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ON ORDERS OF APPROXIMATION FUNCTIONS OF
GENERALIZED MIXED SMOOTHNESS IN LORENTZ
SPACES

GABDOLLA AKISHEV

ABSTRACT. We consider the Lorentz space with mixed norm of periodic
functions of many variables and Nikol’skii-Besov type classes of the ge-
neralized mixed smoothness. We have obtained estimates of the best ap-
proximation by trigonometric polynomials with the harmonics from the
hyperbolic crosses of functionsfrom Nikol’skii-Besov’s type classes of the
generalized mixed smoothness in the Lorentz space with the mixed norm.

1. INTRODUCTION

Let T = (21,...,%m) € I"™ = [0,27]™ and let 0;,p; € [1,00), j = 1,...,m,
N be the set of natural numbers.
We shall denote by L;5(I™) the Lorentz spaces with mixed norm of

Lebesgue measurable functions f(Z) defined on R™ with of period 27 for

each variable such that || fll;5 = [I.--[[fllps,6: - |lpm.6, < +00, Where
2 %
* 7] G |
lollo =4 [ (a"(@)t5 "de {
0

where g* is a non-increasing rearrangement of the function |g| (see [13]).

As we know, that in case when p; = 0;, j = 1,...,m, the space Lﬁ’g(fm)
coincides with the Lebesgue space Lyp(I™) with mixed norm (for the defini-
tion see [23], p. 128):

Pm —

2 27 % Pr—1 Pm
Il = | [ [UO !f(w)!pldwl] } den|
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We will consider a set of functions f € L, 5 (I™) such that

2
/f(f)da;j =0, j=1,...m
0

and let az(f) be the Fourier coefficients of the function f € Li(I™) with
respect to the multiple trigonometric system {e*™® },czm, where (7, Z) =
m e —
S yjx;. Then, we set 05 (£, %) = > an(f) ™),
J=1 nep(s)
5)={k=(k1,.. k) € Z™: 2571 <|kj| < 2%, j=1,...,m},
where 5 = (s1,...,8m), s; € Zy. A function Q(f) = Q(t1,....tm) is a
function of the type of mixed modulus smoothness of an order [ € N if it
satisfies the following conditions:
1) Q@) > 0,1 >0, j=1,..;m, Q) =0, if [[7, t; = 0;
Q(t) increases in each variable;
l
3) Q(kit1, oo, kintm) < (H}”:l kj) Q(t1, ntm), kj €N, j=1,...m
4) Q(t) is continuous for t; > 0, j = 1,...,m.
Let us consider the following sets

rQ,N) = { = (S1,..,8m) € ZT 1 Q(27%,..,27%) > %} ,
QR N) = U eron P(5),
o, N) = ZT \P(,N), (L1)
A(Q,N) =T1H(Q,N)\TH(Q,2!N). (1.2)
It follows from (1.1) and (1.2) that A(Q, N) C T+(©, N) and
1 s 1
TN <027 < N (1.3)
for 5 € A2, N). In [25], N.N. Pustovoitov proved that A(Q, N) # 0 and
’A(Qv N)‘ = (log2 N)m_l ’ (1'4)

where |F| is the number of elements of the set F. )

We will use the notation Sgn)(f;Z) = X reg@.n) az(f)e!F®) for a
partial sum of the Fourier series of a function f. Egq, N)( f )ﬁg is the best
approximation of function Lﬁ,g (I™) by trigonometric polynomials with the
harmonics from hyperbolic cross Q(€2, N).

