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ABSTRACT. We investigate global dynamics of the equation

xn+1 =
xn−1+F

ax2
n+ f

, n= 0,1,2, ...,

where the parametersa,F and f are positive numbers and the initial conditions
x−1,x0 are arbitrary nonnegative numbers such thatx−1+x0 > 0. The existence
and local stability of the unique positive equilibrium are analyzed algebraically.
We characterize the global dynamics of this equation with the basins of attraction
of its equilibrium point and periodic solutions.

1. INTRODUCTION AND PRELIMINARIES

We investigate global behavior of the equation

xn+1 =
xn−1+F
ax2

n+ f
, n= 0,1,2. . . , (1.1)

where parametersa, f andF are positive numbers and the initial conditionsx−1,x0

are arbitrary nonnegative numbers. For Equation (1.1) we will precisely define the
basins of attraction of all attractors, which consist of theequilibrium point, period-
two solution and points at infinity. The special case of Equation (1.1), whereF = 0,

xn+1 =
xn−1

ax2
n+ f

(1.2)

were studied in detail in [8]. The presence of parameterF in the Equation (1.1) ex-
cludes a scenario of coexistence of infinite number nonhyperbolic minimal-period
two solutions which is possible in Equation (1.2) for some values of parameters.
Both equations, (1.1) and (1.2), are special cases of equation

xn+1 =
Ax2

n+Exn−1+F
ax2

n+exn−1+ f
, n= 0,1,2, ... (1.3)
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which was considered in [7]. The global asymptotic stability results were obtained
in [7] for several special cases of Equation (1.3), where theright-hand side does not
change its monotonicity. Some special second order quadratic fractional difference
equations have been considered in the series of papers, see [1, 2, 5, 6, 11, 12, 16,
17]. Also, several global asymptotic results for some special cases of a general
second order quadratic fractional difference equation were obtained in [9,10]. Our
investigation of the global character of Equation (1.1) will be based on the theory
of competitive systems and difference inequalities.
We will use the following theorem for a general second order difference equation

xn+1 = f (xn,xn−1) , n= 0,1,2, ..., (1.4)

see [4].

Theorem 1.1. Let [a,b] be an interval of real numbers and assume that f: [a,b]×
[a,b]→ [a,b] is a continuous function satisfying the following properties:

(a) f (x,y) is non-increasing in first and non-decreasing in second variable.
(b) Equation (1.4) has no minimal period-two solutions in[a,b].

Then every solution of Equation (1.4) converges tox.

Theorem 1.2. Let T be a competitive map on a rectangular regionR ⊂ R
2. Let

x∈R be a fixed point of T such that∆ := R ∩ int (Q1(x)∪Q3(x)) is nonempty (i.e.,
x is not the NW or SE vertex ofR ), and T is strongly competitive on∆. Suppose
that the following statements are true.

a. The map T has a C1 extension to a neighborhood ofx.
b. The Jacobian JT(x) of T atx has real eigenvaluesλ, µ such that0< |λ|< µ,

where|λ|< 1, and the eigenspace Eλ associated withλ is not a coordinate axis.
Then there exists a curveC ⊂ R throughx that is invariant and a subset of the

basin of attraction ofx, such thatC is tangential to the eigenspace Eλ at x, and
C is the graph of a strictly increasing continuous function ofthe first coordinate
on an interval. Any endpoints ofC in the interior ofR are either fixed points or
minimal period-two points. In the latter case, the set of endpoints ofC is a minimal
period-two orbit of T .

For maps that are strongly competitive near the fixed point, hypothesis b. of
Theorem 1.2 reduces just to|λ| < 1. Also, one can show that in such case no
associated eigenvector is aligned with a coordinate axis.

Theorem 1.3. (A) Assume the hypotheses of Theorem 1.2, and letC be the curve
whose existence is guaranteed by Theorem 1.2. If the endpoints ofC belong to∂R ,
thenC separatesR into two connected components, namely

W− := {x∈ R \C : ∃y∈ C with x �sey} and
W+ := {x∈ R \C : ∃y∈ C with y�sex} , (1.5)

such that the following statements are true.
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(i) W− is invariant, anddist(Tn(x),Q2(x))→ 0 as n→ ∞ for every x∈ W−.
(ii) W+ is invariant, anddist(Tn(x),Q4(x))→ 0 as n→ ∞ for every x∈ W+.
(B) If, in addition to the hypotheses of part (A),x is an interior point ofR

and T is C2 and strongly competitive in a neighborhood ofx, then T has
no periodic points in the boundary of Q1(x)∪Q3(x) except forx, and the
following statements are true.

