A FAMILY OF HYBRID MAPPINGS AND THEIR FIXED POINT IN CONVEX SPACES UNDER DIAMETRAL δ DISTANCES

DOI: 10.5644/SJM.20.02.10

LADLAY KHAN

ABSTRACT. We prove some results on coincidence and common fixed points for compatible as well as pointwise R-weakly commuting mappings satisfying a generalized contraction condition on a complete metrically convex metric space that generalize relevant results due to Čirič and Ume [3], Khan [13, 14], Rhoades [19] and others

1. Introduction

So far, there have been many extensions and generalizations of well known fixed point theorems for multi-valued mappings. Many researchers like Assad [1], Assad and Kirk [2], Čirič and Ume [3], Itoh [10] and others extended fixed point theorems to a more general class of multi-valued mappings while in 1996, Rhoades [19] obtained a generalization of Itoh's fixed point theorem on multi-valued mappings for non-self setting. In this sequence, Huang and Cho [7] proved a common fixed point theorem for sequences of nonself multi-valued mappings in metrically convex metric space. After this wonderful result, many authors applying the same pattern and proved fixed point theorems for a sequence of multi-valued mappings. To mention a few we cite Imdad and Khan ([8], [9]) Khan ([13], [14]) and Khan and Imdad [15] etc.

The purpose of this paper is to prove some coincidence and common fixed point theorems for a sequence of multi-valued and a pair of single valued nonself mappings using diametral delta distance satisfying certain contraction condition. Our result generalizes and extends earlier results due to Khan [13, 14], Rhoades [19], Čirič and Ume [3], Khan and Imdad [15] and others.

2. Preliminaries

Now, we collect some relevant definitions and results. Let (X,d) be a metric space. Then following Nadler [17], we recall (1) $CB(X) = \{A : A \text{ is nonempty closed and bounded subset of } X\}$.

²⁰²⁰ Mathematics Subject Classification. 49J40, 47H10, 47H17.

Key words and phrases. Metrically convex metric space; Occasionally coincidentally commuting mappings; Compatible mappings; Pointwise *R*-weakly commuting mappings.

(2) For nonempty subsets A, B of X and $x \in X$,

$$d(x,A) = \inf\{d(x,a) : a \in A\}, \ D(A,B) = \inf\{d(a,b) : a \in A, b \in B\},$$
$$H(A,B) = \max\{\sup d(a,B) : a \in A, \sup d(A,b) : b \in B\}$$

and
$$d(A,B) = \sup \{d(a,b) : a \in A, b \in B\}.$$

Notice that $D(A,B) \le H(A,B) \le \delta(A,B)$, it is well known (cf.Kuratowski [12]) that CB(X) is a metric space with the distance function H which is known as the Hausdorff-Pompeiu metric on X.

Definition 2.1. ([9]) Let K be a nonempty subset of a metric space (X,d), $T:K \to X$ and $F:K \to CB(X)$. The pair (F,T) is said to be pointwise R-weakly commuting on K if for a given $x \in K$ and $Tx \in K$, there exists some R = R(x) > 0 such that

$$d(Ty,FTx) \le R \ d(Tx,Fx) \ for \ each \ y \in F(x) \cap K.$$
 (2.1)

Moreover, the pair (F,T) will be called R-weakly commuting on K if for each $x \in K, Tx \in K$ and (2.1) holds for some R > 0.

If R = 1, we get the definition of weak commutativity of (F, T) on K due to Had \hat{z} ić and Gajić [6]. If $F, T : X \to X$ then Definition 2.1 reduces respectively to pointwise R-weak commutativity and R-weak commutativity for single valued self mappings due to Pant [18].