The idea of using of trigonometric polynomials with the harmonics from
generalized step hyperbolic crosses similar to Q(2, N) belongs to A.S. Ro-
manyuk [28].
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For a sequence of numbers we write {azm}ncgm € lp if
Pm 1

Korhoord = S LS ol T 15500 <o

lp Ny =—00 ni=—00
where p = (p1,...,Pm), 1 <pj < 400, j =1,2,...,m.

apn

If pj =00, j=1,...,m, then H{aﬁ} ’ = sup |anl.
loo nezm
The notation A (y) < B (y) means that there exists positive constants
(4, Cy such that C1A(y) < B(y) < CoA(y). If B< CyAor A> CB, then
we write B << A or A >> B.
For a given function of the type of mixed modulus smoothness Q(%) con-
sider Nikol’skii — Besov type classes of the generalized mixed smoothness

539,?3 - {f € Lﬁé(Im) : H{Q_l(z_s) 6§(f)Hﬁ,§}SEZT = = 1}’
where D = (p1, ..y pm)s 0 = (O1,..,0m), T = (T1, 00, Tm), 1 < pj < +00,
1<6; <o00,1<7;<+00,j=1,...,m, and Q(27%) = Q(275,...,275m).
If Q(t) = H;nzl t;j, r; > 0, j = 1,...,m, then this class is denoted by
S;E’?B.
In the case pj = 0; = pand Q(t) = H;nzl t;j,rj <l,7j=+00,j=1,...,m,

ST?@?B was defined by S.M. Nikol’skii [22], and for 1 < 7; < +o00,j =

1,..,m, by T.I. Amanov [6] and P.I. Lizorkin, S.M. Nikol’skii [20].

As pointed out in [?], [17] one of the difficulties in the theory of approx-
imation of functions of several variables of mixed smoothness is the choice
of harmonics of the approximating polynomials. The first author, who sug-
gested to approximate functions of several variables of mixed smoothness
by polynomials with harmonics in hyperbolic crosses, was K.I. Babenko [7].
After that approximations of various classes of smooth functions by this
method were considered by S.A. Telyakovskii [38], B.S. Mityagin [21], Ya.
S. Bugrov [14], N.S. Nikol’skaya [24], E.M. Galeev [18], [19], V.N. Temlyakov
[39], [40], Dinh Dung [16], A.S. Romanyuk [27], [28], [29], R.A. DeVore, S.V.
Konyagin and V.N. Temlyakov [15], H. - J. Schmeisser and W. Sickel [33],
W. Sickel and T. Ullrich [31].

For Nikol’skii — Besov type classes of the generalized mixed smoothness
this problem was considered by N.N. Pustovoitov [25], [26], Sun Yongsheng
and Wang Heping [37], M. Sikhov [32], D.B. Bazakhanov [10], S.A. Stasyuk
[34], [35], S.A. Stasyuk and S.Ya. Yanchenko [36], Sh.A. Balgimbaeva and
T.I. Smirnov [§].

Exact orders of the approximation of the Nikol’skii-Besov classes in the
metric of the Lorentz space were found by the author [1], [2] and K.A.
Bekmaganbetov [11], [12].
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An order of approximation of the class S;—F;é?B by partial Fourier sums

So(f,x) = > (5.5)<n 05 (f, T) was found in [1].

The exact estimate of the quantity — sup | f — SQ(QJ\[)(f)H_g(z) was

TS ) :

proved in [4].

The main aim of the present paper is to estimate the order of the quantity

EQ(Q,N)(SI—?,@,;B)@@ = sup  Egam(fgs
fesgg’?B

This paper is organized as follows. In the second section some auxiliary
results are given. The third section establishes the estimate of the order ap-
proximation of the Nikol’skii-Besov classes in the Lorentz space with mixed
norm.

2. AUXILIARY RESULTS
In what follows, we denote by X,(,)(5) the characteristic function of the
set k(n) = {5 = (s1,....,5m) € Z7 = (5,9) = n}, n € N, where 5 =
(/717"'77m)7 /73 € (0,00), J = 17"'7m'

Lemma 2.1. Let 7 = (71,...,7m), 1 <7 < 400, j = 1,...,m. Then the
following relation holds:

H {X”(") (5) }EEE(n)

Lemma 2.1, is proved in [2].
Let us recall definitions of the conditions (5), (S;) given by S.B.Stechkin
and N.K. Bary [9].

