ON BORNOLOGICAL SPACES OF SERIES IN SYSTEMS OF FUNCTIONS

MYROSLAV SHEREMETA

ABSTRACT. Let f be an entire transcendental function, $M_f(r) = \max\{|f(z)| : |z| = r\}$, (λ_n) be a sequence of positive numbers increasing to $+\infty$ and suppose that the series $A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z)$ regularly converges in \mathbb{C} , i. e. $\sum_{n=1}^{\infty} |a_n| M_f(r\lambda_n) < +\infty$ for all $r \in [0, +\infty)$. Bornology is introduced on a set of such series as a system of functions $f(\lambda_n z)$ and its connection with Frechet spaces is studied.

1. Introduction

Let $\Lambda = (\lambda_n)$ be a sequence of positive numbers increasing to $+\infty$,

$$f(z) = \sum_{k=0}^{\infty} f_k z^k \tag{1.1}$$

DOI: 10.5644/SJM.20.02.07

be an entire transcendental function and $M_f(r) = \max\{|f(z)| : |z| = r\}$. Suppose that the series

$$A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z)$$
 (1.2)

in the system $f(\lambda_n z)$ regularly converges in \mathbb{C} , i. e. for all $r \in [0, +\infty)$

$$\mathfrak{M}(r,A) := \sum_{n=1}^{\infty} |a_n| M_f(r\lambda_n) < +\infty.$$
 (1.3)

Many authors have studied the representation of analytic functions by series in the system $f(\lambda_n z)$. We will focus here on the monographs of A.F. Leont'ev [1] and B.V. Vinnitsky [8], where references to other works can be found.

Since series (1.2) regularly converges in \mathbb{C} , the function A is entire. We remark that the function $\ln M_f(r)$ is logarithmically convex and, therefore,

$$\Gamma_f(r) := \frac{d \ln M_f(r)}{d \ln r} \nearrow +\infty, \quad r \to +\infty,$$

(in points where the derivative does not exist, $\frac{d \ln M_f(r)}{d \ln r}$ denotes the Wright-hand derivative).

²⁰²⁰ Mathematics Subject Classification. 30B50, 30D10, 30D20.

Key words and phrases. entire function, regularly converging series, bornology, Frechet space.

We remark also that if $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$, then [5] series (1.2) regularly converges in $\mathbb C$ if and only if

$$\lim_{n \to \infty} \frac{1}{\lambda_n} M_f^{-1} \left(\frac{1}{|a_n|} \right) = +\infty, \tag{1.4}$$

where $M_f^{-1}(x)$ is the function inverse to $M_f(r)$.

The growth of entire functions given by regularly convergent series (1.2) was studied in articles [5], [6] and [7]. In addition, in [7] the belonging of the entire functions (1.2) to a certain Banach space is investigated. For entire functions of a finite generalized order the belonging to the Frechet space is investigated in [7].

In the second half of the last century, the concept of bornological space appeared (see, for example, [2], [3] and [4]). Here we will define bornology on the set $\mathfrak A$ of all entire functions represented by series (1.2) regularly converging in $\mathbb C$ and prove some of its properties. Clearly, $\mathfrak A$ is vector space.

2. Bornology on A

A bornology on a set X is a family $\mathfrak B$ of subsets of X such that: a) $X = \bigcup_{B \in \mathfrak B} B$; b) if $A \subset \mathfrak B$ and $B \subset A$ then $B \subset \mathfrak B$; c) if $A \subset \mathfrak B$ and $B \subset \mathfrak B$ then $A \cup B \subset \mathfrak B$. A pair $(X,\mathfrak B)$ is called a *bornological* space, and the elements of $\mathfrak B$ are called the bounded subset of X.

A *base* of a bornology \mathfrak{B} on X is any subfamily \mathfrak{B}_0 of \mathfrak{B} such that every element of \mathfrak{B} is contained in an element of \mathfrak{B}_0 . A family \mathfrak{B}_0 of subsets of X is a base for a bornology \mathfrak{B} on X if and only if $X = \bigcup_{B \in \mathfrak{B}_0} B$ and every finite union of element of \mathfrak{B}_0

is contained in a member of \mathfrak{B}_0 . Then the collection of these subsets of X, which are contained in an element of \mathfrak{B}_0 , defines a bornology \mathfrak{B} on X having \mathfrak{B}_0 as a base. A bornology is said to be a bornology with a *countable* base if it possesses a countable base $\mathfrak{B}_0 = \{B_n\}_{n=1}^{\infty}$.

