 MUHAMED BOROGOVAC

The linear relation *S* defined by (2.8) has equal (finite or infinite) defect numbers in the separable Pontryagin space *K* because it has a self-adjoint extension *A* within *K*. Let us denote that defect number by $d(S)$. We already observed that $\Gamma_z : \mathcal{H} \to$ $\Gamma_z(\mathcal{H}), z \in \rho(A)$, are one-to-one operators. Therefore, dim $\mathcal{H} = d(S)$.

We can here apply [9, Proposition 2.2]. Therefore, there exists a boundary triple $\tilde{\Pi} = (\tilde{\mathcal{H}}, \Gamma_0, \Gamma_1)$ for S^+ such that $A = \ker \Gamma_0$, with a γ -field $\gamma_z, z \in \rho(A)$, that satisfies $(2.3).$

According to [9, Proposition 2.2 (3)], $\gamma_z : \tilde{\mathcal{H}} \to \mathcal{R}_z = \gamma_z(\tilde{\mathcal{H}})$, $\forall z \in \rho(A)$, is a oneto-one operator. Recall that γ_z and $\tilde{\mathcal{H}}$ were introduced so that dim $(\tilde{\mathcal{H}}) = d(S)$ holds. This means dim ($\tilde{\mathcal{H}}$) = dim $\mathcal{H} = d(S)$. Therefore, we can consider $\mathcal{H} = \tilde{\mathcal{H}}$, hence $\tilde{\Pi} = (\mathcal{H}, \Gamma_0, \Gamma_1)$.

Let $M(z)$ be the Weyl function corresponding to $\tilde{\Pi} = (\mathcal{H}, \Gamma_0, \Gamma_1)$. Then $M(z)$ and $\gamma(z)$ satisfy [9, (2.13)]. According to [9, Remark 2.2], the operator valued function $M(z)$ is a Q-function of S represented by $A = \text{ker } \Gamma_0$ in some Pontryagin space $\tilde{\mathcal{K}}$. (For a definition of the *Q*-function of *S* see e.g. [21].) The minimal Pontryagin space of the *Q*-function $M(z)$ is given by means of $\gamma_z(\mathcal{H}) = \mathcal{R}_z(S^+),$ which is

$$
\tilde{\mathcal{K}} := c.l.s. \left\{ \mathcal{R}_z(S^+) : z \in \rho(A) \right\} \subseteq \mathcal{K}.
$$
\n(2.9)

According to [9, (2.13)] and (2.3)

$$
M(z) = M(w)^{*} + (z - \bar{w})\gamma_{w}^{+} \left(I + (z - w)(A - z)^{-1}\right)\gamma_{w}, z \in \rho(A).
$$
 (2.10)

Let us now use the so called ε _z-model, see [20,23]. According to that model, we can identify the building blocks of $\tilde{\mathcal{K}}$ with $\gamma_z(h)$ ($h \in \mathcal{H}$, $z \in \rho(A)$), and the building blocks of *K* with Γ _{*z*}(*h*), (*h* \in *H*, *z* \in ρ (*A*)). Therefore, we can define one-to-one operator $U : \tilde{X} \to \mathcal{K}$ by

$$
U(\gamma_z(h)) = \Gamma_z(h), \forall h \in \mathcal{H}, \forall z \in \rho(A),
$$

and we can set

$$
[\gamma_z(h), \gamma_w(k)] = [\Gamma_z(h), \Gamma_w(k)], \forall h, k \in \mathcal{H}, \forall z, w \in \rho(A).
$$

Obviously, the operator *U* is a unitary operator. Therefore, the spaces $\tilde{\mathcal{K}}$ and \mathcal{K} are unitarily equivalent. This, together with $H = \tilde{H}$, means that the representations (1.1) and (2.10), both represented by the same relation *A*, are unitarily equivalent. In other words, we can consider $Q = M$.

According to (2.9), by definition *S* is a simple relation with respect to $\tilde{\mathcal{K}} = \mathcal{K}$. We know that a simple linear relation *S* is an operator.

(c) (i) According to [9, (2.3)], there exists a bijective correspondence between proper extensions $\tilde{S} \in Ext S$ and closed sub-spaces θ in $\mathcal{H} \times \mathcal{H}$ defined by

$$
S_{\theta} \in \text{Ext}\,S \Leftrightarrow \theta := \Gamma S_{\theta} = \left\{ \left(\begin{array}{c} \Gamma_0 \hat{f} \\ \Gamma_1 \hat{f} \end{array} \right) : \hat{f} \in S_{\theta} \right\} \in \tilde{C}(\mathcal{H}).\tag{2.11}
$$

Then the Krein (a.k.a. Krein-Naimark) formula

$$
(S_{\theta} - z)^{-1} = (A - z)^{-1} + \Gamma_z (\theta - Q(z))^{-1} \Gamma_{\bar{z}}^{+}
$$
 (2.12)

holds. Let us set $S_{\theta} := \hat{A}$, where \hat{A} is the linear relation that represents the inverse function \hat{Q} in representation (2.5). Then according to (2.7), the pair: $S_{\theta} = \hat{A}, \theta =$ O_H (a zero function on H), satisfies (2.12). Because the correspondence defined by (2.11) is a bijection, it follows

$$
\theta = \Gamma \hat{A} = \left\{ \begin{pmatrix} \Gamma_0 \hat{f} \\ 0 \end{pmatrix} : \hat{f} \in \hat{A} \right\}.
$$
 (2.13)

Therefore, $\hat{A} = \ker \Gamma_1 =: S_1$. This proves (ii).

(ii) $S := A \cap \hat{A}$ has been defined in (b). It suffices to prove $S^+ \subseteq \ker \Gamma_0 \hat{+} \ker \Gamma_1$. Assume $\hat{k} \in S^+$ and $\hat{h} = \Gamma \hat{k}$. Then, because Γ is surjective, we have

$$
\begin{pmatrix} h \\ h' \end{pmatrix} = \begin{pmatrix} 0 \\ h' \end{pmatrix} + \begin{pmatrix} h \\ 0 \end{pmatrix} = \Gamma \hat{\imath} + \Gamma \hat{r}, \hat{\imath} \in \ker \Gamma_0, \hat{r} \in \ker \Gamma_1.
$$

Hence, $\hat{s} := \hat{k} - \hat{t} - \hat{r} \in S \subseteq \ker \Gamma_0$, i.e. $\hat{k} := (\hat{s} + \hat{t}) + \hat{r} =: \hat{u} + \hat{r} \in \ker \Gamma_0 + \ker \Gamma_1$. This proves $S^+ \subseteq \text{ker } \Gamma_0 \hat{+} \text{ ker } \Gamma_1$.