Definition 2.2. A function g(t) satisfies the condition (S), if for some
a € (0,1) the function t~%¢(t) almost increases on (0, 1].

1
2 7

X
2
Iu";
S
m
Z

Iz

We say that a function Q(t) satisfies the condition (S) on (0,1]™, if it
satisfies this condition on each variable.

Definition 2.3. A function g¢(¢) satisfies the condition (.5;), if for some
a € (0,1) the function t~%g(t) almost decreases on (0, 1].

We say that a function €(t) satisfies the condition (S;) on (0,1]™, if it
satisfies this condition on each variable.

Lemma 2.4. ([4]) Let 1 < §; < o0, j =1,...,m, and Q(t) be a function
of the type of mired modulus smoothness of an order | which satisfies the
(S)-condition for & = (o, ...,om), o > ;5 >0, 5 = 1,....,m. Then for
1 <605 <400, j=1,..,m, the following relation holds
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H{ _S stjﬁj}seFL(QN = H{ _S)j12[128j6j}§eA(N)Hle.

Lemma 2.5. ([4]) Let Q(t) be a function of the type of mized modulus
smoothness of an order |, which satisfies the conditions (S) and (S;), 1 <
75 < +00,j = 1,...,m, and A(Q, N) = T+(Q, N)\I'H(Q,2'N). Then

> =
[ Da@m@®} gl = G0N +1)=", N eN.
Remark 2.6. Note that for the case 7y = ... = 7,,, = 1 Lemma 2.5 was proved
by N.N. Pustovoitov [25].

Theorem 2.7. Let § = (q1,..,qm), 1 < q¢j < o0, j = 1,...,m, f =
min{qi, ..., qm,2}. Then, for any function f € Lg(I™), the following in-

equality holds
17z << { 3 Ios(HIF} 7

sez!

mIH

The proof of the Theorem is given in [3].

Theorem 2.8. ([1]) Let = (p1, ..., pm), G = (q1s -, @), O = (951)7”'707(%))7
03 = (9(2) 6( )) Assume that 1 < p; < ¢j < 400, 1 < 9)(1)795 ) < too,
j=1..,m. Iff S Lﬁgu)([ ), mMax;—1,_m—1 9]( ) < mlnj:2,.,,,m % and the

quantity mo PR
o) = |[{I12"'% % 15l |
j=1

is finite, then f € f}qﬁ(z) (I™) and ||fll; a0 << o(f).

Theorem 2.9. ([1]) Let ¢ = (q1,-m), 0 = (01,.,0m),
A= (A, Am). Assume that 1 < ¢; < 75 < 400, 1 < 0; < +o0,
j=1.,m. If f € L;a(I™) and

@~ Y b S ¢ilk.z)

§€Z7n Eep(s)

BYAlK

+) 15(2)

then

1

£z >> H{Hzf 570 15l

sELT) Hlé’

3. MAIN RESULTS

Let us prove the main results of the present paper. Consider the function
1 1

)
O41(t) = Q1) H t; G , where t; € (0,1],5 = 1, ..., m and respectively set

Q(, N),FL(Ql,N),A(Ql, N).
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Theorem 3.1. Let 1 < 9;1),9‘;2),7']' < 400, 1 <pj<gj<oo,j=1,..,m,
and Q(t) be a function of the type of mized modulus smoothness of an order
I, which satisfies the conditions (S) and (S5;), o > plj — q%-’ j=1..,m:i

_ L_L)

() = QﬂHt T

1)If1< 9](-2) < 71j < 400, j=1,...,m, then
EQ(Ql,N) (Sﬁ 5(1) ?B)q’g@) = N(IOgQ N) J
for N =23, ...