Definition 2.2. ([5],[6]) Let K be a nonempty subset of a metric space (X,d), T: $K \to X$ and $F: K \to CB(X)$. The pair (F,T) is said to be weakly commuting (cf.[6]) if for every $x, y \in K$ with $x \in Fy$ and $Ty \in K$, we have

$$d(Tx, FTy) \le d(Ty, Fy),$$

whereas the pair (F,T) is said to be compatible (cf.[5]) if for every sequence $\{x_n\} \subset K$ and from the relation

$$\lim_{n\to\infty}d(Fx_n,Tx_n)=0$$

and $Tx_n \in K$ (for every $n \in \mathbb{N}$) it follows that $\lim_{n \to \infty} d(Ty_n, FTx_n) = 0$, for every sequence $\{y_n\} \subset K$ such that $y_n \in Fx_n, n \in \mathbb{N}$.

For hybrid pairs of self type mappings these definitions were introduced by Kaneko and Sessa [11].

Definition 2.3. ([8]) Let K be a nonempty subset of a metric space (X,d), $T:K \to X$ and $F:K \to CB(X)$. The pair (F,T) is said to be quasi-coincidentally commuting if for all coincidence points 'x' of (F,T), $T(Fx) \subset F(Tx)$ whenever $Fx \subset K$ and $Tx \in K$ for all $x \in K$.

Definition 2.4. ([15]) A mapping $T: K \to X$ is said to be occasionally coincidentally idempotent w.r.t mapping $F: K \to CB(X)$, if there exists a point $z \in K$ such that T is idempotent at the coincidence points of the pair (F,T).

Definition 2.5. ([16]) A metric space (X,d) is said to be metrically convex if for any $x, y \in X$ with $x \neq y$ there exists a point $z \in X, x \neq z \neq y$ such that

$$d(x,z) + d(z,y) = d(x,y).$$

Lemma 2.1. ([4]) Let $\{A_n\}$ and $\{B_n\}$ be two sequences in CB(X) converging in CB(X) to the sets A and B respectively. Then

$$\lim_{n\to\infty}\delta(A_n,B_n)=\delta(A,B).$$

3. MAIN RESULTS

Theorem 3.1. Let (X,d) be a complete metrically convex metric space and K be a nonempty closed subset of X. Let $\{F_n\}_{n=1}^{\infty}: K \to CB(X) \text{ and } S, T: K \to X \text{ satisfy the conditions:}$

- (1) $\delta K \subseteq SK \cap TK, F_i(K) \cap K \subseteq SK, F_i(K) \cap K \subseteq TK$,
- (2) $Tx \in \delta K \Rightarrow F_i(x) \subseteq K, Sx \in \delta K \Rightarrow F_i(x) \subseteq K, and$

$$\delta(F_i(x), F_j(y)) \le \alpha \ d(Tx, Sy) + \beta \ max\{d(Tx, F_i(x)), d(Sy, F_j(y))\}$$

+ $\gamma \ max\{d(Tx, F_i(x)) + d(Sy, F_j(y)), d(Tx, F_j(y)) + d(Sy, F_i(x))\}$ (3.1)

where i = 2n - 1, j = 2n, $(n \in \mathbb{N})$, $i \neq j$ for all $x, y \in X$ with $x \neq y$, where $\alpha, \beta, \gamma \geq 0$, such that $\alpha + 2\beta + 3\gamma + \alpha\gamma < 1$,

- (3) (F_i,T) and (F_i,S) are compatible pairs,
- (4) $\{F_n\}$, T and S are continuous on K.

Then $\{F_n\}$, T and S have a common coincidence point.

