DOI: 10.5644/SJM.20.02.02

ON SELF COMPLEMENTARITY OF THE INDUCED COMPLEMENT OF A GRAPH

KIRAN KIGGAL UDAYASHANKAR AND PRAMEELA KOLAKE

ABSTRACT. Let G = (V, E) be a graph and $S \subseteq V$. The *induced complement of the graph G with respect to the set S*, denoted by G_S , is the graph obtained from the graph G by removing the edges of $\langle S \rangle$ of G and adding the edges which are not in $\langle S \rangle$ of G. Given a set $S \subseteq V$, the graph G is said to be S-induced self complementary if $G_S \cong G$. The graph G is said to be G-induced co-complementary if $G_S \cong G$. This paper presents the study of the different properties of the G-i.s.c. and G-i.c.c. graphs.

1. Introduction

We consider here only the finite undirected graphs with no loops or multiple edges. Further, we denote any graph G by a pair (V, E), where V is the set of all vertices of G and E, the set of all edges of G. By an (n,m)-graph G, we mean, a graph G on n vertices (also referred to as *order* of G) and m edges (also referred to as *size* of G). Let G = (V, E) be an (n, m) graph. For any set $S \subseteq V$, the *induced subgraph* $\langle S \rangle$ is the maximal subgraph of G with the vertex set G. For any vertex G is G is the neighborhood of G is G is G is the list of vertex degrees, usually written in decreasing order, such as G is the list of vertex degrees, usually written in decreasing order, such as G is referred to G in less specified otherwise.

The *complement* \overline{G} of a graph G=(V,E) also has V as its vertex set, but two vertices are adjacent in \overline{G} if and only if they are not adjacent in G. Two graphs G and H are *isomorphic* (written $G\cong H$) if there exists a one-to-one correspondence between their vertex sets V(G) and V(H), which preserves the adjacency. A graph G=(V,E) is self-complementary if $G\cong \overline{G}$. Prameela Kolake [7] in her Ph.D thesis defined the concept of Induced complementation of a Graph as follows.

Definition 1.1. Let G = (V, E) be a graph and $S \subseteq V$. The induced complement of G with respect to S, denoted by G_S , is a graph (V, E_S) , where for any two vertices $u, v \in V$, $uv \in E_S$ if and only if one of the following conditions holds.

²⁰²⁰ Mathematics Subject Classification. 05C60, 05C99, 05C76.

Key words and phrases. Induced subgraph, Complement of a graph, degree sequence.

- (1) $(u \notin S \text{ or } v \notin S) \text{ and } uv \in E$.
- (2) $u, v \in S$ and $uv \notin E$.

The graph G is said to be

- (1) S-induced self complementary (S-i.s.c.) if $G_S \cong G$.
- (2) S-induced co-complementary (S-i.c.c.) if $G_S \cong \overline{G}$.

Remark 1.1. Let G = (V, E) be a (n, m) graph. Then we observe the following.

- (1) Every graph is S-induced self complementary for |S| = 1.
- (2) If S = V, then $G_S \cong \overline{G}$.
- (3) A graph is always *n*-induced co-complementary, i.e., $G_S \cong \overline{G}$ for |S| = n.

Some basic observations and results on the Induced complement of a graph *G* are listed below.

- Note 1.1. (1) Let G be a (n,m) graph and $S \subseteq V$ with |S| = k where $\langle S \rangle$ contains m_S edges. Then G_S contains $m 2m_S + \binom{k}{2}$ edges.
- (2) Let G be a graph and $S \subseteq V$. Then $\overline{(G_S)} \cong (\overline{G})_S$.
- (3) For any tree T of order n,

$$T_{\{v_i,v_j\}} = \begin{cases} T_1 \cup T_2 & \text{if } v_i \text{ and } v_j \text{ are ad jacent.} \\ \text{unicyclic graph,} & \text{otherwise.} \end{cases}$$

where, T_1 and T_2 are two trees of order less than n.