2) .
2) Iij S 9]( )’] = 1,...,’171,, then EQ(Ql,N)(S;zg(l) ?B)ﬁ’g(z) = %, N S N.

Q“"—‘

Proof. Let f € Sflg(l) _B. For the proof of the first part it remains to apply
pi 77—
Holder’s inequality with exponents 3; = %, %"’g% =1, j=1,...,m taking
J

into account (f) satisfies (S) - condition for a; > p%- - q%-’ j=1,...,m we

obtain
s
T
H{H ’ ! H ) ﬁé(l)}gez 9(2) -
1
< -1 -5 _ H J(p q
o H{Q (2 ) 5S(f) 5,9_(1)}36Z7” {H2 T Q )}EEZT le
is finite, where & = (e1,....,ep), €5 = T]B j = 1,...,m. Therefore, by

Theorem 2.8 we have S o B C L; g (I™). Taking into account d05(f —

So,n(f) =0 ,if 5 e Q(Qh N) and 05(f — Sq,,»(f)) = ds(f) , if
5¢ Q(Q,N) by Theorem 2.8, we have

Eqe,m)(f) g <<

os(f — SQ(leN)(f))Hﬁ,G_(”}

sel'+(Q,N)

UL Sj(i_i)
<< H{H 27\P 4
j=1

for any function f € Sggu)fB- Since B; = % > 1,7 =1,...,m, and by

l52)

applying the Holder inequality we obtain the fg)llowing

‘{Q—uz—a 19500}y
x H {9(2_5) ]1;[1 QSj(pLj_qu) }geFl(Ql,N)

(2
_ 7;0; .
where € = (€1, ..., €p), € = T_—;(Z), j=1,..,m.
. —6°

E ) <<
Q1. (f) 5@ sezy

e
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Since, by the assumption of the Theorem, the function Q(f) satisfies S
and S; conditions and «; > pij — q%_, j = 1,...,m, then the function Q;(¢)
satisfies the conditions S and 5;. Therefore, by Lemma 2.4, Lemma 2.5 and
the definition of the set I'-(Qy, N) in (3.1), we have

EQ(QLN)(SQ_(l)iB)q’g(z) << “{91(25)}56/&(91 N) ‘

p,0
i:x—)—%)

<%H{XA(QLN)(E)}%A(QLN)} . << N(log2 ) J( >

In item 1) of the Theorem, the upper bound has been proved.
Let us prove the lower bound. Consider the function

m

_ 1

> = m sy9 (1= .2)
fol@) = (logy N) 27 S [ ) Y ek,

5eA(u,N) j=1 kep(3)

n .
In one-dimensional case for the Dirichlet kernel Dy, (z) = 3 + > €@ the

1
following statement holds || D, ||, ¢ =< n'Tr, 1<p< oo, 1<6< 400
Then, by the property of the norm, we have

H Z o p,0(1) _HH e iijj P

kep(s JT

s sj(1=2-)
,<<[]27 ™.
Jj=1

for 1 < p; < +oo, 1<9](- ) <4o00,j=1,....m
Let us prove the rest of the equality. By Lemma B in [1], the following

inequality holds

gg}%’ Z eFT) << H2 ( Pj)H Z Gilk.®)

e 32)
kep(s kep(s) P
It is known that maxzem ’Zkep )| > 9mm Hm 2% . Therefore, it
follows from (3.2) that []7, 2 sj(1-3-) << HZEep(g) ci(k,T) " Thus, we
have proved the relation
i{k,T) - s;(1-
H Z . H2 : (3.3)
kep(s
Therefore, by Lemma 2.5 and by estimation (3.3), we have
H{ (fo)‘ ﬁ,@(l)}EGZT 7 =
— Z 1
= (logy N) =7 |{ )} < Cy.
(logy V) XA@Qi,N)(3) sen@mll, = Co
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Hence C’O_lfo € SELB Now taking into account that S QOLN) (fo,z) =
0,z € I"™ and using Theorem 2.9 and (3.3), Lemma 2.5, we obtaln