Proof. First, we proceed to construct two sequences $\{x_n\}$ and $\{y_n\}$ in the following way. Let $x \in \partial K$. Then since $\partial K \subseteq TK$ there exists a point $x_0 \in K$ such that $x = Tx_0$. From $Tx \in \partial K \Rightarrow F_i(x) \subseteq K$, one concludes that $F_1(x_0) \subseteq F_1(K) \cap K \subseteq SK$. Let $x_1 \in K$ be such that $y_1 = Sx_1 \in F_1(x_0) \subseteq K$. Since $y_1 \in F_1(x_0)$, there exists a point $y_2 \in F_2(x_1)$ such that

$$d(y_1, y_2) \leq \delta(F_1(x_0), F_2(x_1)).$$

Suppose $y_2 \in K$. Then $y_2 \in F_2(K) \cap K \subseteq TK$, which implies that there exists a point $x_2 \in K$ such that $y_2 = Tx_2$. Otherwise, if $y_2 \notin K$, then there exists a point $p \in \partial K$ such that

$$d(Sx_1, p) + d(p, y_2) = d(Sx_1, y_2).$$

Since $p \in \partial K \subseteq TK$, there exists a point $x_2 \in K$ such that $p = Tx_2$ and so

$$d(Sx_1, Tx_2) + d(Tx_2, y_2) = d(Sx_1, y_2).$$

Let $y_3 \in F_3(x_2)$ be such that $d(y_2, y_3) \le \delta(F_2(x_1), F_3(x_2))$.

Thus, repeating the foregoing arguments, one obtains two sequences $\{x_n\}$ and $\{y_n\}$ such that

(1) $y_{2n} \in F_{2n}(x_{2n-1})$, for all $n \in \mathbb{N}$, $y_{2n+1} \in F_{2n+1}(x_{2n})$ for all $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$,

(2)
$$y_{2n} \in K \Rightarrow y_{2n} = Tx_{2n} \text{ or } y_{2n} \notin K \Rightarrow Tx_{2n} \in \partial K$$
, and

$$d(Sx_{2n-1}, Tx_{2n}) + d(Tx_{2n}, y_{2n}) = d(Sx_{2n-1}, y_{2n})$$

(3)
$$y_{2n+1} \in K \Rightarrow y_{2n+1} = Sx_{2n+1} \text{ or } y_{2n+1} \notin K \Rightarrow Sx_{2n+1} \in \partial K$$
, and
$$d(Tx_{2n}, Sx_{2n+1}) + d(Sx_{2n+1}, y_{2n+1}) = d(Tx_{2n}, y_{2n+1})$$

We denote

$$P_{\circ} = \{Tx_{2i} \in \{Tx_{2n}\} : Tx_{2i} = y_{2i}\}, P_{1} = \{Tx_{2i} \in \{Tx_{2n}\} : Tx_{2i} \neq y_{2i}\},$$

$$Q_{\circ} = \{Sx_{2i+1} \in \{Sx_{2n+1}\} : Sx_{2i+1} = y_{2i+1}\} \text{ and }$$

$$Q_{1} = \{Sx_{2i+1} \in \{Sx_{2n+1}\} : Sx_{2i+1} \neq y_{2i+1}\}.$$

We note that $(Tx_{2n}, Sx_{2n+1}) \notin P_1 \times Q_1$ and $(Sx_{2n-1}, Tx_{2n}) \notin Q_1 \times P_1$. Now we distinguish the following three cases.

Case 3.1. If
$$(Tx_{2n}, Sx_{2n+1}) \in P_{\circ} \times Q_{\circ}$$
, then

$$\begin{split} d(Tx_{2n},Sx_{2n+1}) &\leq \delta(F_{2n+1}(x_{2n}),F_{2n}(x_{2n-1})) \\ &\leq \alpha \ d(Tx_{2n},Sx_{2n-1}) + \beta \ \max\{d(Tx_{2n},F_{2n+1}(x_{2n})),d(Sx_{2n-1},F_{2n}(x_{2n-1}))\} \\ &+ \gamma \ \max\{d(Tx_{2n},F_{2n+1}(x_{2n})) + d(Sx_{2n-1},F_{2n}(x_{2n-1})),d(Tx_{2n},F_{2n}(x_{2n-1})) \\ &+ d(Sx_{2n-1},F_{2n+1}(x_{2n}))\} \\ &\leq \alpha \ d(y_{2n-1},y_{2n}) + \beta \ \max\{d(y_{2n},y_{2n+1}),d(y_{2n-1},y_{2n})\} \\ &+ \gamma \ \max\{d(y_{2n},y_{2n+1}) + d(y_{2n-1},y_{2n}),d(y_{2n-1},y_{2n+1})\} \\ &\leq \alpha \ d(y_{2n-1},y_{2n}) + \beta \ \max\{d(y_{2n-1},y_{2n}),d(y_{2n},y_{2n+1})\} \\ &+ \gamma \ \{d(y_{2n-1},y_{2n}) + d(y_{2n},y_{2n+1})\} \end{split}$$