(4) In particular for any path P_n ,

$$(P_n)_{\{v_i,v_j\}} = \left\{ egin{array}{ll} P_i \cup P_{n-i} & if \ j=i+1 \\ unicyclic \ graph, & otherwise. \end{array} \right.$$

- (5) Let C_n be a cycle on n vertices. Then $(C_n)_{\{i,j\}} \cong P_n$ for any pair of adjacent vertices i and j of the cycle C_n .
- (6) $(C_n)_{\{i,j,k\}} \cong C_{n-1} \cup K_1$ for any three consecutively adjacent vertices i, j and k of C_n .
- (7) Thus in general, if $S = \{v_1, v_2,v_k\}$ is the set of k consecutively adjacent vertices of a cycle C_n , then $(C_n)_S$ is the graph with a cycle C_{n-k+2} and \overline{P}_k with an edge in common.

2. RESULTS ON S-I.S.C. AND S-I.C.C. GRAPHS

The graph G is said to be S-induced self complementary (S-i.s.c.) if $G_S \cong G$ and S-induced co-complementary (S-i.c.c.) if $G_S \cong \overline{G}$. In this section a few results are discussed with respect to S-i.s.c. and S-i.c.c. graphs.

Consider a graph G = (V, E). The induced complement of G with respect to every set $S \subseteq V$ with |S| = k, is called a k-induced complement of the graph G and is denoted by G_k . We have the following result.

Theorem 2.1. For a positive integer k, if G_k is self complementary then G must be a connected graph.

Proof. Let G_k be a self complementary graph for every set S with cardinality k. If G is not connected then we show that it is possible to construct a set $S_1 \subseteq V$ with $|S_1| = k$ such that, G_{S_1} is not self complementary.

Assume that the graph G is a disconnected graph and let G^1, G^2, \ldots, G^r be the components of G with order $n_1 \geq n_2 \geq \ldots \geq n_r$ respectively. If k = n, then clearly $G_k \cong \overline{G}$. Then $\overline{(G_k)} \cong \overline{(\overline{G})} \cong G$. Thus $G \cong \overline{(G_k)} \cong G_k \cong \overline{G}$ for k = n. Thus if G_k is self complementary then G must be self complementary. Hence G must be a connected graph.

Let us assume that k < n. Suppose $k \le \sum_{i=1}^{r-1} n_i$. Then we can pick any k vertices from the components $G^1, G^2, \ldots, G^{r-1}$ to form S_1 . So, there exists at least one component G^r such that no vertex of G^r lies in S_1 . Then G_{S_1} will be a disconnected graph and hence not self complementary. Thus $\overline{(G_k)} \ncong G_k$, a contradiction.

Suppose $n > k > \sum_{i=1}^{r-1} n_i$. Then choose S_1 to be the set of all vertices of $G^1, G^2, \ldots, G^{r-1}$ together with m vertices of the last component G^r of G such that $\sum_{i=1}^{r-1} n_i + m = k$. If $n_r = 1$, then k = n and so, $n_r \ge 2$ and there exists at least one vertex v in G^r such that $v \notin S_1$. Clearly, $n_i \ge 2$ for all i. We are choosing m vertices from the component G^r to form the set S_1 .

Case i: $m \neq \frac{n_r}{2}$. Then, since $n_i \geq n_r$ for all i, the degree sequence of the vertices of G_{S_1} and $\overline{(G_{S_1})}$ will be different. Hence $G_{S_1} \ncong \overline{(G_{S_1})}$.

Case ii: $m = \frac{n_r}{2}$ and the degree sequence of the vertices in the equal partition of $V(G^r)$ is the same in G. Then the m vertices of G^r are adjacent to every vertex of $\overline{(\bigcup_{i=1}^{r-1} G^i)}$ in G_{S_1} and the remaining m vertices of G^r are adjacent to every vertex of $\bigcup_{i=1}^{r-1} G^i$ in $\overline{(G_{S_1})}$. Then G_{S_1} is self complementary only if $\bigcup_{i=1}^{r-1} G^i$ is self complementary. Since $\bigcup_{i=1}^{r-1} G^i$ is disconnected, it can not be a self complementary graph. Hence, G_{S_1} is not self complementary.

Thus in either case, G_k is not self complementary, a contradiction. Hence G must be a connected graph.

Theorem 2.2. Let G be a self complementary graph. Then G_S is a self complementary graph if and only if $\langle S \rangle$ is a self complementary graph.