(ii) For every x∈W− there exists n0 ∈N such that Tn(x)∈ intQ2(x) for n≥ n0.
(iv) For every x∈W+ there exists n0 ∈N such that Tn(x)∈ intQ4(x) for n≥ n0.

If T is a map on a setR and if x is a fixed point ofT, the stable setW s(x) of x
is the set{x∈ R : Tn(x)→ x} and unstable setW u(x) of x is the set

{

x∈ R : there exists{xn}0
n=−∞ ⊂ R s.t.

T(xn) = xn+1, x0 = x, and limn→−∞ xn = x } .
WhenT is non-invertible, the setW s(x) may not be connected and made up of
infinitely many curves, orW u(x) may not be a manifold. The following result
gives a description of the stable and unstable sets of a saddle point of a competitive
map. If the map is a diffeomorphism onR , the setsW s(x) andW u(x) are actually
the global stable and unstable manifolds ofx.

Remark1.1. We say thatf (u,v) is strongly decreasing in the first argument and
strongly increasing in the second argument if it is differentiable and has first partial
derivativeD1 f negative and first partial derivativeD2 f positive in a considered set.
The connection between the theory of monotone maps and the asymptotic behavior
of Equation (1.4) follows from the fact that iff is strongly decreasing in the first
argument and strongly increasing in the second argument, then the second iterate of
a map associated to Equation (1.4) is a strictly competitivemap onI × I , see [14].

Next result is one of the basic results on difference equation inequalities which
we will use in this paper.

Theorem 1.4. [3] Let n ∈ N+
n0

and g(n,u,v) be a nondecreasing function in u and
v for any fixed n. Suppose that for n≥ n0, the inequalities

yn+1 ≤ g(n,yn,yn−1) (1.6)

un+1 ≥ g(n,un,un−1) (1.7)

hold. Then
yn0−1 ≤ un0−1, yn0 ≤ un0

implies that
yn ≤ un n≥ n0.

The rest of this paper is organized as follows. The second section presents the
local stability of the unique positive equilibrium solution. The third section gives
conditions for existence of the minimal period-two solution and its local stability.
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The fourth section presents global dynamics in certain regions of the parametric
space.

2. LOCAL STABILITY ANALYSIS

In this section, we present the local stability of the uniquepositive equilibrium of
Equation (1.1). The equilibrium points of Equation (1.1) are the positive solutions
of the equation

x=
x+F

ax2+ f
,

i.e.
ax3+( f −1)x−F = 0. (2.1)

We will denote the left side of the previous relation by

G(x) = ax3+( f −1)x−F.

Then it holds

G′(x) = 3ax2+ f −1 and

G′(x) = 0⇔ x± =±
√

1− f
3a

.

SinceG(−∞) =−∞,G(0) =−F, andG(+∞) = +∞, by using the above relations,
it implies that there exists unique positive equilibrium point x.

Next result uses standard local stability analysis, see [12] and [13].
Let

p=
∂ f
∂u

(x,x) and q=
∂ f
∂v

(x,x)

denote the partial derivatives off (u,v) evaluated at the equilibriumx of Equation
(1.4). Then the equation

yn+1 = pyn+qyn−1, n= 0,1, . . . (2.2)

is called the linearized equation associated with Equation(1.4) about the equilib-
rium pointx.

Proposition 2.1. (a) If both roots of the quadratic equation

λ2− pλ−q= 0 (2.3)

lie in the open unit disk|λ|< 1, then the equilibriumx of Equation(1.4) is locally
asymptotically stable.
(b) If at least one of the roots of Equation(2.3) has absolute value greater than
one, then the equilibriumx of Equation(1.4) is unstable.
(c) A necessary and sufficient condition for both roots of Equation (2.3) to lie in
the open unit disk|λ|< 1, is

|p|< 1−q< 2. (2.4)
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In this case the locally asymptotically stable equilibriumx is also called a sink.
(d) A necessary and sufficient condition for both roots of Equation (2.3) to have
absolute value greater than one is

|q|> 1 and |p|< |1−q|.
In this casex is a repeller.
(e) A necessary and sufficient condition for one root of Equation (2.3) to have
absolute value greater than one and for the other to have absolute value less than
one is

p2+4q> 0 and |p|> |1−q|.
In this case the unstable equilibriumx is called a saddle point.
(f) A necessary and sufficient condition for a root of Equation (2.3)to have absolute
value equal to one is

|p|= |1−q| or (q=−1 i |p| ≤ 2).