Corollary 2.1. *Let* K *be a Pontryagin space of negative index* K *and let* $M(z)$ *be the Weyl function associated with the ordinary boundary triple* $\Pi = (\mathcal{H}, \Gamma_0, \Gamma_1)$ *. If* $\hat{M} := -M^{-1}$ exists then relations $S_i := \text{ker } \Gamma_i, i = 1, 2$, satisfy

$$
(S_1 - z)^{-1} = (S_0 - z)^{-1} + \hat{\gamma}_z \gamma_{\bar{z}}^+, z \in \rho(S_0) \cap \rho(S_1),
$$
 (2.14)

where γ_z *and* $\hat{\gamma}_z$ *are* γ *-fields associated with* S_0 *and* S_1 *, respectively.*

Proof. By definition of the Weyl function, the operator Γ_1 is for \hat{M} what Γ_0 is for *M*. According to Theorem 2.1 (c), $\hat{A} = S_1$. Therefore, we can substitute S_0 and *S*₁ for *A* and \hat{A} into (2.7), respectively. Hence, we can rewrite (2.6) with $w = z$, $\Gamma_w = \gamma_z$, $\hat{\Gamma}_w = \hat{\gamma}_z$ and substitute (2.6) into (2.7) to obtain (2.14).

2.3. Identity (2.14) gives us a relationship between resolvents of $A = \text{ker } \Gamma_0$ and \hat{A} := ker Γ_1 when $S := A \cap \hat{A}$ and A is the representing relation of the Weyl function *Q*, i.e. of the regular and strict generalized Nevanlinna function *Q*. In the following proposition, we will establish a direct relationship between any two closed linear relations *A* and *B* that satisfy $p(A) \cap p(B) \neq \emptyset$. Then we will apply it to the representing relations A and \hat{A} of \hat{Q} and \hat{Q} , respectively.

Recall, for the *defect subspace* of a linear relation *T* we use the notation

$$
\hat{\mathcal{R}}_z(T) = \left\{ \left(\begin{array}{c} t \\ zt \end{array} \right) \in T \right\}.
$$

Proposition 2.2. Let A and B be linear relations in a Krein space K , let B be a *closed relation, and* $\rho(A) \cap \rho(B) \neq \emptyset$ *. Then*

$$
A \subseteq B + \hat{\mathcal{R}}_z (A + B), \forall z \in \rho (A) \cap \rho (B).
$$
 (2.15)

Equality holds if and only if $A = B$.

Proof. For $z \in \rho(A) \cap \rho(B)$ and for every $\begin{pmatrix} f & f \\ f & g \end{pmatrix}$ $\begin{pmatrix} f \\ f' \end{pmatrix} \in A$ we have $\begin{pmatrix} f \\ f' \end{pmatrix}$ *f* ′ $\begin{pmatrix} f \\ -zf \end{pmatrix} \in$ *A*−*z*. Because $z \in \rho(B)$, and *B* is closed, there exists $\begin{pmatrix} g \\ g \\ h \end{pmatrix}$ $\begin{pmatrix} g \\ g' \end{pmatrix} \in B$ such that ′ ′ ′ ′

$$
f'-zf=g'-zg\Rightarrow f'-g'=z(f-g)
$$

holds. Therefore

$$
\begin{pmatrix} f \\ f' \end{pmatrix} - \begin{pmatrix} g \\ g' \end{pmatrix} = \begin{pmatrix} f-g \\ f'-g' \end{pmatrix} = \begin{pmatrix} f-g \\ z(f-g) \end{pmatrix} \in \hat{\mathcal{R}}_z(A\hat{+}B).
$$

Thus

$$
\begin{pmatrix} f \\ f' \end{pmatrix} = \begin{pmatrix} g \\ g' \end{pmatrix} + \begin{pmatrix} f - g \\ z(f - g) \end{pmatrix}.
$$
 (2.16)

The sum (2.16) is direct because $0 \neq \begin{pmatrix} t \\ zt \end{pmatrix} \in B \cap \hat{\mathcal{R}}_z(A \hat{+} B) \Rightarrow z \in \mathfrak{\sigma}_p(B)$, which contradicts the assumption $z \in \rho(B)$. This proves (2.15).

To prove the second claim, let us assume $A = B \dotplus \hat{\mathcal{R}}_z (A \hat{+} B), z \in \rho(A) \cap \rho(B)$. Then for $S := A \cap B$ we have

$$
S=B\subseteq A\Rightarrow A\hat{+}B=A\Rightarrow \hat{\mathcal{R}}_z(A\hat{+}B)=\emptyset\Rightarrow A=B.
$$

The converse implication follows from $\hat{\mathcal{R}}_z(B) = \{0\}.$

Corollary 2.2. *Let* $Q \in N_{\kappa}(\mathcal{H})$ *be a regular strict function and let* A *and* \hat{A} *be the representing relations of Q, and* $\hat{Q} := -Q^{-1}$ *, respectively. For* $S = A \cap \hat{A}$ *,*

$$
A\subseteq \hat{A}+\hat{\mathcal{R}}_{z}\left(S^{+}\right),\forall z\in \rho(A)\cap \rho(\hat{A}).
$$

holds. Equality holds if and only if $A = \hat{A}$.

Proof. The regularity of *Q* implies $\rho(A) \cap \rho(\hat{A}) \neq \emptyset$. According to Theorem 2.1 (c)(ii), we can substitute S^+ for $A + \hat{A}$. Then both claims follow from Proposition 2.2. \Box

Obviously, the relations A and \hat{A} can exchange places in the above corollary.

3. WEYL FUNCTION $Q \in N_{\kappa}(\mathcal{H})$ with boundedly invertible $Q^{'}(\infty)$

3.1 A significant part of this paper is about the class of functions $Q \in N_{\kappa}(\mathcal{H})$ that are holomorphic at ∞ , i.e. the functions *Q* for which there exists $Q'(\infty) :=$ $\lim_{z\to\infty}$ *zQ*(*z*).