Proof. Let G be a self complementary graph and suppose G_S is a self complementary graph with respect to a set $S \subseteq V$. Let $u_i, u_j \in S$ be such that u_i and u_j are adjacent in G. Then u_i and u_j are non-adjacent in G_S . Since $G_S \cong \overline{(G_S)} \cong (\overline{G})_S$, there exists a map $f: V(G) \longrightarrow V(\overline{G})$ such that, we can find two non-adjacent vertices w_i and w_j in $(\overline{G})_S$ corresponding to u_i and u_j of G_S . By the definition of the induced complements, either

(i) $w_i, w_j \in S$ and are adjacent in \overline{G} or

(ii) at least one of w_i, w_j lies in V - S and are non-adjacent in \overline{G} .

If (ii) is true, then f which maps u_i to w_i will not preserve the adjacency, a contradiction. Hence (i) must be true. So, for each vertex $u_i \in S$, we can find a vertex w_i in $\overline{\langle S \rangle}$ which preserves the adjacency. Thus $\langle S \rangle$ is a self complementary graph.

Conversely, let G be a self complementary graph and $S \subseteq V$ such that $\langle S \rangle$ is a self complementary graph. Suppose u_i and u_j are two adjacent vertices in G_S . Then either u_i and u_j lie in S and are not adjacent in G or at least one of u_i and u_j lies in V-S and they are adjacent in G. Since G and $\langle S \rangle$ are self complementary graphs, there exist two vertices v_i and v_j in \overline{G} such that v_i and v_j are non-adjacent in \overline{G} if $v_i, v_j \in S$ or v_i and v_j are adjacent in \overline{G} if at least one of v_i and v_j lies in V-S. Then v_i and v_j are adjacent in \overline{G} . Since $\overline{G}_S \cong \overline{G}_S$ (by Note 2.1), v_i and v_j are adjacent in $\overline{G}_S \cong \overline{G}_S$.

Theorem 2.3. A graph G = (V, E) is a S-i.s.c. graph for a given set $S \subseteq V$ if and only if $\langle S \rangle \cong \overline{\langle S \rangle}$ and one of the following conditions holds.

- (1) $\langle S \rangle$ is a component of G or
- (2) at least |S|-1 vertices of S are adjacent to every vertex of a set $A \subseteq V-S$ and $N(v) \cap (V-S) = A$ for every vertex $v \in S$ with $deg_{\langle S \rangle}(v) \neq deg_{\overline{\langle S \rangle}}(v)$.

Proof. Let $G_S \cong G$ for some set $S \subseteq V$. By the definition of G_S , two adjacent vertices u_i, u_j of G are adjacent in G_S if and only if at least one of them lies in V - S. Thus the adjacency within the vertices of V - S and between the vertices of S and V - S remains unaltered in G_S . Also, two adjacent vertices of S are non-adjacent in S if and only if they lie in S. Thus if $S \cong S$, then $S \cong S$.

Suppose, $S \subseteq V$ is such that, $G_S \cong G$ and $\langle S \rangle \cong \overline{\langle S \rangle}$. If no vertex of S is adjacent to any vertex of V - S, then $\langle S \rangle$ is a component of G.

Suppose there exist at least two vertices $v_i, v_j \in S$ such that, $A_i = N(v_i) \cap (V - S)$ and $A_j = N(v_j) \cap (V - S)$ and v_i are adjacent in G (See figure 1).

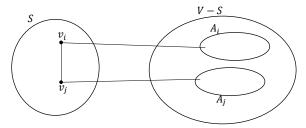


FIGURE 1. Adjacencies in graph G

Since $\langle S \rangle$ is self complementary, there exist two non-adjacent vertices u_i, u_j in S such that, $A_i = N(u_i) \cap (V - S)$ and $A_j = N(u_j) \cap (V - S)$ in G. If $\langle \{v_i, v_j, u_i, u_j\} \rangle$ is not self complementary, then $G_S \ncong G$. Suppose $u_i v_i v_j u_j$ form a path P_4 in G such that u_i, v_i, v_j, u_j are adjacent to the sets A_i, A_j, A_j respectively in G (See figure 2).

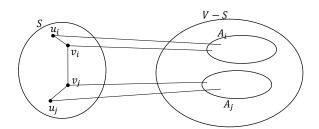


FIGURE 2. Adjacencies in graph G

Then in G_S , $v_i u_j u_i v_j$ forms a path P_4 with v_i, u_j, u_i, v_j adjacent to the sets A_i, A_j, A_i, A_j respectively (See figure 3).