EQ(Ql,N)(fo)w(z) = Hfon(z) >>

mo (1
> H 2 J(AJ’ qj) 165(fo) 5 g >>
{3131 . }EGZT Ig(2)
ieL
> (10g2 N) =2 {Ql }SEA(leN)Hl (2) ==
! log, N 'Z %
_ Jj=2
>> N ( Og2 ) {XA(?:? )}§€A(917N)Hl§(2) ==
1 > Gy
>> — (logy N)'=* %
N m
2 ( 5-3)

Q 1 — 2) 7
Thus, EQ(QLN)(Sﬁé(l)fB)ﬁ,@(z) >> 5 (logy N)? J . Item 1) of the
theorem has been proved.
Let us prove item 2) of the theorem. Since 7; < 9](.2), j =1,...,m, then

by applying Theorem 2.8 and the Jensen inequality (see [23], p. 125), we
obtain Sgé(l) ?B C L@g(g)([m) and

1 = Son.m(ll o << H{H 2617w g(f)Hﬁ §<1>}§erl(91,N) LSS
[{et e o], gl o300 27 H2 RIS

for any function f € Sggu)fB, which proves the upper bound in item 2).
For the lower bound, consider the function

fi@) = a@ T o Z ek,
kep(3)
where 5 = (31, ...,8m) € A(Q1, N). Then f; € Sggu)fB- Next, by (3.3), we
have
Eqar.n(fi), g = Il g >>

m

(1-35) 5 11
>> 02792 —EY 1_[2](1 — 002" )sz( i)
7j=1
for 5 € A(Qq,N). Hence , by (1.3) we obtain Egq, N)(SQ_(U B) 2 >>
’ 5o F a0

N~1. This proves the lower bound in item 2). (]
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Theorem 3.2. Let Q(t) be a function of the type of mized modulus smooth-
ness of an order | which satisfies the conditions (S) and (S;), 1 < ¢j < p; <
00, pj >2,1<0; <00, 1<7<400,j=1,....m

1) If2 <1; <400, j=1,...,m, then

i

)

uﬂ.""

1
2

1
Ega,n) (S5-B)gg =  (loga N)?
2)If7; <2, j=1,...,m, then Egq N)(S #B); GAN_
3) If 1 < g <pj§2 po = min{py, .. ,pm}<T],j—1 ,m, then

» SERES 0 SIEES
(logy N)i=2 << EQ(Q,N) (SE;B)@@ << N~ (log N)i=2 .

Proof. Ttem 1) proved in [4]. Let us prove item 2). Sinceq; < p;,j =1,...,m
then L;(I™) C L;5(I™) and we have || f[l.5 << ||fllz, f € Lp(I™). There-
fore S%%B C L;p(I™) and

If = Sq@m(Dllzg << | D () (3.4)
sel't(Q,N) P

for any function f € S%%B .
Now, since 2 < p; < 400, j = 1,...,m, using Theorem 2.7 from (3.4) we
obtain

= Samnlg<<{ 3 o] }
selL(Q,N)

:0{ Yo )<Q (279)

serL(Q,N)

5§(f)Hﬁ)2}2 (3.5)

for any function f € S%%B .
If ; <2, j=1,...,m, then using the Jensen inequality (see [23], p. 125)

we have {SGFL(QN H H }

<< o0, gy

Therefore, from the inequality (3.5) we obtain Egq, N)(Sg’?B)@g << 4+,
in case 2 < pj < +o00, 7; < 2, j = 1,...,m. This proves the upper bound.
The lower bound in item 2) proved in [4].

Let us prove item 3). Since 1 < p; < 2, j = 1,...,m, using Theorem 2.7
from (3.4) we obtain

sup  Q(279).
I# serL(Q,N)
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If = SoemDlhg << { 3 16:(NIP}" =

sel'L(Q,N) .