Lemma 3.1. [7, Lemma 3] *A function* $Q \in N_{\kappa}(\mathcal{H})$ *is holomorphic at* ∞ *if and only if Q*(*z*) *has a representation*

$$
Q(z) = \tilde{\Gamma}^+(A-z)^{-1}\tilde{\Gamma}, z \in \rho(A), \qquad (3.1)
$$

with a bounded operator A. In this case

$$
Q^{'}(\infty) := \lim_{z \to \infty} zQ(z) = -\tilde{\Gamma}^{+}\tilde{\Gamma}, \qquad (3.2)
$$

where the limit denotes convergence in the Banach space of bounded operators $L(\mathcal{H})$.

Recall, see [7, Proposition 1], that the operator $\tilde{\Gamma}$ used in (3.1) can be expressed as

$$
\tilde{\Gamma} = (A - z) \Gamma_z, \forall z \in \rho(A). \tag{3.3}
$$

Then the representation (3.1) is minimal, if and only if

$$
\mathcal{K} = c.l.s.\left\{ (A-z)^{-1} \tilde{\Gamma} h : z \in \rho(A), h \in \mathcal{H} \right\}.
$$

The decomposition of the function $Q \in N_{\kappa}(\mathcal{H})$ in [7, Remark 1] shows us the important role representations of the form (3.1) play in research of the function $Q \in N_{\mathsf{K}}(\mathcal{H}).$

The following lemma from [7] will be frequently needed in this paper.

Lemma 3.2. [7, Lemma 4] *Let* $\tilde{\Gamma}$: $H \rightarrow \mathcal{K}$ *be a bounded operator and let* $\tilde{\Gamma}^+$: $K \to H$ *be its adjoint operator. Assume also that* $\tilde{\Gamma}^+ \tilde{\Gamma}$ *is a boundedly invertible operator in the Hilbert space* $(\mathcal{H}, (., .))$ *. Then for the operator*

$$
P := \tilde{\Gamma} \left(\tilde{\Gamma}^+ \tilde{\Gamma} \right)^{-1} \tilde{\Gamma}^+ \tag{3.4}
$$

the following statements hold:

- (i) *P* is an orthogonal projection in the Pontryagin space (\mathcal{K}, \ldots) .
- (ii) *The scalar product* [...] *does not degenerate on P* $K = \tilde{\Gamma}$ *H and therefore it* $does$ not degenerate on $\tilde{\Gamma}(\mathcal{H})^{[\perp]} = \ker \tilde{\Gamma}^{+}.$
- (iii) ker $\tilde{\Gamma}^+ = (I P) \mathcal{K}$.
- (iv) *The Pontryagin space K can be decomposed as a direct orthogonal sum of Pontryagin spaces i.e.*

$$
\mathcal{K} = (I - P) \mathcal{K} [+] P \mathcal{K}.
$$
\n(3.5)

3.2 Let

$$
\mathcal{K}:=\mathcal{K}_{1}\left[+\right] \mathcal{K}_{2}
$$

be a Pontryagin space with nontrivial Pontryagin subspaces K_l , $l = 1, 2$, and let $E_l: \mathcal{K} \to \mathcal{K}_l, l = 1, 2$, be orthogonal projections. Let *T* be a linear relation in $K = K_1[+] K_2$. If for any projection E_i , $i = 1, 2$, $E_i(D(T)) \subseteq D(T)$ holds, then according to [8, Lemma 2.2] the following four linear relations can be defined

$$
T_i^j := \left\{ \left(\begin{array}{c} k_i \\ k_i^j \end{array} \right) : k_i \in D(T) \cap \mathcal{K}_i, k_i^j \in E_j T(k_i) \right\} \subseteq \mathcal{K}_i \times \mathcal{K}_j, i, j = 1, 2.
$$

In this notation the subscript "*i*" is associated with the domain subspace K_i , the superscript "*j*" is associated with the range subspace K_j . For example $\begin{pmatrix} k_1 \\ k_2 \end{pmatrix}$ k_1^2 ∈ T_1^2 . We will use "[+]" to denote adjoint relations of T_i^j \int_i^j . Therefore

$$
T_1^2 \subseteq \mathcal{K}_1 \times \mathcal{K}_2 \Rightarrow T_1^{2^{[+]}} \subseteq \mathcal{K}_2 \times \mathcal{K}_1.
$$

Hence, for the linear relation *T* and decomposition $\mathcal{K} := \mathcal{K}_1[+] \mathcal{K}_2$, we can assign the following *relation matrix*

$$
\left(\begin{array}{cc}T_1^1 & T_2^1\\ T_1^2 & T_2^2\end{array}\right).
$$

We obtain

$$
T = (T_1^1 + T_1^2) \hat{+} (T_2^1 + T_2^2).
$$

Lemma 3.3. *. Let* $Q \in N_{\kappa}(\mathcal{H})$ *satisfy conditions of Lemma 3.1. Then*

$$
B := A_{|(I-P)\mathcal{K}} \dot{+} (\{0\} \times P\mathcal{K}) \subseteq (I-P)\mathcal{K} \times \mathcal{K}
$$
 (3.6)

holds, where projection P is defined by (3.4). Then

$$
z \in \rho(A) \cap \rho(\hat{A}) \Rightarrow \mathcal{K} \subseteq (B - z)(I - P)\mathcal{K},\tag{3.7}
$$

and

$$
z \in \rho(A) \cap \rho(\hat{A}) \Rightarrow z \in \rho(B).
$$

Proof. Assume $z \in \rho(A) \cap \rho(\hat{A})$. Then, according to (2.5) and [7, Theorem 3], $z \in \rho(\hat{A})$ if and only if $z \in \rho(\tilde{A})$, where

$$
\tilde{A} := (I - P)A_{|(I - P)\mathcal{K}}.
$$

Therefore, for any $f = (I - P)f + Pf \in \mathcal{K}$ there exists $g \in (I - P)\mathcal{K}$, such that

$$
(I-P) f = \left((I-P) A_{|(I-P)} \mathcal{K} - z (I-P) \right) g.
$$

Also, there exists $k \in \mathcal{K}$ such that

$$
Pk = Pf - PA_{|(I-P) \mathcal{K}} g \Rightarrow Pf = PA_{|(I-P) \mathcal{K}} g + Pk
$$

holds. We will also use the identity: $(I - P)A_{|(I - P)K} + PA_{|(I - P)K} = A_{|(I - P)K}$. Now we have,

$$
f = (I - P) f + Pf
$$

= $(I - P) A_{|(I - P)K} - z(I - P) g + PA_{|(I - P)K} g + Pk$
= $(A_{|(I - P)K} - z(I - P)) g + Pk \in (B - z(I - P)) g \in (B - z)(I - P) K.$

This proves (3.7).