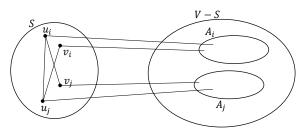


FIGURE 3. Adjacencies in graph G_S

Thus, the adjacency is not preserved in G_S . So, at least |S| - 1 vertices of S are adjacent to every vertex of a set $A \subseteq V - S$ in G.

Suppose $v \in S$ and $deg_{\langle S \rangle}(v) \neq deg_{\overline{\langle S \rangle}}(v)$ and let $N(v) \cap (V-S) \neq A$. Let $N(v) \cap (V-S) = B$. Since $\langle S \rangle$ is self complementary, there exists a vertex $w \in S$ such that $N(w) \cap (V-S) = B$ in G. Then whenever G is adjacent to two adjacent vertices G is the case when G is adjacent to two non-adjacent vertices in G. Hence $G_S \ncong G$, a contradiction.

Conversely, let $S \subseteq V$ where $\langle S \rangle \cong \overline{\langle S \rangle}$ be such that, $\langle S \rangle$ is a component of G. Then clearly, $G_S \cong G$.

Suppose that at least |S|-1 vertices of S are adjacent to every vertex of a set $A \subseteq V-S$. Also, $N(v) \cap (V-S) = A$ for every vertex $v \in S$ with $deg_{\langle S \rangle}(v) \neq deg_{\overline{\langle S \rangle}}(v)$.

Then at most one vertex in S, having the same degree in $\langle S \rangle$ and $\overline{\langle S \rangle}$, can be adjacent to vertices outside the set A. Since the degree of this vertex can not change in G_S and $\langle S \rangle \cong \overline{\langle S \rangle}$, we can find a one to one correspondence between the vertices of G and G_S , which preserves the adjacency. Thus $G_S \cong G$.

Theorem 2.4. For any graph G = (V, E) of order n, if $G_S \cong G$ for some set $S \subseteq V$ with |S| = k, then there is always a set $S_1 \subseteq V$ with $|S_1| = k$ such that $G_{S_1} \ncong G$, except for k = 1, n.

Proof. Let G = (V, E) be a disconnected graph such that, $G_S \cong G$ for some set $S \subseteq V$ with |S| = k. Then pick any vertex from a component of the graph and k - 1 vertices from the remaining components of the graph to form the set S_1 . Then $G_{S_1} \ncong G$. Let us assume that G is a connected graph. Let $S \subseteq V$ with |S| = k such that, $G_S \cong G$.

Let us assume that G is a connected graph. Let $S \subseteq V$ with |S| = k such that, $G_S \cong G$. Then from Theorem 2.3, $\langle S \rangle$ is self complementary and V - S contains a set A such that at least k - 1 vertices of S are adjacent to every vertex of A. Now pick k - 1 vertices from the set S and one vertex from the set S to form the set S. Then $\langle S_1 \rangle$ is not self complementary. Hence by the Theorem 2.3, $G_{S_1} \ncong G$.

Theorem 2.5. A graph G = (V, E) is S-i.c.c. for a given set $S \subseteq V$ if and only if S = V or $S = V - \{v\}$ for some vertex $v \in V$ such that S is partitioned into two equal partitions S_1 and S_2 such that, $S_1 = N(v) \cap S$ and the vertices of S_1 and S_2 have the same degree sequence in $\langle S \rangle$ of G.

Proof. Let $G_S \cong \overline{G}$ for a given set $S \subseteq V$. Suppose $V - S \neq \emptyset$ and no vertex of S is adjacent to any vertex of V - S in G. Then G is disconnected and so is G_S . But then \overline{G} is a connected graph, a contradiction.

Suppose V-S contains more than one vertex, say, $u_i, u_j \in V-S$ are the two adjacent vertices in G and hence in G_S . Let $S_i = N(u_i) \cap S$ and $S_j = N(u_j) \cap S$ in G_S . Suppose $S_i \cap S_j \neq \emptyset$ or $S_i \cup S_j \neq S$ or $|S_i| \neq |S_j|$. Then in any case, $deg_{\overline{G}}(u_i) \neq deg_{G_S}(u_i)$. Hence the set S is partitioned into two equal sets S_i and S_j .

Suppose $V - S = \{u_i, u_j\}$. Then the sets S_i and S_j are adjacent to two adjacent vertices u_i and u_j in G_S which are non-adjacent vertices in \overline{G} . Thus $G_S \ncong \overline{G}$, a contradiction.