For a vector space E over the complex field \mathbb{C} , a bornology \mathfrak{B} on E is said to be a vector bornology on E if \mathfrak{B} is stable under vector addition, homothetic transformations and the formation of circled hulls, i. e. the sets A + B, λA , $\bigcup_{|\eta| < 1} \eta A$ belong to

 \mathfrak{B} , whenever A and B belong to \mathfrak{B} and $\lambda \in \mathbb{C}$. A pair (E, \mathfrak{B}) is called a bornological vector space.

A vector bornology on E is called a *convex vector bornology* if it is stable under the formation of convex hulls. Such a bornology is also stable under the formation of disked hulls, since the convex hull of a circled set is circled. A bornological vector space (E, \mathfrak{B}) whose bornology \mathfrak{B} is convex is called a *convex bornological vector space*.

A separated bornological vector space (E, \mathfrak{B}) is one where $\{0\}$ is the only bounded vector subspace of E.

Suppose that $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$. In view of (1.4)

$$\exp\left\{-\frac{1}{\lambda_n}M_f^{-1}\left(\frac{1}{|a_n|}\right)\right\}\to 0, \quad n\to\infty,$$

and therefore, there exists

$$\gamma(A) = \sup_{n \ge 1} \exp \left\{ -\frac{1}{\lambda_n} M_f^{-1} \left(\frac{1}{|a_n|} \right) \right\}.$$

Note that $M_f^{-1}(x)$ can be < 0 on $(0,x_0]$ (for example, if $M_f(r) = e^r$, $M_f^{-1}(x) = \ln x < 0$ for 0 < x < 1). Thus, $\gamma(A)$ can be a sufficiently large positive number. Therefore, we denote

$$B_k = \left\{ A \in \mathfrak{A} : \gamma(A) \le k \right\} = \left\{ A \in \mathfrak{A} : \sup_{n \ge 1} \exp \left\{ -\frac{1}{\lambda_n} M_f^{-1} \left(\frac{1}{|a_n|} \right) \right\} \le k \right\}, \quad k \in \mathbb{N}.$$

Then $B_k \subset B_{k+1}$ and for every $A \in \mathfrak{A}$ there exists $k \in \mathbb{N}$ such that $A \in B_k$. Thus, the family $\mathfrak{B}_0 = \{B_k : k = 1, 2, ...\}$ forms a base for a bornology \mathfrak{B} on \mathfrak{A} .

Theorem 2.1. If $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$, then $(\mathfrak{A}, \mathfrak{B})$ is a separated convex bornological vector space with a countable base.

Proof. Since the vector bornology \mathfrak{B} on the vector space \mathfrak{A} is stable under the formation of the convex hulls, it is a convex vector bornology. Hence it follows that $(\mathfrak{A},\mathfrak{B})$ is a convex bornological vector space.

To show that $\{0\}$ is the only bounded vector subspaces on \mathfrak{A} , we must show that \mathfrak{A} contains no bounded open set.

Let $U(\varepsilon) = \{A \in \mathfrak{A} : \gamma(A) < \varepsilon\}$. It is enough to show that no $U(\varepsilon)$ is bounded, that is given $U(\varepsilon)$ there exists $U(\eta)$, for which there is no c > 0 such that $U(\varepsilon) \subset cU(\eta)$. Since $\Gamma_f(r) \nearrow +\infty$ as $r \to +\infty$, for every $\varepsilon > 0$ we have