Let us prove that for $z \in \rho(A) \cap \rho(\hat{A})$ and $f \in (I - P)K$

$$
(B-z)f = 0 \Rightarrow f = 0
$$

holds. Indeed, we already mentioned that $z \in \rho(A) \cap \rho(\hat{A}) \Rightarrow z \in \rho((I-P)A|_{(I-P)}\alpha)$. Now we have for $f \in (I - P) \mathcal{K}$:

$$
0 = (B - z)f = (A_{|(I - P)\mathcal{K}} + (\{0\} \times P\mathcal{K}) - z)f \Rightarrow
$$

$$
\Rightarrow ((I - P)A_{|(I - P)\mathcal{K}} - z)f = 0.
$$

Because $z \in \rho \left((I - P)A_{|(I - P)K} \right)$, it follows that $f = 0$. This further means that $(B-z)^{-1}$ is an operator. Relation *B* is closed as a sum of a bounded and closed relation. Then, because of (3.7) the closed operator $(B-z)^{-1}$ is bounded. This proves $z \in \rho(B)$.

Now we can prove the following lemma.

Lemma 3.4. *Let* $Q \in N_{\kappa}(\mathcal{H})$ *satisfy conditions of Lemma 3.1. Then the represent-* \hat{A} *of* $\hat{Q} := -Q^{-1}$ *satisfies*

$$
\hat{A} = A_{|(I-P)} \chi + \hat{A}_{\infty},\tag{3.8}
$$

where

$$
\hat{A}_{\infty} = \{0\} \times P\mathcal{K}.
$$

Proof. Because $\tilde{\Gamma}^+ \tilde{\Gamma}$ is boundedly invertible, according to Lemma 3.2 the scalar product [.,.] does not degenerate on the subspace $P(\mathcal{K}) = \tilde{\Gamma}(\mathcal{H})$. According to [7, Theorem 3], there exists $\hat{Q}(z) := -Q(z)^{-1}, z \in \rho(A) \cap (\hat{A})$. Let \hat{Q} be represented by a self-adjoint linear relation \hat{A} in representation (2.5). Then \hat{A} satisfies (2.7).

Let us now observe the linear relation *B* given by (3.6), and let us find the resolvent $(B-z)^{-1}$, which exists according to Lemma 3.3. Let us select a point $z \in \rho(B)$ and a vector

$$
f \in \mathcal{K} = (B - zI)(I - P)\,\mathcal{K},
$$

and let us find $(B-z)^{-1} f$.

According to Lemma 3.3 there exists an element $g := (B - z)^{-1} f \in (I - P) \mathcal{K}$. According to definition (3.6) of *B* and $P\mathcal{K} = \tilde{\Gamma}\mathcal{H}$,

$$
\{g, f + zg\} \in A_{|(I-P)\mathcal{K}} \dot{+} (\{0\} \times \tilde{\Gamma} \mathcal{H})
$$

holds. This means that for some $h \in \mathcal{H}$

$$
f + zg = Ag + \tilde{\Gamma}h
$$

holds. Then we have

$$
Ag - zg = f - \tilde{\Gamma}h.
$$

Hence,

$$
g = (A - z)^{-1} f - (A - z)^{-1} \tilde{\Gamma} h.
$$

Because $\tilde{\Gamma}^+(I-P) = 0$, we have

$$
0 = \tilde{\Gamma}^{+} g = \tilde{\Gamma}^{+} (A - z)^{-1} f - \tilde{\Gamma}^{+} (A - z)^{-1} \tilde{\Gamma} h = \tilde{\Gamma}^{+} (A - z)^{-1} f - Q(z) h.
$$

According to (3.3),

164 MUHAMED BOROGOVAC

$$
\Gamma_{\bar{z}}^{+} f = \tilde{\Gamma}^{+} (A - z)^{-1} f.
$$

Therefore,

$$
h = Q(z)^{-1} \Gamma_{\bar{z}}^{+} f.
$$

This and (3.3) gives

$$
(B-z)^{-1} f = g = (A-z)^{-1} f - \Gamma_z h = (A-z)^{-1} f - \Gamma_z Q(z)^{-1} \Gamma_{\bar{z}}^+ f,
$$

which proves that formula (2.7) holds for the linear relation $B \subseteq (I - P) \mathcal{K} \times \mathcal{K}$ defined by (3.6). Therefore, $(B - z)^{-1} = (\hat{A} - z)^{-1}$, and

$$
\hat{A} = B = A_{|(I-P)}\mathbf{x} + (\{0\} \times P\mathbf{X}).
$$

Because *A* is a single valued, the sum is direct, and $\hat{A}_{\infty} = (\{0\} \times P\mathcal{K})$, i.e. representation (3.8) of \hat{A} holds. \square

Note, identity (3.8) derived here by means of the operator valued function $Q \in$ $N_{\kappa}(\mathcal{H})$ corresponds to identity [16, (3.5)] which was derived for a scalar function *q* ∈ *N*_K. Also note that $\hat{A}_{\infty} = \{0\} \times P\mathcal{K}$ holds according to [7, Proposition 5] too.

Theorem 3.1. *Let* $Q \in N_{\kappa}(\mathcal{H})$ *be holomorphic at infinity with boundedly invertible* $Q^{'}(\infty)$ and let Q be minimally represented by (3.1)

$$
Q(z) = \tilde{\Gamma}^+(A-z)^{-1} \tilde{\Gamma}, z \in \rho(A),
$$

with a bounded operator A. Then, relative to decomposition (3.5)

$$
\mathcal{K}_1\left[\left.+ \right] \mathcal{K}_2 := (I - P) \mathcal{K} \left[\left.+ \right] P \mathcal{K},\right]
$$

the following hold:

(i)
$$
A = \begin{pmatrix} \tilde{A} & (I - P)A_{|P\mathcal{K}} \\ PA_{|(I - P)\mathcal{K}} & PA_{|P\mathcal{K}} \end{pmatrix}
$$
, where $\tilde{A} = (I - P)A_{|(I - P)\mathcal{K}}$.
\n(ii) $\hat{A} = A_{|I - P} + (\{0\} \times P\mathcal{K}) = \begin{pmatrix} \tilde{A} & 0 \\ 0 & \hat{A}_{\infty} \end{pmatrix}$,
\n(iii) $S = A$, $P = P\mathcal{K}$, S is a symmetric, closed, bounded energy

(iii)
$$
S = A_{|(I-P)K}
$$
, $R = PK$. S is a symmetric, closed, bounded operator.