Suppose $S_i \cup S_j = S$ and there exist $u_m, u_n \in V - S$ which are non-adjacent in G_S , such that, u_m is adjacent to $S - S_i$ and u_n is adjacent to $S - S_j$ in G_S . If $\langle \{u_i, u_j, u_m, u_n\} \rangle$ is not self complementary, then $|E(\overline{G})| \neq |E(G_S)|$, a contradiction.

Suppose $\langle \{u_i, u_j, u_m, u_n\} \rangle$ is a self complementary graph. Let us assume that $u_m u_i u_j u_n$ forms a path P_4 of $\langle V - S \rangle$ in G_S such that the vertices u_m, u_i, u_j, u_n are adjacent to the sets $S - S_i, S_i, S_j, S - S_j$ respectively in G_S . Then $u_j u_m u_n u_i$ forms a path P_4 in $\langle V - S \rangle$ of \overline{G} such that the vertices u_j, u_m, u_n, u_i are adjacent to the sets $S - S_j, S_i, S_j, S - S_i$ respectively in \overline{G} . This shows that the adjacency between the vertices of G_S and \overline{G} is not preserved and hence $G_S \ncong \overline{G}$, a contradiction.

Thus V-S can have only one vertex, say v. Let $S_1=N(v)\cap S$ and $S_2=S-S_1$. If $|S_1|\neq |S_2|$, then $deg_{G_S}(v)\neq deg_{\overline{G}}(v)$, a contradiction. Thus S is partitioned into two equal partitions S_1 and S_2 such that only S_1 is adjacent to v in G.

Suppose the degree sequences of the vertices of S_1 and S_2 are not the same in $\langle S \rangle$ of G. Then note that the vertex v is adjacent to S_1 in G_S but adjacent to S_2 in \overline{G} . Hence the degree sequence of the vertices of G_S and \overline{G} will be different. This implies that $G_S \ncong \overline{G}$, a contradiction.

Conversely, let $S = S_1 \cup S_2$ with $S_1 \cap S_2 = \emptyset$ and $|S_1| = |S_2| = \frac{|S|}{2}$ such that, exactly S_1 is adjacent to $\{v\} = V - S$ in G and hence in G_S . Then in \overline{G} , v is adjacent to the

same number of vertices as in G_S . Since the vertices of S_1 and S_2 have the same degree sequence in $\langle S \rangle$ of G and $\langle S \rangle_{G_S} \cong \langle S \rangle_{\overline{G}}$, the adjacency between the vertices of G_S and \overline{G} is preserved. Hence $G_S \cong \overline{G}$.

Theorem 2.6. Let G = (V, E) be a graph on n vertices such that, $G_S \cong \overline{G}$ for some set $S \subseteq V$ with |S| = k and $k \neq n$. Then it is always possible to find a set $S' \subseteq V$ with |S'| = k such that, $G_{S'} \ncong \overline{G}$.

Proof. Let G be a graph on n vertices such that, $G_S \cong \overline{G}$ for some set $S \subseteq V$. Then by Theorem 2.5, $S = V - \{v\}$ and S is partitioned into two equal partitions S_1 and S_2 such that, $S_1 = N(v) \cap S$ and the degree sequences of the vertices of S_1 and S_2 are the same in $\langle S \rangle$ of G. Then there exists at least one vertex $u \in S$ such that $|N(u)| \neq \frac{n-1}{2}$. For otherwise, let every vertex in S be adjacent to $\frac{n-1}{2}$ vertices of G. Then G is a regular graph of degree $\frac{n-1}{2}$. Thus \overline{G} is also a regular graph of degree $\frac{n-1}{2}$. But then $\langle S \rangle$ is not a regular graph which in turn implies that $\overline{\langle S \rangle}$ is not a regular graph. Thus G_S is not a regular graph and hence $G_S \ncong \overline{G}$, a contradiction. Thus there exists at least one vertex $u \in S$ such that, $|N(u)| \neq \frac{n-1}{2}$. Choose $S' = V - \{u\}$ and by Theorem 2.5, $G_{S'} \ncong \overline{G}$.