—of Y ome(etelsm) T 66

sel'L(Q,N)

for any function f € SQ—B If po < 7 < 400, j =1,...,m, then by the
Holder inequality from (3 6), we get

I = Sa@m(Plgs << {27 @IMNEWI}_

x H {9(2_5)}56FL(Q N)

where € = (€1, ..., em), €5 = 2, % =1, 8= po’ j=1,.
Now by Lemma 2.4 and Lemma 2. 5 from (3.7) we obtain

SN

l—’

L_L)

> (55—
I1f = So@n (Hllzg << N7 (logy N)7=2 " 7

for any function f € Sg?B . This proves the upper bound.
Let us prove the lower bound. Consider the set similarly in [26]

1
/ — S R - - | =
AN(Q,N) = { 5€ A(,N):s5> 57 logy(C3N), j 1,...,m}.

N.N. Pustovoitov [25] has been proved that, number of point is equal to
|A'(Q, N)| < (logy N)™ L,

After this we choose set A(Q, N). Lets take a number v = [|A’(Q, N) %]
- which is whole part of a number |A(Q, N)|71z. Divide set I = [—m, 7™ to
v™ cubes with side equal to 2X. Then choose set A(Q2, N) C A(€, N), such
that [A(Q, N)| = v™, and define bijection between this set A(€2, N) and the
set of cubes .

Let for 5 € A(Q,N) point Z° denote the centre of the cube. Further

i £ -5 (-2 los, |A<Q,N>]
J= J=

we set the notation u = {2 . Also, con-
g gay

sider the function f3(7) = & (logg N) =2 'u 7= 7 W(Zz), where (see

[25]) Ku(z) = 2" [T1 Kulz;),

V@) = > W K@ —%), K= (k. k), k=29 297
FEA(Q,N)

j =1,...,m, K,(x;) — is the Fejer kernel of order u by variable z;,j =
1,...,m. Note that,
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> (1——)(2 A=5n7"

u = (logy N)i=2 " =1 "7 (3.8)
In [25] we proved that
Eq,n(¥)1 >> [A(, N)|. (3.9)

Lets show that C5f3 € ngB for some constant C3 > 0. Since for Fejer

1
core with one variable we have got the estimation ||/, (y)|/, < u'Tr, 1<

> (1-35)
p < oo, then |K,(Z)|l; < w=' " . Using this relation and |A/(92, N)| =
|A(©2, N)| =< (logy N)™ 1 we get

{21165 (415}

cez

m

N-1(logy N) 2270 505 Q- l(2° 505
Ji= J Jj=
<< N7M(logy N) =27y mH (2 %) }%Mdm1f<<
— Z 1
< (logg N) =2 H{l}seA(QN - -
5

Since by Lemma 2.5 the estimation [[{1};cq nlli: << (logy N)’
is true, then H{ L2=9)|j0s(f )”ﬁ} gl << C. Because Csf3 € 5?B.
s€Z7 iz ’

Since Lz g(1™) C L1(I™) and || f[l1 << |/f5g, then
C R DESIES S{CEED
EQ(Q,N)(f?,)@g>>EQ(Q,N)(f3)1=N(10g2N) =2y =

Therefore, by the estimates (3.9), (3.8) we have got
1 -2+ —X0-5)
Eqa,n(fs),5 >> 3 (logg N) =2 Fu o= 7IAQ, N))
1 S =7
7y (loga V)= :

The Theorem 3.2 is proved. O

>C

Vv

m .
Now consider the case ¢; = p;j, j = 1,...,m and Q(¢) = Hlt?, Tj
]:

0,t € [0,1], j = 1,..m. Next Eqan)(f)y5 = E}Z,(f)ﬁg, where 5 =
(/717"'771%)7 Vi = :_iv ] = 17"'7m'