(iv)
$$
S^+ = \begin{pmatrix} \tilde{A} & (I - P)A_{|P\mathcal{K}} \\ (I - P)\mathcal{K} \times P\mathcal{K} & P\mathcal{K} \times P\mathcal{K} \end{pmatrix}
$$
.
\n(v) $\mathcal{R}_z = \left\{ \begin{pmatrix} -(\tilde{A} - z)^{-1} A P x_P \\ x_P \end{pmatrix} : x_P \in P\mathcal{K} \right\}$, $\mathcal{K} = c.l.s.$ $\{\mathcal{R}_z : z \in \rho(A)\}$, *i.e.* S is simple.

(vi) If additionally, $\tilde{\Gamma}$ is a one-to-one operator, then Q is the Weyl function asso*ciated with* (S, A) *and* $S^+ = A + \hat{A} = A + \hat{R}$.

Proof. (i) The relation matrix of the operator *A*, with respect to decomposition (3.5), is obviously

$$
A = \begin{pmatrix} (I - P)A_{|(I - P)\mathcal{K}} & (I - P)A_{|P\mathcal{K}} \\ PA_{|(I - P)\mathcal{K}} & PA_{|P\mathcal{K}} \end{pmatrix} = A_{|(I - P)\mathcal{K}} + A_{|P\mathcal{K}}.
$$
(3.9)

(ii) According to [7, Theorem 3 (ii)], the function Q is regular. Therefore, there exists the inverse function \hat{Q} and the representing relation \hat{A} . According to (3.8), the condition $(I - P)D(\hat{A}) \subseteq D(\hat{A})$ is satisfied. Hence, according to [8, Lemma 2.2], there exists a relation matrix of \hat{A} relative to decomposition (3.5). Let that relation matrix be

$$
\hat{A} = \begin{pmatrix} \hat{A}_1^1 & \hat{A}_2^1 \\ \hat{A}_1^2 & \hat{A}_2^2 \end{pmatrix},
$$

where $\hat{A}^j_i \subseteq \mathcal{K}_i \times \mathcal{K}_j, i, j = 1, 2$. According to Lemma 3.4

$$
\hat{A}(0) = P\mathcal{K}.\tag{3.10}
$$

Therefore, $\hat{A}(0)$ is an ortho-complemented subspace of *K*. According to [24, Theorem 2.4],

$$
\hat{A} = \hat{A}_s[\dot{+}]\hat{A}_\infty,\tag{3.11}
$$

where \hat{A}_s is a self-adjoint densely defined operator in $\hat{A}(0)^{[\perp]} = (I - P) \mathcal{K}$, ran $\hat{A}_s \subseteq$ $(I - P)$ K and denotes direct orthogonal sum of sub-spaces.

For $g \in (I - P)$ K, from (3.8) and (3.11), it follows that

$$
((I - P)A_{|(I - P)\mathcal{K}}[\dot{+}]PA_{|(I - P)\mathcal{K}})g + Pk_0 = A_s g[\dot{+}]Pk
$$

for some $k_0, k \in \mathcal{K}$. Obviously:

$$
A_s g = (I - P) A_{|(I - P) \mathcal{K}} g = \tilde{A} g. \tag{3.12}
$$

Obviously $\hat{A}_{\infty} \subseteq P\mathcal{K} \times P\mathcal{K}$ and $\hat{A}_{\infty} = \hat{A}_{\infty}^+$. Hence, the relation matrix of \hat{A} is

$$
\hat{A} = \begin{pmatrix} \tilde{A} & 0 \\ 0 & \hat{A}_{\infty} \end{pmatrix},
$$
\n(3.13)

(iii) Let us now find $S = A \cap \hat{A}$. According (3.13), we have

$$
\hat{A} = \left\{ \begin{pmatrix} x_{I-P} \\ \tilde{A}x_{I-P} + p \end{pmatrix} : x_{I-P} \in (I-P) \mathcal{K}, p \in P \mathcal{K} \right\}.
$$

Since dom $S = (I - P)K$, elements of $A \cap S$ satisfy

$$
\begin{pmatrix} x_{I-P} \\ Ax_{I-P} \end{pmatrix} = \begin{pmatrix} x_{I-P} \\ \tilde{A}x_{I-P} + PAx_{I-P} \end{pmatrix} \in \hat{A},
$$

thus $S = A_{|(I-P)K}$.

.

By definition $\mathcal{R} = ((I - P) \mathcal{K})^{[\perp]} = P \mathcal{K}$ and $\hat{A}_{\infty} = \tilde{\mathcal{R}}$.

S is a closed symmetric relation in the Pontryagin space *K* because it is the intersection of such relations A and \hat{A} . S is a bounded operator as a restriction of bounded operator *A*. This proves (iii).

(iv) Now when we know *S*, we can find S^+ by definition. It is as claimed in (iv).

(v) By solving equation
$$
(S^+ - z) \begin{pmatrix} x_{I-P} \\ x_P \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$
, i.e., by solving equation
\n
$$
\begin{pmatrix} \tilde{A} - z & (I-P)A_{P\mathcal{K}} \\ (I-P)\mathcal{K} \times P\mathcal{K} & P\mathcal{K} \times P\mathcal{K} - z \end{pmatrix} \begin{pmatrix} x_{I-P} \\ x_P \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$
\n \Rightarrow obtain

we

$$
\mathcal{R}_z = \left\{ \left(\begin{array}{c} -(\tilde{A} - z)^{-1} (I - P) A P x_P \\ x_P \end{array} \right) : x_P \in P \mathcal{K} \right\}.
$$