$$d(Tx_{2n}, Sx_{2n+1}) \le (\alpha + \gamma) d(y_{2n-1}, y_{2n}) + \beta \max\{d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\} + \gamma d(y_{2n}, y_{2n+1}).$$
(3.2)

If we suppose that $d(y_{2n-1}, y_{2n}) \le d(y_{2n}, y_{2n+1})$, then we obtain

$$d(Tx_{2n}, Sx_{2n+1}) \le (\alpha + \beta + 2\gamma) d(y_{2n}, y_{2n+1})$$

which is a contradiction. Therefore from (3.2) we obtain

$$d(Tx_{2n}, Sx_{2n+1}) \le (\alpha + \beta + \gamma) d(y_{2n}, y_{2n-1}) + \gamma d(y_{2n}, y_{2n+1})$$

which in turn yields

$$d(Tx_{2n}, Sx_{2n+1}) \le \left(\frac{\alpha + \beta + \gamma}{1 - \gamma}\right) d(Sx_{2n-1}, Tx_{2n})$$
(3.3)

Similarly if $(Sx_{2n-1}, Tx_{2n}) \in Q_{\circ} \times P_{\circ}$, then

$$d(Sx_{2n-1}, Tx_{2n}) \le \left(\frac{\alpha + \beta + \gamma}{1 - \gamma}\right) d(Sx_{2n-1}, Tx_{2n-2})$$
(3.4)

Case 3.2. If $(Tx_{2n}, Sx_{2n+1}) \in P_{\circ} \times Q_1$, then

$$d(Tx_{2n}, Sx_{2n+1}) + d(Sx_{2n+1}, y_{2n+1}) = d(Tx_{2n}, y_{2n+1})$$

which in turn yields

$$d(Tx_{2n}, Sx_{2n+1}) \le d(Tx_{2n}, y_{2n+1}) = d(y_{2n}, y_{2n+1})$$

and hence

$$d(Tx_{2n},Sx_{2n+1}) \le d(y_{2n},y_{2n+1}) \le \delta(F_{2n+1}(x_{2n}),F_{2n}(x_{2n-1})).$$

Now, proceeding as in Case 1, we have

$$d(Tx_{2n},Sx_{2n+1}) \leq \left(\frac{\alpha+\beta+\gamma}{1-\gamma}\right) d(Sx_{2n-1},Tx_{2n}).$$

If $(Sx_{2n-1}, Tx_{2n}) \in Q_1 \times P_{\circ}$, then as earlier, we also obtain

$$d(Sx_{2n-1},Tx_{2n}) \leq \left(\frac{\alpha+\beta+\gamma}{1-\gamma}\right) d(Sx_{2n-1},Tx_{2n-2}).$$

Case 3.3. If $(Tx_{2n}, Sx_{2n+1}) \in P_1 \times Q_0$, then $Sx_{2n-1} = y_{2n-1}$. As in Case 1, we get

$$\begin{split} d(Tx_{2n},Sx_{2n+1}) &= d(Tx_{2n},y_{2n+1}) \leq \{d(Tx_{2n},y_{2n}) + d(y_{2n},y_{2n+1})\} \\ &\leq d(Tx_{2n},y_{2n}) + d(y_{2n},y_{2n+1}) \\ &\leq d(Tx_{2n},y_{2n}) + \delta(F_{2n+1}(x_{2n}),F_{2n}(x_{2n-1})) \\ &\leq d(Tx_{2n},y_{2n}) + \alpha \ d(Tx_{2n},Sx_{2n-1}) \\ &+ \beta \ \max\{d(Tx_{2n},y_{2n+1}),d(y_{2n-1},y_{2n})\} + \gamma \ \max\{d(Tx_{2n},y_{2n+1}) + d(y_{2n-1},y_{2n}),d(Tx_{2n},y_{2n}) + d(Sx_{2n-1},Sx_{2n+1})\}. \end{split}$$