Theorem 2.7. Let $S \subseteq V$ be a set of vertices of a graph G = (V, E). Then $G_S \cong G_{(V-S)}$ if and only if one of the following is true:

- (1) $\langle S \rangle \cong \langle V S \rangle$ and if $v \in S$ and $u \in V S$ are adjacent in G, then $deg_{\langle S \rangle}(v) = deg_{\langle V S \rangle}(u)$ or
- (2) $\langle S \rangle$ and $\langle V S \rangle$ are self complementary graphs such that,
 - i. there exists no edge between S and V S in G or
 - ii. the edges between S and V-S form a complete bipartite graph with partite sets V_1,V_2 such that, V_1 is one among $S,S-\{v\}$ and $\{v\}$ and V_2 is one among $V-S,(V-S)-\{u\}$ and $\{u\}$ where $\deg_{\langle S\rangle}(v)=\deg_{\overline{\langle S\rangle}}(v)$ and $\deg_{\langle V-S\rangle}(u)=\deg_{\overline{\langle V-S\rangle}}(u)$.

Proof. Suppose $\langle S \rangle \cong \langle V - S \rangle$ and let $v \in S$ and $u \in V - S$ be adjacent in G but $deg_{\langle S \rangle}(v) \neq deg_{\langle V - S \rangle}(u)$. Then the degree sequence of G_S and $G_{(V - S)}$ are not equal, a contradiction. Thus the condition 1 holds.

By definition of the induced complement of G with respect to the set S,

$$\langle S \rangle_{G_S} \cong \langle S \rangle_{\overline{G}} \text{ and } \langle V - S \rangle_{G_S} \cong \langle V - S \rangle_{G}.$$
 (2.1)

Similarly, with respect to the set V - S,

$$\langle V - S \rangle_{G_{(V-S)}} \cong \langle V - S \rangle_{\overline{G}} \text{ and } \langle S \rangle_{G_{(V-S)}} \cong \langle S \rangle_{G}.$$
 (2.2)

Since $G_S \cong G_{(V-S)}$, from equations (2.1) and (2.2)

$$\langle S \rangle_{G_S} \cong \langle S \rangle_{\overline{G}} \cong \langle S \rangle_G \text{ and } \langle V - S \rangle_{G_S} \cong \langle V - S \rangle_G \cong \langle V - S \rangle_{\overline{G}}.$$
 (2.3)

Thus $\langle S \rangle$ and $\langle V - S \rangle$ are self complementary graphs.

Suppose $\langle S \rangle$ and $\langle V - S \rangle$ are two components of G, then there is nothing to prove.

Suppose the edges between S and V-S do not form a complete bipartite graph. Then we can find at least two vertices $v_1,v_2 \in S$ and at least two vertices $u_1,u_2 \in V-S$ such that v_i is not adjacent to both u_1,u_2 for i=1,2 in G. Then in G_S , two adjacent/non-adjacent vertices $v_1,v_2 \in S$ are adjacent to two adjacent/non-adjacent vertices $u_1,u_2 \in V-S$. But $v_1,v_2 \in S$ are non-adjacent/adjacent in $G_{(V-S)}$ and are adjacent to two non-adjacent/ adjacent vertices $u_1,u_2 \in V-S$. Hence the adjacency is not preserved between the vertices of G_S and $G_{(V-S)}$, a contradiction. Thus the edges between S and V-S form a complete bipartite graph with partite sets V_1 and V_2 .

Without loss of generality, let us assume that $V_1 \subseteq S$ and $V_2 \subseteq V - S$. Let $v_i, v_j \in S$ such that, v_i, v_j are non-adjacent to any vertex of V_2 and v_i, v_j are adjacent in G_S . Then v_i, v_j are non-adjacent in $G_{(V-S)}$ and are not adjacent to any vertex of V_2 . Thus the adjacency is not preserved and hence $G_{(V-S)} \ncong G_S$, a contradiction. Thus $V_1 = S$ or $S - \{v\}$ or $\{v\}$ and $V_2 = V - S$ or $\{V - S\} - \{u\}$ or $\{u\}$.

Suppose $deg_{\langle S \rangle}(v) \neq deg_{\overline{\langle S \rangle}}(v)$, then we can find a vertex with different degrees in G_S and $G_{(V-S)}$, which is non-adjacent to any vertex of V_2 , a contradiction. Thus $deg_{\langle S \rangle}(v) = deg_{\overline{\langle S \rangle}}(v)$. Similarly, $deg_{\langle V-S \rangle}(u) = deg_{\overline{\langle V-S \rangle}}(u)$.