According to [7, Theorem 4], the function $\hat{Q}_2(z) := \tilde{\Gamma}_2^+(\tilde{A}-z)^{-1}\tilde{\Gamma}_2 \in \mathcal{K}_{K_2}(\mathcal{H}),$ with $\tilde{\Gamma}_2 := (I - P)A\tilde{\Gamma}(\tilde{\Gamma}^+\tilde{\Gamma})^{-1}$, has κ_2 negative squares, where κ_2 is the negative index of $(I - P)$ *K*. Then

$$
(I-P)\mathcal{K} = c.l.s.\left\{ (\tilde{A}-z)^{-1}\tilde{\Gamma}_2\mathcal{H}, z \in \rho(\tilde{A}) \right\}.
$$
 (3.14)

It is easy to verify

$$
(\tilde{A}-z)^{-1}(I-P)AP\mathcal{K}=(\tilde{A}-z)^{-1}\tilde{\Gamma}_2\mathcal{H}=(\tilde{A}-z)^{-1}(I-P)A\tilde{\Gamma}(\tilde{\Gamma}^+\tilde{\Gamma})^{-1}\mathcal{H}.
$$

According to (3.14) we have

$$
\begin{pmatrix} f_{I-P} \\ f_P \end{pmatrix} [\perp] \begin{pmatrix} -(A-z)^{-1}(I-P)APx_P \\ x_P \end{pmatrix}, \forall z \in \rho(A) \Rightarrow \begin{pmatrix} f_{I-P} \\ f_P \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
$$

This further means

$$
\mathcal{K} = c.l.s.\left\{\mathcal{R}_z : z \in \rho(A)\right\}.
$$

Hence, $S = A_{|(I-P)}$ _K is a simple operator in *K*.

(vi) If $\tilde{\Gamma}$ is one-to-one, then according to (3.3), ker $\Gamma_z = \{0\}, \forall z \in \rho(A)$. According to Proposition 2.1 (i), the function Q is strict. According to Theorem 2.1 (b), *Q* is the Weyl function of *A* corresponding to the boundary triple $\Pi = (\mathcal{H}, \Gamma_0, \Gamma_1)$ that satisfies $A = \ker \Gamma_0$. The second claim of (vi) follows from Theorem 2.1 (c).

The claim $A + \hat{R} = S^+$ we can see by comparing elements of the two relations. Indeed, for an arbitrary $f = f_{I-P} + f_P \in \mathcal{K}$,

$$
\left\{ \left(\begin{array}{c} f_{I-P} + f_P \\ \tilde{A}f_{I-P} + (I-P)Af_P + PAf_{I-P} + PAf_P + P\mathcal{K} \end{array} \right) \right\} = \\ = \left\{ \left(\begin{array}{c} f_{I-P} + f_P \\ \tilde{A}f_{I-P} + (I-P)Af_P + P\mathcal{K} + P\mathcal{K} \end{array} \right) \right\}
$$

obviously holds, where we use claim (iv) for S^+ on the right hand side of the equation. \Box

Recall that an extension $\tilde{S} \in Ext \, S$ is \mathcal{R} -*regular* if $\tilde{S} + \hat{\mathcal{R}}$ is a closed linear relation in $K \times K$, see [9, Definition 3.1].

Corollary 3.1. *Let* $Q \in N_{\kappa}(\mathcal{H})$ *be a strict function that satisfies the conditions of Theorem 3.1. Then A,* \hat{A} *, and* S^+ *are R -regular extensions of S.*

Proof. The extension *A* is \mathcal{R} -regular because, according to Theorem 3.1 (vi), S^+ = $A + \hat{R}$ and it is a closed relation in $K \times K$.

From $\hat{A} = S + \hat{\mathcal{R}}$ and $\hat{\mathcal{R}} + \hat{\mathcal{R}} = \hat{\mathcal{R}}$, it follows that $\hat{A} = \hat{A} + \hat{\mathcal{R}}$. Since \hat{A} is closed, it is the *R*-regular extension of *S*. By the same token, S^+ is *R*-regular. \Box

4. EXAMPLES

In the following examples we will show how to use results from sections 2 and 3 to find a closed symmetric operator *S* and a reduction operator Γ for a given generalized Nevanlinna function *Q* so that *Q* becomes the Weyl function related to *S* and Γ. We will also express *S* and *S* ⁺ in terms of the representing operator *A* of the function Q.

Example 4.1. *Given function the* $Q(z) := -\frac{1}{z}$, $Q \in N_0(\mathbb{C})$ *. Find the corresponding symmetric linear realton S, S⁺ and the triple* $\Pi = (\mathbb{C}, \Gamma_0, \Gamma_1)$ *.*

This function is holomorphic at ∞ and

$$
Q^{'}(\infty):=\lim_{z\to\infty}zQ(z)=-I_{\mathbb C}
$$

is a boundedly invertible operator, i.e. the conditions of Theorem 3.1 are satisfied. It is also easy to verify that *Q* is a strict function in $\mathcal{D}(Q)$. According to Lemma 3.1, the minimal representation of *Q* is of the form

$$
Q(z) = \tilde{\Gamma}^+(A-z)^{-1} \tilde{\Gamma}, z \in \rho(A),
$$

where *A* is a bounded operator, and $Q'(\infty) = -\tilde{\Gamma}^+\tilde{\Gamma} = -I_{\mathbb{C}} = (-1) \in \mathbb{C}^{1 \times 1}$.

We know, and it is easy to verify, that in the representation of the function $Q(z) := -\frac{1}{z}$, the minimal state space is $K = \mathbb{C}$, the representing operator is

$$
A = (0) = \left\{ \begin{pmatrix} f \\ 0 \end{pmatrix} : f \in \mathbb{C} \right\} \subseteq \mathbb{C}^2,
$$

the resolvent is $(A - z)^{-1} = -\frac{1}{z}I_{\mathbb{C}}$, and $\tilde{\Gamma}^+ = \tilde{\Gamma} = (1) \in \mathbb{C}^{1 \times 1}$ holds. According to (3.4), *P* = *I*_C. Because *PK* = \overline{X} , according to Theorem 3.1, *S* = $A_{|(I-P)X} \cap \hat{A}$ = \int \int 0 $\binom{0}{0}$. Then according to Theorem 3.1 (v), $\mathcal{R}_z = P\mathcal{K} = \mathcal{K}$. Because $\tilde{\Gamma}$ is a one-to-one operator, according to Theorem 3.1 (vi), $Q(z) := -\frac{1}{z}$ is the Weyl function associated with *S* and *A*.