Since $\alpha < 1$ and $d(Tx_{2n}, y_{2n}) + d(Tx_{2n}, Sx_{2n-1}) = d(Sx_{2n-1}, y_{2n})$ we obtain

$$d(Tx_{2n}, y_{2n}) + \alpha d(Tx_{2n}, Sx_{2n-1}) \le d(Sx_{2n-1}, y_{2n}).$$

Also, by the triangle inequality we obtain

$$d(Tx_{2n}, y_{2n}) + d(Sx_{2n-1}, Sx_{2n+1}) \le d(Tx_{2n}, y_{2n}) + d(Sx_{2n-1}, Tx_{2n}) + d(Tx_{2n}, Sx_{2n+1})$$

$$\le d(Sx_{2n-1}, y_{2n}) + d(Tx_{2n}, Sx_{2n+1}).$$

Therefore

$$d(Tx_{2n}, Sx_{2n+1}) \le d(Sx_{2n-1}, y_{2n}) + \beta \max\{d(Tx_{2n}, y_{2n+1}), d(y_{2n-1}, y_{2n})\} + \gamma \{d(Sx_{2n-1}, y_{2n}) + d(Tx_{2n}, y_{2n+1})\}.$$

If $d(Tx_{2n}, y_{2n+1}) \ge d(y_{2n-1}, y_{2n})$, then we obtain

$$d(Tx_{2n}, Sx_{2n+1}) \le \left(\frac{1+\gamma}{1-\beta-\gamma}\right) d(Sx_{2n-1}, y_{2n}).$$

Otherwise, if $d(Tx_{2n}, y_{2n+1}) \le d(y_{2n-1}, y_{2n})$, then

$$d(Tx_{2n}, Sx_{2n+1}) \le \left(\frac{1+\beta+\gamma}{1-\gamma}\right) d(Sx_{2n-1}, y_{2n}) \le \left(\frac{1+\gamma}{1-\beta-\gamma}\right) d(Sx_{2n-1}, y_{2n}).$$

Now, proceeding as earlier, we also obtain

$$d(Sx_{2n-1}, y_{2n}) \le \left(\frac{\alpha + \beta + \gamma}{1 - \gamma}\right) d(Sx_{2n-1}, Tx_{2n-2}).$$

Therefore combining the above inequalities, we have

$$d(Tx_{2n},Sx_{2n+1}) \le kd(Sx_{2n-1},Tx_{2n-2}), \text{ where } k = \left(\frac{1+\gamma}{1-\beta-\gamma}\right)\left(\frac{\alpha+\beta+\gamma}{1-\gamma}\right).$$

Thus in all the cases, we have

$$d(Tx_{2n}, Sx_{2n+1}) \le k \max \left\{ d(Sx_{2n-1}, Tx_{2n}), d(Tx_{2n-2}, Sx_{2n-1}) \right\}$$
(3.5)

whereas

$$d(Sx_{2n+1}, Tx_{2n+2}) \le k \max \{d(Sx_{2n-1}, Tx_{2n}), d(Tx_{2n}, Sx_{2n+1})\}.$$
 (3.6)

Now in the lines of Assad and Kirk [2], it can be shown by induction that for $n \ge 1$, we have

$$d(Tx_{2n}, Sx_{2n+1}) \le k^n q$$
 and $d(Sx_{2n+1}, Tx_{2n+2}) \le k^{n+\frac{1}{2}}q$, whereas $q = k^{\frac{-1}{2}} \max \{d(Tx_0, Sx_1), d(Sx_1, Tx_2)\}.$