$$\begin{split} \frac{M_f\left(\lambda_n\ln\left(4/\epsilon\right)\right)}{M_f\left(\lambda_n\ln\left(2/\epsilon\right)\right)} &= \exp\left\{\ln M_f\left(\lambda_n\ln\frac{4}{\epsilon}\right) - \ln M_f\left(\lambda_n\ln\frac{2}{\epsilon}\right)\right\} \\ &= \exp\left\{\int\limits_{\lambda_n\ln\left(2/\epsilon\right)}^{\lambda_n\ln\left(4/\epsilon\right)} \frac{d\ln M_f(x)}{d\ln x} d\ln x\right\} = \exp\left\{\int\limits_{\lambda_n\ln\left(2/\epsilon\right)}^{\lambda_n\ln\left(4/\epsilon\right)} \Gamma_f(x) d\ln x\right\} \\ &\geq \Gamma_f(\lambda_n\ln\left(2/\epsilon\right)) \ln\frac{\ln\left(4/\epsilon\right)}{\ln\left(2/\epsilon\right)} \to +\infty, \quad n \to \infty. \end{split}$$

Therefore, for any c > 0 we can choose $m \in \mathbb{N}$ such that for $\eta = \varepsilon/4$

$$c < \frac{M_f\left(\lambda_n \ln\left(4/\epsilon\right)\right)}{M_f\left(\lambda_n \ln\left(2/\epsilon\right)\right)} = \frac{M_f\left(\lambda_m \ln\left(1/\eta\right)\right)}{M_f\left(\lambda_m \ln\left(2/\epsilon\right)\right)}.$$

Now we put $a_m = \frac{1}{M_f(\lambda_m \ln(2/\epsilon))}$ and consider a function $A_m(z) = a_m f(\lambda_m z)$. Then

$$\gamma(A_m) = \exp\left\{-\frac{1}{\lambda_m}M_f^{-1}\left(\frac{1}{|a_m|}\right)\right\} = \varepsilon/2 < \varepsilon.$$

On the other hand, for every c > 0

$$\begin{split} \gamma(A_m/c) &= \exp\left\{-\frac{1}{\lambda_m} M_f^{-1} \left(\frac{c}{|a_m|}\right)\right\} \\ &> \exp\left\{-\frac{1}{\lambda_m} M_f^{-1} \left(\frac{M_f \left(\lambda_m \ln\left(1/\eta\right)\right)}{|a_m| M_f \left(\lambda_m \ln\left(2/\varepsilon\right)\right)}\right)\right\} = \eta \end{split}$$

must hold, that is $A_m(z)/c$ does not belong to $U(\eta)$, i. e. $A_m(z)$ does not belong to $cU(\eta)$. This indicates that $U(\varepsilon)$ is not bounded. Thus, $\{0\}$ is the only bounded vector subspace on $\mathfrak A$ and $(\mathfrak A,\mathfrak B)$ is a separated vector space.

Finally, since $\mathfrak B$ possesses a base consisting of an increasing sequence of bounded sets, $(\mathfrak A, \mathfrak B)$ is a bornological vector space with a countable base. Theorem 2.1 is proved.

3. BORNOLOGY AND FRECHET SPACES

For $q \in \mathbb{N}$ we define

$$||A||_q = \sum_{n=1}^{\infty} |a_n| M_f(q\lambda_n).$$
 (3.1)

It is easily seen that, for every q > 0, $||A||_q$ defines a norm on the set of series (1.2) regularly convergent in \mathbb{C} . Let \mathfrak{B}_q be the bornology on $(\mathfrak{A}, ||\cdot||_q)$ consisting of the sets bounded in the sense of the norm $||\cdot||_q$.

Proposition 3.1. $\bigcup_{q\geq 1} \mathfrak{B}_q \subset \mathfrak{B}.$

Indeed, if $A \in \mathfrak{B}_q$ for $q \geq 1$, then $\sum_{n=1}^{\infty} |a_n| M_f(q\lambda_n) \leq Q < +\infty$, whence $|a_n| \leq Q/M_f(q\lambda_n)$ for all $n \geq 1$ and, thus,

$$\exp\left\{-\frac{1}{\lambda_n}M_f^{-1}\left(\frac{1}{|a_n|}\right)\right\} \le \exp\left\{-\frac{1}{\lambda_n}M_f^{-1}\left(\frac{M_f\left(q\lambda_n\right)}{Q}\right)\right\} =$$

$$= \exp\left\{-(1+o(1))q\right\}, \quad n \to \infty,$$

because $M_f^{-1}(x)$ is a slowly increasing function. Hence it follows that $\gamma(A) \leq k$, i. e. $A \in B_k$ for some k and, thus, $\bigcup_{q \geq 1} \mathfrak{B}_q \subset \mathfrak{B}$.