Conversely, if the second condition holds, then $G_S \cong G$ and $G_{(V-S)} \cong G$, and hence $G_S \cong G_{(V-S)}$.

Let v_i, v_j be two adjacent vertices of G_S . Then

Case 1: $v_i, v_j \in S$. Then v_i, v_j are non-adjacent in G and hence in $\langle S \rangle_G$. Since $\langle S \rangle_G \cong \langle V - S \rangle_G$, there exists two adjacency preserving non-adjacent vertices $u_i, u_j \in V - S$. Hence u_i, u_j are adjacent in $G_{(V-S)}$.

Case 2: One of v_i, v_j lies in V - S. Then v_i, v_j are adjacent in G and hence in $G_{(V - S)}$. Case 3: $v_i, v_j \in V - S$. Then one can argue in the lines of case 1 and prove the result. Thus in all the possibilities, $G_S \cong G_{(V - S)}$.

Proposition 2.1. Let G be a graph of order n and let $S \subseteq V$. If $G_S \cong G_{(V-S)}$, then

(1)
$$|S| < n - 4$$
 for $n > 8$,

(2)
$$|S| = \frac{n}{2}$$
 for n even.

Proof. Suppose $G_S \cong G_{(V-S)}$. As in Theorem 2.7, let us consider two possibilities.

Case 1: $\langle S \rangle$ and $\langle V - S \rangle$ are self complementary graphs satisfying some conditions. Then |S| and |V - S| must be at least 4. Thus if $|V - S| \ge 4$, then |S| < n - 4 for n > 8.

Case 2: $\langle S \rangle \cong \langle V - S \rangle$ satisfying some conditions. Then note that |S| = |V - S| and hence n must be even.

Remark 2.1. From the proof of the Proposition 2.1, it may be observed that, the graphs with orders 3,5 or 7 do not contain a set S of vertices, such that, $G_S \cong G_{(V-S)}$.

Theorem 2.8. Suppose G is a disconnected graph. Then G_S is connected if and only if S contains at least one vertex from each component of G.

Proof. Let $G_i = (V_i, E_i)$, i = 1, 2, ..., k be the k components of G = (V, E). Suppose no vertex of a component G_j $(1 \le j \le k)$ lies in S. Then $V_j \subseteq V - S$ and hence no vertex of S is adjacent to any vertex of G_j in G and hence in G_S . Thus G_j is a component in G_S , too and hence G_S is disconnected. Thus S contains at least one vertex from each component of G.

Conversely, suppose S contains at least one vertex from each component of G. Then $\langle S \rangle$ is disconnected and $\overline{\langle S \rangle}$ is connected. Also, note that there exists at least one vertex u_i in the component G_i such that u_i is adjacent to some vertex of S. Thus there exists at least one path between any two vertices in G_S and hence G_S is connected. \square

Lemma 2.1. The complement \overline{G} of a connected graph G = (V, E) is disconnected if and only if there exists a set $A \subset V$ such that every vertex of A is adjacent to every vertex of V - A.

Proof. Suppose \overline{G} is disconnected graph, where \underline{G} is connected. Then there exist at least two components G_1 and G_2 of \overline{G} . Since $\overline{(\overline{G})} \cong G$, every vertex of $V(G_1)$ is adjacent to every vertex of $V(G_2)$ in G. Thus $V(G_1)$ is the set A mentioned in the theorem.

Conversely, let every vertex of A be adjacent to every vertex of V-A in G. Then $\langle A \rangle$ is a component of \overline{G} . Thus \overline{G} is disconnected.

Theorem 2.9. Let G = (V, E) be a connected graph. Then G_S is disconnected if and only if $\langle S \rangle$ is connected and there exists a set $S_1 \subset S$ such that every vertex of S_1 is adjacent to every vertex of $S - S_1$ and $N(S_1) \cap (V - S)$ is not adjacent to $S - S_1$ in G.

Proof. Suppose G_S is a disconnected graph and assume that $\langle S \rangle$ is disconnected. Then $\overline{\langle S \rangle}$ is connected and hence in G_S , there exists at least one path between every pair of vertices through the vertices of S, a contradiction. So, $\langle S \rangle$ must be connected. Since G is connected, there exists at least one path between the vertices of S and V-S in G. Thus G_S is disconnected if $\overline{\langle S \rangle}$ is disconnected. The complement of a connected graph is disconnected if and only if there exists a set S of vertices which are adjacent to all vertices of S (by the Lemma 2.1). So, there exists a set S such that every vertex of S is adjacent to every vertex of S-S1.