Thus the sequence $\{Tx_0, Sx_1, Tx_2, Sx_3, ..., Sx_{2n-1}, Tx_{2n}, Sx_{2n+1}, ...\}$ is Cauchy and hence converges to the point z in X. Then as noted in [5] there exists at least one subsequence $\{Tx_{2n_k}\}$ or $\{Sx_{2n_k+1}\}$ which is contained in P_\circ or Q_\circ respectively. Suppose that there exists a subsequence $\{Tx_{2n_k}\}$ which is contained in P_\circ for each $k \in \mathbb{N}$, that also converges to z. Using compatibility of (F_i, S) , we have

$$\lim_{k\to\infty} d(Sx_{2n_k-1}, F_j(x_{2n_k-1})) = 0 \text{ for any even integer } j\in \mathbf{N},$$

which implies that $\lim_{k\to\infty} d(STx_{2n_k}, F_j(Sx_{2n_k-1})) = 0.$

Using the continuity of S and F_j , one obtains $Sz \in F_j(z)$ for any even integer $j \in \mathbb{N}$. Similarly the continuity of T and F_i implies $Tz \in F_i(z)$ for any odd integer $i \in \mathbb{N}$. Now

$$\begin{split} d(Tz, Sz) &\leq \delta(F_i(z), F_j(z)) \\ &\leq \alpha \ d(Tz, Sz) + \beta \ \max\{d(Tz, F_i(z)), d(Sz, F_j(z))\} \\ &+ \gamma \ \max\{d(Tz, F_j(z)) + d(Sz, F_i(z)), d(Tz, F_i(z)) + d(Sz, F_j(z))\} \\ &\leq 2\gamma \ d(Tz, Sz) \end{split}$$

implying thereby Tz = Sz. Thus z is a common coincidence point of $\{F_n\}$, S and T.

If one assumes that there exists a subsequence $\{Sx_{2n_k+1}\}$ contained in Q_0 , then the foregoing arguments establish the earlier conclusions. This completes the proof. \Box

Remark 3.1. By setting $F_i = F_j = F$ for all (i and j), $S = T = I_K$, $\beta = 0 = \gamma$ and δ distance is replaced by Hausdorff distance H in Theorem 3.1, and we deduce a theorem due to Khan [13].

Remark 3.2. If δ distance is replaced by Hausdorff distance H in Theorem 3.1, we deduce a theorem due to Khan [14].

Remark 3.3. Theorem 3.1 remains true if we utilize the pointwise R- weak commutative condition.

In the next theorem we utilize the closedness of TK and SK (or $F_i(K)$ and $F_j(K)$) to relax the continuity requirements besides minimizing the commutativity requirements to merely coincidence points.

Theorem 3.2. Let (X,d) be a metrically convex metric space and K be a nonempty closed subset of X. Let $F_n: K \to CB(X)$ and $S,T: K \to X$ satisfy (3.1) and the conditions (1) and (2) of the Theorem 3.1. Suppose that

- (1) TK and SK (or $F_i(K)$ and $F_j(K)$) are closed subspaces of X. Then
- (2) the pair (F_i, S) as well as (F_i, T) has a point of coincidence.

Moreover, (F_i,T) has a common fixed point if T is quasi-coincidentally commuting and occasionally coincidentally idempotent w.r.t F_i , whereas (F_j,S) has a common fixed point provided S is quasi-coincidentally commuting and occasionally coincidentally idempotent w.r.t F_i .