In this case the equilibriumx is called a nonhyperbolic point.

Now, we prove the following lemma.

Lemma 2.1.
(1) If f > 1, then the unique equilibrium pointx of Equation (1.1) is:

i) ]locally asymptotically stable if2( f −1)
√

a( f −1)−aF > 0,
ii) a nonhyperbolic point if2( f −1)

√

a( f −1)−aF = 0,
iii) a saddle point if2( f −1)

√

a( f −1)−aF < 0.
(2) If f ≤ 1, then the unique equilibrium pointx of Equation (1.1) is a saddle point.

Proof. Denote as

H(u,v) =
v+F

au2+ f
.

Then we have

p= H ′
u(x) =

−2ax(x+F)

(ax2+ f )2
, q=−H ′

v(x) =
−1

ax2+ f
< 0,

and

p−1−q=
−2ax(x+F)

(ax2+ f )2
−1+

1

ax2+ f
=

−3ax2+1− f

ax2+ f
=− G′(x)

ax2+ f
,

p+1+q=
−ax2+ f −1

ax2+ f
.

Since the functionG(x) is increasing when it passes through the equilibrium point
x, that isG′(x) > 0, so it impliesp−1−q< 0. Hence, we need to determine the
sign of the termp+1+q. Since the denominator is obviously positive, the sign of
the expression depends on the sign of the numerator.
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−ax2+ f −1 = 0⇒ x± =±
√

f −1
a

.

1. Let f > 1. Since

2a( f −1)
√

a( f −1)−a2F > 0⇔ G(x+)> 0⇔ x< x+ ⇒ p+1+q> 0,

the unique equilibrium pointx is locally asymptotically stable. Analogously,

2a( f −1)
√

a( f −1)−a2F = 0⇔ G(x+) = 0⇔ x= x+ ⇒ p+1+q= 0,

which implies that the equilibrium point is nonhyperbolic.Finally, if

2a( f −1)
√

a( f −1)−a2F < 0⇔ G(x+)< 0⇔ x> x+ ⇒ p+1+q< 0,

which implies that the equilibrium point is a saddle point.

2. If f ≤ 1, thenp+q+1= −ax2+ f−1
ax2+ f

< 0 and the statement is true. �

3. PERIOD-TWO SOLUTIONS

Now we present results about existence and local stability of minimal period-
two solutions of Equation (1.1).

Theorem 3.1. Assume that f> 1. If aF2−4( f −1)3 > 0, then Equation(1.1)has
a minimal period-two solution

{φ,ψ,φ,ψ, ...} and{ψ,φ,ψ,φ...} (3.1)
where

φ =
aF−

√

a2F2−4a( f −1)3

2a( f −1)
,ψ =

aF+
√

a2F2−4a( f −1)3

2a( f −1)
, (3.2)

which is locally asymtotically stable.

Proof. Suppose that there exists a minimal period-two solution{φ,ψ,φ,ψ, ...} of
Equation (1.1), whereφ and ψ are distinct nonnegative real numbers such that
φ2+ψ2 6= 0. Then we have the following system:

φ = φ+F
aψ2+ f

ψ = ψ+F
aφ2+ f







⇔ aφψ2+ f φ = φ+F
aφ2ψ+ f ψ = ψ+F

}

(3.3)

which is equivalent to
(φ−ψ)( f −1−aφψ) = 0.

Sinceφ 6= ψ, we have that

φψ =
f −1

a
⇒ φ =

f −1
aψ

, f > 1. (3.4)

Substituting (3.4) in (3.3) we obtain

a

(

f −1
aψ

)2

ψ+ f ψ = ψ+F,
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i.e.
a( f −1)ψ2−aFψ+( f −1)2 = 0,

from which

ψ± =
aF±

√
D

2a( f −1)
andφ± =

f −1
a

2a( f −1)

aF±
√

D
=

2( f −1)2

aF±
√

D
,

whereD= a2F2−4a( f −1)3. One can prove thatψ± = φ∓. So if f > 1 andD> 0
there exists minimal period-two solution{ψ+,ψ−,ψ+,ψ−, ...} , whereψ− andψ+

are given by (3.2). By substitutionxn−1 = un, xn = vn, Equation (1.1) becomes the
system of equations

un+1 = vn,

vn+1 = un+F
av2

n+ f .
(3.5)