Suppose some vertex $u_i \in N(S_1) \cap (V - S)$ is adjacent to a vertex $v_i \in S - S_1$ in G (and hence in G_S). Then every path between the vertices of S_1 and $S - S_1$ must have u_i and v_i on it in G_S , a contradiction. So, no vertex of $N(S_1) \cap (V - S)$ is adjacent to any vertex of $S - S_1$.

Conversely, suppose $\langle S \rangle$ is connected and there exists a set $S_1 \subset S$ such that every vertex of S_1 is adjacent to every vertex of $S-S_1$. Then S_1 and $S-S_1$ are two components of $\overline{\langle S \rangle}$. Also, note that no vertex of $N(S_1) \cap (V-S)$ is adjacent to any vertex of $S-S_1$. Thus $[N(S_1) \cap (V-S)] \cup S_1$ forms a component of G_S and hence G_S is disconnected.

3. CONCLUSION

Induced complement of a graph is all about complementing a set of vertices instead of complementing the entire graph. This paper attempts to present some results on *S*-i.s.c. and *S*-i.c.c. graphs which are the self complementary graphs with respect to the induced complement of a graph.

REFERENCES

- [1] C. R. J. Clapham and D. J. Kleitman. The degree sequences of self-complementary graphs. *J. Combinatorial Theory Ser. B*, 20(1):67–74, 1976.
- [2] Alastair Farrugia. Self-complementary graphs and generalisations:a comprehensive reference manual. Master's thesis, University of Malta, 1999.
- [3] Richard A.Gibbs. Self-complementary graphs. J. Combinatorial Theory Ser. B, 16:106-123, 1974.
- [4] Richard Addison Gibbs. Self-Complementary graphs: Their stuctural properties and adjacency matrices. ProQuest LLC, Ann Arbor, MI, 1970. Thesis (Ph.D.)–Michigan State University.
- [5] F. Harary. Graph Theory. Addison Wesley, Academic Press, 1969.
- [6] John W. Kennedy. The degree sequences of self-complementary graphs. *Graph Theory Notes* N. Y., 52:60–65, 2007.
- [7] Prameela Kolake. New Aspects of Domination and Self Complementation in Graphs. PhD thesis, NITK, Surathkal, 2014.
- [8] Robert Molina. On the structure of self-complementary graphs. In *Proceedings of the Twenty-fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994)*, volume 102, pages 155–159, 1994.
- [9] P.S. Nair. Construction of self-complementary graphs. Discrete Mathematics, 175:283-285, 1997.
- [10] E. Sampathkumar and L. Pushpalatha. Complement of a graph: A generalization. *Graphs and Combinatorics*, 14:377–392, 1998.
- [11] E. Sampathkumar, L. Pushpalatha, C.V. Venkatachalam, and Pradeep Bhat. Generalized complements of a graph. *Indian Journal of Pure and Applied Mathematics*, 29(6):625–639, 1998.
- [12] D.B. West. Introduction to Graph Theory. Prentice Hall of India, New Delhi, 2003.
- [13] A. Pawel Wojda, Mariusz Wozniak, and Irmina A. Ziolo. On self-complementary cyclic packing of forests. *The electronic journal of combinatorics*, 14:1–11, 2007.
- [14] Guo Cheng Zu and Zhen Rong Zhou. The structure of degree-sequences of self-complementary graphs. *Natur. Sci. J. Harbin Normal Univ.*, 5(3):22–25, 1989.

(Received:19 July, 2022) Kiran Kiggal Udayashankar

(Revised: 14 January, 2023) Maharani's Science College for Women (Autonomous), Mysuru

Department: Electronics

Maharani's Science College for Women (Autonomous)

Mysuru - 570 005, Karnataka, INDIA

e-mail: kirangsch@gmail.com

and

Prameela Kolake

Alva's Institute of Engineering and Technology, Moodbidri

Department: Mathematics

Alva's Institute of Engineering and Technology

Moodbidri, Shobhavana Campus Mijar - 574 225, Karnataka, INDIA

e-mail: prameela.kolake@gmail.com