Conjecture 3.1. *If*
$$\ln n = o(\Gamma_f(\lambda_n))$$
 as $n \to \infty$, then $\bigcup_{q \ge 1} \mathfrak{B}_q = \mathfrak{B}$.

The family $||A||_q$: $q \in \mathbb{N}$ induces on \mathfrak{A} a unique topology given by the metric d, where

$$d(A_1, A_2) = \sum_{q=1}^{\infty} \frac{1}{2^q} \frac{||A_1 - A_2||_q}{1 + ||A_1 - A_2||_q}.$$
 (3.2)

The space with the metric d we denote by \mathfrak{A}_d .

Theorem 3.1. If $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$, then \mathfrak{A}_d is a Frechet space.

Proof. It is sufficient to show that \mathfrak{A}_d is complete. Let (A_j) be a d-Cauchy sequence in \mathfrak{A}_d and so for a given $\varepsilon > 0$ there corresponds a $m = m(\varepsilon)$ such that $||A_j - A_k||_q < \varepsilon$ for all $j, k \ge m$ and $q \in \mathbb{N}$; consequently for these j, k and each $q \ge 1$ we have

$$\sum_{n=1}^{\infty} |a_n^{(j)} - a_n^{(k)}| M_f(q\lambda_n) < \varepsilon, \tag{3.3}$$

i. e. $|a_n^{(j)} - a_n^{(k)}| < \varepsilon$ and $(a_n^{(j)})_{j \ge 1}$ is a Cauchy sequence. Therefore, $a_n^{(j)} \to a_n$ as $j \to \infty$. Letting $k \to \infty$ in (3.3) one has for $j \ge j_0$

$$\sum_{n=1}^{\infty} |a_n^{(j)} - a_n| M_f(q\lambda_n) < \varepsilon, \tag{3.4}$$

and consequently taking $j = j_0$ in (3.4) we get $\sum_{n=1}^{\infty} |a_n^{(j_0)} - a_n| M_f(q\lambda_n) < \varepsilon$ for a fixed

$$q$$
, i. e. $|a_n^{(j_0)} - a_n|M_f(q\lambda_n) < \varepsilon$.

Since
$$\lim_{n\to\infty} \frac{1}{\lambda_n} M_f^{-1}\left(\frac{1}{|a_n^{(j_0)}|}\right) = +\infty$$
, for every $K > q$ and all $n \ge n_0(K)$ we have

 $|a_n^{(j_0)}| \le 1/M_f(K\lambda_n)$. Using this inequality we obtain

$$|a_n|M_f(q\lambda_n) \le |a_n^{(j_0)}|M_f(q\lambda_n) + \varepsilon \le \frac{M_f(q\lambda_n)}{M_f(K\lambda_n)} + \varepsilon \le 2\varepsilon$$

i.e.

$$\underline{\lim_{n\to\infty}}\frac{1}{\lambda_n}M_f^{-1}\left(\frac{1}{|a_n|}\right)\geq \underline{\lim_{n\to\infty}}\frac{1}{\lambda_n}M_f^{-1}\left(\frac{M_f(q\lambda_n)}{2\varepsilon}\right)=q,$$

because $M_f^{-1}(x)$ is a slowly increasing function, whence in view of the arbitrariness of q it follows that series (1.2) with such coefficients a_n regularly converges in $\mathbb C$ and, thus, using (3.4), again we see that $||A_j - A||_q < \varepsilon$ for $j \ge j_0$ and the result is proved.

For \mathfrak{A}_d by \mathfrak{A}_d^* we denote the dual space, i. e. \mathfrak{A}_d^* is the family of all continuous linear functionals L(A) on \mathfrak{A}_d .