The mapT is of the form

T

(

u
v

)

=

(

v
h(u,v)

)

,

whereh(u,v) =
u+F

av2+ f
. The second iteration of the mapT is

T2
(

u
v

)

=

(

h(u,v)
h(v,h(u,v))

)

=

(

G(u,v)
H(u,v)

)

=





u+F
av2+ f

(v+F)(av2+ f )2

a(u+F)2+ f (av2+ f )2



 .

The Jacobian matrix of the mapT2 at the points(φ,ψ) is of the form

JT2 (φ,ψ) =

( ∂G
∂u (φ,ψ)

∂G
∂v (φ,ψ)

∂H
∂u (φ,ψ) ∂H

∂v (φ,ψ)

)

where
∂G
∂u

(φ,ψ) =
1

aΨ2+ f
,

∂G
∂v

(φ,ψ) =−(φ+F)2aψ
(aψ2+ f )2 =−φ(aψ2+ f )2aψ

(aψ2+ f )2 =− 2aφψ
aψ2+ f

,

∂H
∂u

(φ,ψ) = −
(ψ+F)2a φ+F

aψ2+ f
1

aψ2+ f
(

a
(

Φ+F
aψ2+ f

)2
+ f

)2 =−
2aΨ(aφ2+ f)φ(aψ2+ f) 1

(aψ2+ f)2

(

a(φ+F)2+ f(aψ2+ f)2

(aψ2+ f)2

)2

= −2aφψ(aφ2+ f)(aψ2+ f)
3

(aψ2+ f )4(aφ2+ f )4
=− 2aφψ

(aψ2+ f )(aφ2+ f ) ,

and

∂H
∂v

(φ,ψ) =
(

ah2(φ,ψ)+ f
)

− (ψ+F)2ah(φ,ψ)∂h
∂v (φ,ψ)

(ah2 (φ,ψ)+ f )2 =
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=
1

(ah2 (φ,ψ)+ f )2 +
(Ψ+F)2a φ+F

aψ2+ f
2aψ(φ+F)

(aψ2+ f )2

(aψ2+ f )4(aφ2+ f )2

(aψ2+ f )4

=
1

aφ2+ f
+

4a2φ2ψ2

(aΨ2+ f )(aΦ2+ f )

Now we have

TrJT2 = p = ∂G
∂u (Φ,Ψ)+ ∂H

∂v (Φ,Ψ) = 1
aΨ2+ f +

1
aΦ2+ f +

4a2Φ2Ψ2

(aΨ2+ f )(aΦ2+ f )

=
(4a2Φ2Ψ2+aΦ2+aΨ2+2 f)

(aΦ2+ f )(aΨ2+ f ) ,

and

DetJT2 = q = 1
aΨ2+ f

(

1
aΦ2+ f +

4a2Φ2Ψ2

(aΨ2+ f )(aΦ2+ f )

)

− 2aΦΨ
aΨ2+ f

(

2aΦΨ
(aΨ2+ f )(aΦ2+ f )

)

= 1
(aΦ2+ f )(aΨ2+ f ) .

Notice thatp> 0 andq< 1, so we just need to show thatp< 1+q.

p< 1+q ⇐⇒ 1
aΨ2+ f +

1
aΦ2+ f +

4a2Φ2Ψ2

(aΨ2+ f )(aΦ2+ f ) < 1+ 1
(aΦ2+ f )(aΨ2+ f )

⇐⇒ aΦ2+ f +aΨ2+ f +4a2Φ2Ψ2 <
(

aΦ2+ f
)(

aΨ2+ f
)

+1
⇐⇒ aΦ2 (1− f )+aΨ2 (1− f )− (1− f )2+3a2Φ2Ψ2 < 0

⇐⇒ a(1− f )(Φ2+Ψ2)− (1− f )2+3a2
(

f−1
a

)2
< 0

⇐⇒ (1− f )4a2F2−8a( f−1)3

4a( f−1)2 +2( f −1)2 < 0

⇐⇒ −a2F2+2a( f−1)3

a( f−1) +2( f −1)2 < 0

⇐⇒ a2F−4a( f−1)3

a(1− f ) < 0,

which is true sincef > 1 andD = a2F −4a( f −1)3 > 0. �

4. GLOBAL DYNAMICS

In this section, we present global dynamic results for Equation (1.1). Every
solution of Equation (1.1) satisfies

xn+1 ≤
xn−1

f
+

F
f
, n= 0,1, . . .