We also know that in the same state space $K = \mathbb{C}$, there exists a linear relation *A*̂ that minimally represents $\hat{Q}(z) = -Q^{-1}(z) = zI_{\mathbb{C}}$, and $\hat{\mathcal{R}} = (\{0\} \times \mathbb{C}) \subseteq \mathbb{C}^2$. According to Theorem 3.1 (iii), $\hat{A} = \tilde{A}[\dot{+}]\hat{R} = \hat{R}$.

Then, according to Theorem 2.1 (c) (ii), $S^+ = A + \hat{A} = \mathbb{C}^2$.

Now we need to define the reduction operator $\Gamma = \begin{pmatrix} \Gamma_0 \\ \Gamma_1 \end{pmatrix}$ Γ_1 $\Big)$: $S^+ \to \mathcal{H}^2$ that will satisfy identity (1.6) and

$$
A = \ker \Gamma_0 \wedge \hat{A} = \ker \Gamma_1.
$$

Because, $M = Q \in N_0(\mathbb{C})$, the space $\mathcal{K} = \mathbb{C}$ is endowed with the usual definite scalar product. We can easily verify that the reduction operator that satisfies the above condition is defined by

$$
\Gamma\left(\begin{array}{c}f\\f'\end{array}\right)=\left(\begin{array}{c}f'\\-f\end{array}\right).
$$

Example 4.2. In Example 2.1 we derived a strict part $\tilde{Q}(z) = z$ from a non-strict *matrix Nevanlinna function. Because the strict part remains a Nevanlinna function and it becomes a strict function, according to Theorem 2.1 (b) there exist a reduction operator* Γ *and a boundary triple* Π *that correspond to* $\tilde{Q}(z) = z$ *.*

To accomplish this task, we can use results of Example 4.1, because $-\tilde{Q}(z)^{-1} =$ $-\frac{1}{z}$. This means that Γ_0 and Γ_1 exchange roles, i.e., in this example

$$
\Gamma\left(\begin{array}{c}f\\f'\end{array}\right):=\left(\begin{array}{c}f\\f'\end{array}\right).
$$

Therefore, now we have

$$
A = \ker \Gamma_0 = \left\{ \begin{pmatrix} 0 \\ f' \end{pmatrix} : f' \in \tilde{\mathcal{H}} \right\} \wedge \hat{A} = \ker \Gamma_1 = \left\{ \begin{pmatrix} f \\ 0 \end{pmatrix} : f \in \tilde{\mathcal{H}} \right\},\
$$

where $\tilde{\mathcal{H}} = \mathbb{C}$. Then $S = A \cap \hat{A} = \begin{cases} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $S^+ = \tilde{\mathcal{H}}^2$. Obviously ker $(S^+ - zI) =$ $\tilde{\mathcal{H}}$. This implies $\hat{\mathcal{R}}_z(S^+) = \left\{ \left(\begin{array}{c} f \\ zf \end{array} \right) : f \in \tilde{\mathcal{H}} \right\}$. Thus Γ_0 $\begin{pmatrix} f \\ zf \end{pmatrix} = f \wedge \Gamma_1 \begin{pmatrix} f \\ zf \end{pmatrix} = zf.$

By the definition of the Weyl function, see (1.7), it follows that $\tilde{Q}(z) = z$, i.e. $\tilde{Q}(z)$ is indeed the Weyl function corresponding to the reduction operator Γ . \Box

Note that in [5, Example 2.4.2], the authors start from the symmetric relation *S* and the reduction operator Γ to find the corresponding Weyl function *M*, while in this example we do the converse work, we start from the strict part \tilde{Q} to find Γ and *S*. At the end we verified that \tilde{O} is indeed the Weyl function corresponding to those Γ and *S*.

In the following example, we will show how to use Theorem 3.1 to find linear relations *S*, \hat{A} and S^+ for a given function *Q*.

Example 4.3. *Given the function*

$$
Q(z) = \begin{pmatrix} \frac{-(1+z)}{z^2} & \frac{1}{z} \\ \frac{1}{z} & \frac{1}{1+z} \end{pmatrix} \in N_2(\mathbb{C}^2)
$$

and its operator representation

$$
Q(z) = \tilde{\Gamma}^+(A-z)^{-1}\tilde{\Gamma},
$$

where the fundamental symmetry J, and operators A, Γ *and* Γ ⁺ *are, respectively:*

$$
J = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \tilde{\Gamma} = \begin{pmatrix} 0.5 & -1 \\ 1 & 0 \\ 0 & -1 \end{pmatrix}, \tilde{\Gamma}^+ = \begin{pmatrix} 1 & 0.5 & 0 \\ 0 & -1 & 1 \end{pmatrix},
$$

our task is to find linear relations S, \hat{A} *and S⁺.*

It is easy to verify that the function *Q* satisfies the conditions of Theorem 3.1. Indeed, the limit (3.2) gives

$$
\tilde{\Gamma}^+\tilde{\Gamma} = \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}, \left(\tilde{\Gamma}^+\tilde{\Gamma}\right)^{-1} = \begin{pmatrix} 0.5 & -0.5 \\ -0.5 & -0.5 \end{pmatrix}
$$

Then, by means of formula (3.4), we get

$$
P = \left(\begin{array}{ccc} 0.75 & 0.125 & 0.25 \\ 0.5 & 0.75 & -0.5 \\ 0.5 & -0.25 & 0.5 \end{array}\right), I - P = \left(\begin{array}{ccc} 0.25 & -0.125 & -0.25 \\ -0.5 & 0.25 & 0.5 \\ -0.5 & 0.25 & 0.5 \end{array}\right).
$$

According to Theorem 3.1 (iii), we can find *S*:

$$
S = A (I - P) = \begin{pmatrix} -0.5 & 0.25 & 0.5 \\ 0 & 0 & 0 \\ 0.5 & -0.25 & -0.5 \end{pmatrix}.
$$

$$
\tilde{A} := (I - P)A (I - P) = \begin{pmatrix} -0.25 & 0.125 & 0.25 \\ 0.5 & -0.25 & -0.5 \\ 0.5 & -0.25 & -0.5 \end{pmatrix} = -(I - P).
$$