Theorem 3.2. If $\ln n = o(\Gamma_f(\lambda_n))$ as $n \to \infty$, then the continuous linear functional L on \mathfrak{A}_d is of the form

$$L(A) = \sum_{n=1}^{\infty} a_n g_n, \quad A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z),$$
 (3.5)

if and only if for all $n \in \mathbb{N}$ *and* $q \in \mathbb{N}$.

$$|g_n| \le QM_f(q\lambda_n), \quad Q = const > 0.$$
 (3.6)

Proof. Let $L \in \mathfrak{A}_d^*$, then clearly if $A_m \to A$ in \mathfrak{A}_d , then $L(A_m) \to L(A)$.

Now let $A_m(s) = \sum_{n=1}^m a_n f(z\lambda_n)$. Then we claim that $A_m \to A$ in \mathfrak{A}_d (observe that $A_m \in \mathfrak{A}_d$). To ascertain this, it is sufficient to prove that $A_m \to A$ under the norm $||\cdot||_q$ for every $q \in \mathbb{N}$.

So let q be a fixed integer. Choose K > q. Then as above we can determine an integer $m = m(\varepsilon)$ such that $|a_n| \le 1/M_f(K\lambda_n)$ for $n \ge m+1$, and it follows from above that

$$||A_m - A||_q = ||\sum_{n=m+1}^{\infty} a_n f(z\lambda_n)||_q = \sum_{n=m+1}^{\infty} |a_n| M_f(q\lambda_n)) \le \sum_{n=m+1}^{\infty} \frac{M_f(q\lambda_n)}{M_f(K\lambda_n)} \to 0, \ m \to \infty,$$

and this ascertains our claim. From that and the continuity of L, we have $\lim_{m\to\infty} L(A_m) = L(A)$ in the topology given by d.

Note that $L(A_m) = \sum_{n=1}^m d_n g_n$, where $g_n = L(f(z\lambda_n))$ for each n. Since L is continuous on $(\mathfrak{A}_d, ||\cdot||_q)$, there exists a Q > 0 such that $|g_n| = |L(f(z\lambda_n))| \le Q||f(z\lambda_n)||_q$ for each $q \in \mathbb{N}$ and so, using the definition of the norm $||f(z\lambda_n)||_q$, we get (3.6). To prove the other part, let now g_n satisfy (3.6). Then

$$|L(A)| \le Q \sum_{n=1}^{\infty} |a_n| M_f(q\lambda_n), \quad q \in \mathbb{N},$$

and hence $|L(A)| \leq Q||A||_q$ for all $q \in \mathbb{N}$. Therefore, $L \in (\mathfrak{A}_d, ||\cdot||_q)^*$ for all $q \in \mathbb{N}$. Since $\mathfrak{A}_d^* = \bigcup_{q \geq 1} (\mathfrak{A}_d, ||\cdot||_q)^*$, we get $L \in \mathfrak{A}_d^*$. Theorem 3.2 is proved.

REFERENCES

- [1] A.F. Leont'ev, Generalizations of exponential series (in Russian), M.: Nauka, 1981.
- [2] H. Nogbe-Nlend, Theorie des Bornologies et Applications, Lecture Notes. Springer-verlag, Berlin, 1971, no. 213.
- [3] M.D. Patwardhan, *Study on bornological properties of the spaces of integral functions*, Indian J. Pure Appl. Math. **12** (1981), no. 7, 865-873.
- [4] Ja.V. Radyno, *Linear Equations and Bornology* (in Russian), Minsk: BSU publishing house, 1982
- [5] M.M. Sheremeta, Spaces of series in system of functions, Mat. Stud. 59 (2023), no. 1, 46-59.
- [6] M.M. Sheremeta, *Relative growth of series in system functions and Laplace-Stieltjes type integrals*, Axioms. **10** (2021), no. 2, 43.
- [7] M.M. Sheremeta, On the growth of series in systems of functions and Laplace-Stieltjes integrals, Mat. Stud. 55 (2021), no. 2, 124-131.
- [8] B.V. Vinnitsky, Some approximation properties of generalized systems of exponentials (in Russian), Drogobych, 1991. Dep. in UkrNIINTI 25.02.1991.

(Received: October 11, 2023) (Revised: November 20, 2023) Myroslav Sheremeta Ivan Franko Nat. Univ. of Lviv 79001, Lviv, Universytetska str., 1 Ukraine e-mail: m.m.sheremeta@gmail.com