Proof. Proceeding as in Theorem 3.1, we assume that there exists a subsequence $\{Tx_{2n_k}\}$ which is contained in P_\circ and TK as well as SK are closed subspaces of X. Since $\{Tx_{2n_k}\}$ is Cauchy in TK, it converges to a point $u \in TK$. Let $v \in T^{-1}u$, then Tv = u. Since $\{Sx_{2n_k+1}\}$ is a subsequence of a Cauchy sequence, $\{Sx_{2n_k+1}\}$ converges to u as well. Using (3.1) we can write

$$\begin{split} d(F_i(v), Tx_{2n_k}) &\leq \delta(F_i(v), F_j(x_{2n_k-1})) \\ &\leq \alpha \ d(Tv, Sx_{2n_k-1}) + \beta \ \max\{d(Sx_{2n_k-1}, F_j(x_{2n_k-1})), d(Tv, F_i(v))\} \\ &+ \gamma \ \max\{d(Sx_{2n_k-1}, F_j(x_{2n_k-1})) + d(Tv, F_i(v)), \end{split}$$

 $d(Tv, F_j(x_{2n_k-1})) + d(Sx_{2n_k-1}, F_i(v))$ which on letting $k \to \infty$, reduces to

$$d(F_i(v), u) \le \beta \max\{d(u, F_i(v)), 0\} + \gamma \max\{d(F_i(v), u), d(F_i(v), u)\}$$

$$\le (\beta + \gamma) d(u, F_i(v))$$

yielding thereby $u \in F_i(v)$, which implies that $u = Tv \in F_i(v)$ as $F_i(v)$ is closed.

Since the Cauchy sequence $\{Tx_{2n_k}\}$ converges to $u \in K$ and $u \in F_i(v)$, $u \in F_i(K) \cap K \subseteq SK$, there exists $w \in K$ such that Sw = u. Again using (3.1) we get

$$\begin{split} d(Sw, F_{j}(w)) &= d(Tv, F_{j}(w)) \leq \delta(F_{i}(v), F_{j}(w)) \\ &\leq \alpha d(Tv, Sw) + \beta \max\{d(Tv, F_{i}(v)), d(Sw, F_{j}(w))\} \\ &+ \gamma \max\{d(Tv, F_{i}(v)) + d(Sw, F_{j}(w)), d(Tv, F_{j}(w)) + d(Sw, F_{i}(v))\} \\ &\leq (\alpha + \beta + \gamma) d(Sw, F_{j}(w)) \end{split}$$

implying thereby $Sw \in F_i(w)$, that is w is a coincidence point of (S, F_i) .

In case $F_i(K)$ and $F_j(K)$ are closed subspaces, then $u \in F_i(K) \cap K \subseteq SK$ or $F_j(K) \cap K \subseteq TK$. The analogous arguments establish the desired conclusions. If we assume that there exists a subsequence $\{Sx_{2n_k+1}\}$ contained in Q_o with TK as well as SK closed subspaces of X, then noting that $\{Sx_{2n_k+1}\}$ is Cauchy in SK, the foregoing arguments establish that $Tz \in F_i(z)$ and $Sw \in F_j(w)$.

Since v is a coincidence point of (F_i, T) using the quasi-coincidentally commuting property of (F_i, T) and occasionally coincidentally idempotent property of T w.r.t F_i we have

$$Tv \in F_i(v)$$
 and $u = Tv \Rightarrow Tu = TTv = Tv = u$.

Therefore $u = Tu = TTv \in TF_i(v) \subset F_i(Tv) = F_i(u)$, which shows that u is the common fixed point of (F_i, T) . Similarly using the quasi-coincidentally commuting property of (F_j, S) and occasionally coincidentally idempotent property of S w.r.t F_j we can show that (F_j, S) has a common fixed point as well. This completes the proof.

Remark 3.4. Theorem 3.2 remains true if we substitute closedness of 'TK and SK' with closedness of ' $F_i(K)$ ' and $F_i(K)$ '.

Remark 3.5. By setting $F_i = F_j = F$ for all (i and j), $S = T = I_K$, $\beta = 0 = \gamma$ and if δ distance is replaced by Hausdorff distance H in Theorem 3.2, we deduce a theorem due to Assad and Kirk [2].