By solving equation $Px = x$ and then using the fact $(I - P) \mathcal{K}[\perp] P \mathcal{K}$, we obtain

$$
(I-P)\mathcal{K}=l.s.\left\{\left(\begin{array}{c} -1\\2\\2 \end{array}\right)\right\};\ P\mathcal{K}=l.s.\left\{\left(\begin{array}{c} 3\\2\\2 \end{array}\right),\left(\begin{array}{c} 1\\0\\1 \end{array}\right)\right\}.
$$

According to Theorem 3.1 (ii) we have

$$
\hat{A} = \tilde{A}[\dot{+}]\hat{\mathcal{R}} = -I_{I-P}[\dot{+}] \left(\{0\} \times P\mathcal{K}\right).
$$

The equivalent, developed form of the linear relation \hat{A} is:

$$
\hat{A}\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \left(\frac{f_1}{4} - \frac{f_2}{8} - \frac{f_3}{4}\right) \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} + c_1 \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},
$$

where $f = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} \in \mathcal{K} = \mathbb{C}^3$, and $c_i \in \mathbb{C}, i = 1, 2$, are arbitrary constants.

The easiest way to obtain the developed form of S^+ is to use Theorem 3.1 (vi) representation $S^+ = A \dot{+} \hat{R}$. We get

.

170 MUHAMED BOROGOVAC

$$
S^{+} f = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} f_{1} \\ f_{2} \\ f_{3} \end{pmatrix} + P \mathcal{K} = \begin{pmatrix} f_{2} \\ 0 \\ -f_{3} \end{pmatrix} + c_{1} \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} + c_{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},
$$

where f and $c_{i} \in \mathbb{C}$, $i = 1, 2$, are as before.

REFERENCES

- [1] R. Arens, *Operational calculus of linear relations*, Pacific J. Math., 11 (1961), 9-23.
- [2] J. Behrndt, *Boundary value problems with eigenvalue depending boundary conditions*, Mathematische Nachrichten 282 (2009), 659-689.
- [3] J. Behrndt, A. Luger, *An analytic characterization of the eigenvalues of self-adjoint extensions*, J. Funct. Anal. 242 (2007) 607–640.
- [4] J. Behrndt, V. A. Derkach, S. Hassi, and H. de Snoo, *A realization theorem for generalized Nevanlinna families*, Operators and Matrices 5 (2011), no. 4, 679–706.
- [5] J. Behrndt, S. Hassi, H. de Snoo, *Boundary Value Problems, Weyl Functions, and Differential Operators*, Open access eBook; https://doi.org/10.1007/978-3-030-36714-5
- [6] J. Bognar, *Indefinite Inner Product Spaces*, Springer-Verlag, Berlin, Heidelberg, New York, 1974.
- [7] M. Borogovac, *Inverse of generalized Nevanlinna function that is holomorphic at Infinity*, North-Western European Journal of Mathematics, 6 (2020), 19-43.
- [8] M. Borogovac, *Reducibility of Self-Adjoint Linear Relations and Application to Generalized Nevanlinna Functions*, Ukr. Math. J. (2022); https://doi.org/10.1007/s11253-022-02118-x
- [9] V. A. Derkach, *On generalized resolvents of Hermitian relations in Krein spaces*, Journal of Math. Sci, Vol. 97, No. 5, 1999.
- [10] V. A. Derkach, *Boundary Triplets, Weyl Functions, and the Krein Formula*, In book: Operator Theory, Chapter 10, pp.183-218 (2014); DOI: 10.1007/978-3-0348-0667-1 32
- [11] V.A. Derkach, S. Hassi, H.S.V. de Snoo, *Operator models associated with singular perturbations*, Methods Functional Analysis Topology 7 (2001), 1-21,
- [12] V. A. Derkach, S. Hassi, M.M. Malamud, and H.S.V. de Snoo, *Boundary relations and their Weyl families*, Trans. Amer. Math. Soc., 358 (2006), 5351–5400.
- [13] V. A. Derkach, M. M. Malamud, *Generalized Resolvents and the Boundary Value Problems for Hermitian Operators with Gaps*, J. Funct. Anal. 95 (1991) 1-95.
- [14] V. A. Derkach, M. M. Malamud, *The extension theory of hermitian operators and the moment problem*, J. Math. Sciences, 73 (1995), 141–242.
- [15] A. Dijksma, H. Langer and H. S. V. de Snoo, *Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions*, Math. Nachr. 161 (1993) 107-154.
- [16] S. Hassi, A. Luger, *Generalized zeros and poles N_K-functions: on the underlying spectral structure*, Methods of Functional Analysis and Topology Vol. 12 (2006), no. 2, pp. 131-150.
- [17] S. Hassi, H.S.V. de Snoo, and H. Woracek, *Some interpolation problems of NevanlinnaPick type*, Oper. Theory Adv. Appl.106 (1998), 201-216.
- [18] I. S. Iohvidov, M. G. Krein, H. Langer, *Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric*, Akademie-Verlag, Berlin, 1982.
- [19] M. G. Krein and H. Langer, *Über die Q-Funktion eines* π-hermiteschen Operatos im Raume Πκ, Acta Sci. Math. 34, 190-230 (1973).
- [20] M. G. Krein and H. Langer, *Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume* Π_κ *zusammenhangen*, I. Einige Funktionenklassen und ihre Darstellungen, Math. Nachr. 77, 187-236 (1977).
- [21] M. G. Krein and H. Langer, *On defect subspaces and generalized resolvents of Hermitian operator acting in Pontryagyn space*, Functional. Anal. i. Prilozhen 5, No. 3 (1971), 54-69; Engl. transl. in Functional Anal. Appl. 5 (1971).
- [22] A Luger, *A factorization of regular generalized Nevanlinna functions*, Integr. Equ. Oper. Theory 43 (2002) 326-345.
- [23] A. Luger, *Generalized Nevanlinna Functions: Operator Representations, Asymptotic Behavior*, In book: Operator Theory, Chapter 15, pp.345-371 (2014); DOI: 10.1007/978-3-0348-0667- 1 35
- [24] P. Sorjonen, *On linear relations in an indefinite inner product space*, Annales Academiae Scientiarum Fennica, Series A. I. Mathematica, Vol.4, 1978/1979, 169-192

(Received: November 29, 2023) (Revised: February 26, 2024)

Muhamed Borogovac Boston Mutual Life Actuarial Department 120 Royall St. Canton, MA 02021 USA e-mail: *muhamed.borogovac@gmail.com*