Theorem 3.3. Let 7= (r1,....7), 0<ri=...=7r, <ry41 < ..<r, and
2<pj<o0,1<b;<o00,1<7 <400, j=1,...,m. If2<p; <0; <0,
2< 1 <400, j=1,..,m, then

E} (S?(r Jp << N7 (10g2N)jz_:1(plj %) (10g2N)];2(é le)
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and if p1 = ... = pm = p, then

m

] £(-4) 5(-4)

N7 (logy N)7=1\" 7/ (logy N)i=2 << E] (S?GT )p-
Proof. Let f € S;ﬁfB' Now, since 2 < p; < +o0, 2 < 73 < +00,
j =1,...,m, using Theorem 2.7 and the inequality of different metric for
trigonometric polynomials (see [5]), the Holder inequality we obtain

Tl == { 2 H(Sg(f)"%}% =< { > llos(f ||29H s+ 1) ;j}%

sezm sezZm (3.10)
<< H{2<§’F>H5§(f)‘|ﬁ} {2_@’? H(Sj + 1)1%_0% }seZT

where € = (€1,....€m), € = %, j = 1,...,m. Taking into account that
r; >0, j=1,...,m we get

m
H{ (&7 Hs]+1 P; ej}
°, m
sGZJr

B C Ly(I™) and

~

sezm iz le’

< Q.
le

Hence, it follows from (3.10) that S;EF

I =S5l << {257 196015}y,

Iz
(3.11)

1

% H{2_<§ >ﬁ(sj + 1)6_07}561'1(1\7) I

1
where 't (N) = {3 € Z7 : (5,7) > logy N71 }. Next applying inequality

e g i S

~
Z
I
—~
gy
T
g/\
ISy
".:13
»
<la
.
——

serL(N) llig

fOI‘,@>0d>0]—1 .,m, then

1 1
s 1)~ 97-}
H{ 1;[ sit ser+(v)lli

1 1 1
e e

<<

<<wn (logy N
Therefore from (3.11) we obtain
EN ()5 < If = S{(f)llp << N7 (logy N

for any function f € SI _B. This proves the upper bound.

o TG

Let us prove the lower bound Consider the function
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m
1

fa(z) = (logy N) =27 x

Y L2 S Tt -2t 4l

1 1 1
(5,5)=log, N1 J= kep(3) i=

Then fy € L;p(I™). In one-dimensional case the following statement
holds (see [30])
201
H Z _9s—1 )*—1eikx
k=2s—1
for s € N. Therefore

|5 [Tty -2+ i

kep(s) =1

0x(s+1)%, 1<p,6 < o0,
p7

; =[]+ 1)0l (3.12)

i=1

p7

for 1 < pj <oo,1<6; <o0,j=1,..,m Now by relation (3.12) and by
Lemma 1 [4] we get

{2 1stl}

where k(N) = {5 € ZT" : (5,7) = log, NH}. Hence the function Cyfy €

TiMs

L
™

Hl =G

SEH

LSS (logy )

SCQ_B, for some constant Cy > 0.
Since 2 < p=p; = ... = pyy, < 00, then by Littlewood-Paley theorem [23]
we obtain
1
B (Catin = Cillall>> | { 3 6strl)’ | >>{ X2 s}
3€R 5€R(N)
By relation (3.12), for §; = pj =p,j=1,...m, it follows that

Y 1_1y\1
BNty > o) 57 (3 e ) s
7j=1

5€K(N)
-3 (A2
>> N (logy N)/=! (logy N)7=2 ’
for function Cyfy € S; 7B So Theorem 3.3 has been proved. O

Remark 3.4. Note that for the case ¢ =0; =q,pj =p, 75 =7, =1,...,m,
Theorem 3.2 was proved by S.A. Stasyuk [34]. For the case p; = 9](-1) =p,

q; = 9](-2) =gq, 7 =T < 400, j =1,...,m, Theorem 3.1 was proved by S.A.
Stasyuk [35].
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