Remark 3.6. By setting $F_i = F$ for all i, $F_j = G$ for all j, $S = T = I_K$ and if δ distance is replaced by Hausdorff distance H in Theorem 3.2, we deduce a theorem due to Ćirić and Ume [3].

Remark 3.7. By setting $F_i = F_j = F$ for all (i and j), $S = T = I_K$ and if δ distance is replaced by Hausdorff distance H in Theorem 3.2, we deduce a theorem due to Rhoades [19].

Remark 3.8. We can prove a theorem when the 'closedness of K' is replaced by' compactness of K'.

ACKNOWLEDGEMENT

The author is grateful to the learned referees for their fruitful suggestions for the improvement of the manuscript.

REFERENCES

- [1] N. A. Assad, Fixed point theorems for set-valued transformations on compact sets, Boll. Un Mat. Ital., (4) 1973.
- [2] N. A. Assad and W. A. Kirk, Fixed point theorems for set valued mappings of contractive type, Pacific J. Math., 43(3) 1972.
- [3] Lj. B. Ćirić and J. S. Ume, Multi-valued non-self mappings on convex metric spaces, Nonlinear Analysis, (60) 2005.
- [4] B. Fisher, Common fixed point and contraction mappings satisfying a rational inequality, Math. Sem. Notes, (6) 1978.
- [5] O. Had²ić, On coincidence points in convex metric spaces, Univ. U. Novom Sadu, Zb. Rad. Prirod. Mat. Fak. Ser. Mat., 19(2) 1986.
- [6] O. Had²ić and Lj. Gajić, Coincidence points for set-valued mappings in convex metric spaces, Univ. U. Novom Sadu, Zb. Rad. Prirod. Mat. Fak. Ser. Mat., 16(1) 1986.
- [7] N. J. Huang and Y. J. Cho, Common fixed point theorems for a sequence of set-valued mappings, Korean J. Math. Sci., (4) 1997.
- [8] M. Imdad and L. Khan, *Rhoades type fixed point theorems for two hybrid pairs of mappings in metrically convex spaces*, Nonlinear Analysis Hybrid Systems, (4) 2010.
- [9] M. Imdad and L. Khan, Fixed point theorems for a family of hybrid pairs of mappings in metrically convex spaces, Fixed Point Theory Appl., (3) 2005.
- [10] S. Itoh, Multi-valued generalized contractions and fixed point theorems, Comment. Math. Univ. Carolinae, (18) 1977.
- [11] H. Kaneko and S. Sessa, Fixed point theorems for compatible multi-valued and single-valued mappings, Internat. J. Math. Math. Sci., 12(2) 1989.
- [12] K. Kuratowski, *Topology*, Academic Press, (1) 1966.
- [13] L. Khan, Hybrid pairs of nonself multi-valued mappings in metrically convex metric spaces, Global Journal of Pure and Applied Mathematics, 14(11) 2018.
- [14] L. Khan, *Hybrid pairs of nonself multi-valued mappings in metrically convex spaces*, Southeast Asian Bulletin of Mathematics, (46) 2022.
- [15] L. Khan and M. Imdad, Rhoades type fixed point theorems for two hybrid pairs of mappings in metrically convex spaces, Applied Math. Computation, (218) 2012.
- [16] K. Menger, Untersuchungen tiber allgemeine, Math. Annalen, (100) 1928.
- [17] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30(2) 1969.
- [18] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl., (188) 1994.
- [19] B. E. Rhoades, *A fixed point theorem for a multivalued nonself mapping*, Comment. Math. Univ. Carolinae, 37(2) 1996.

(Received: November 27, 2021) (Revised: October 22, 2024) Ladlay Khan Magadh University, Bodhgaya, Department of Mathematics, Mirza Ghalib College, Gaya, Bihar India

e-mail: kladlay@gmail.com