which in view of Theorem 1.4, means thatxn ≤ zn, n= 0,1, . . ., where{zn} sat-
isfy

zn+1 =
zn−1

f
+

F
f
. (4.1)

So we obtain thatxn ≤
F

f −1
if f > 1 since

zn =
F

f −1
+

C1√
f n +

(−1)nC2√
f n , n= 0,1, . . .



GLOBAL DYNAMICS OF CERTAIN NON-SYMMETRIC SECOND ORDER. . . 163

So, every solution of Equation (1.1) is bounded iff > 1 and in that case[L,U ] =
[0, F

f−1] is an invariant interval for solutions of the Equation (1.1).

Theorem 4.1. If f > 1 and D= a2F −4a( f −1)3 > 0 then there exist equilibrium
point x which is a saddle point and the minimal period-two solutiondefined by
(3.1) and (3.2) which is locally asymptotically stable. There exists a set C⊂ R=
[0,∞)× [0,∞) such that(x+,x+) ∈C, and Ws((x+,x+)) =C is an invariant subset
of the basin of attraction of(x+,x+). The set C is a graph of a strictly increasing
continuous function of the first variable on an interval and separates R into two
connected and invariant components W−(x+,x+) and W+(x+,x+), which satisfy
that
(i) if (x−1,x0) ∈W+(x+,x+), then

lim
n→∞

x2n =
aF−

√

a2F2−4a( f −1)3

2a( f −1)

and

lim
n→∞

x2n+1 =
aF+

√

a2F2−4a( f −1)3

2a( f −1)
;

(ii) if (x−1,x0) ∈W−(x+,x+), then

lim
n→∞

x2n =
aF+

√

a2F2−4a( f −1)3

2a( f −1)

and

lim
n→∞

x2n+1 =
aF−

√

a2F2−4a( f −1)3

2a( f −1)
.

For visual representation see Figure 1.

FIGURE 1. Global dynamics of Equation(1.1) for f = 5, F = 12, a= 2
and inital conditions(x0,x−1) = (0.3,0.1) - red

and(x0,x−1) = (1.6,1.7) - green.



164 M. GARIĆ-DEMIROVIĆ, S. HRUSTÍC, AND S. MORANJKIĆ

Proof. It is clear that the point(x,x) and the period-two solutions(φ,ψ) and(ψ,φ)
are the equilibrium points of the mapT2. Since the mapT2 is competitive, by
Theorems 1.2 and 1.3, there exists a curveC through(x,x) that is invariant and a
subset of the basin of attraction of(x,x) andC is the graph of a strictly increasing
continuous function of the first coordinate on an interval. If (u0,v0) ∈ W+((x,x)),
then by Theorem 1.3,T2n(u0,v0) ∈ W+((x,x)), andT2n+1(u0,v0) ∈ W−((x,x) for
all n∈ {0,1,2, ...}. So we obtain that

lim
n→∞

T2n(u0,v0) = (ψ,φ) and lim
n→∞

T2n+1(u0,v0) = (φ,ψ) .

If (u0,v0) ∈ W−((x,x)), thenT2n(u0,v0) ∈ W−((x,x)) and
T2n+1(u0,v0) ∈ W+((x,x) for all n∈ {0,1,2, ...} which yields

lim
n→∞

T2n(u0,v0) = (φ,ψ) and lim
n→∞

T2n+1(u0,v0) = (ψ,φ) .

Consequently, if(x−1,x0) ∈ W+((x,x)), then

lim
n→∞

T2n(x−1,x0) = (ψ,φ) and lim
n→∞

T2n+1(x−1,x0) = (φ,ψ) ,

which means that lim
n→∞

x2n = φ and lim
n→∞

x2n+1 = ψ. If (x−1,x0) ∈ W−((x,x)), then

lim
n→∞

T2n(x−1,x0) = (ψ,φ) and lim
n→∞

T2n+1(x−1,x0) = (φ,ψ) ,

which means that lim
n→∞

x2n = ψ and lim
n→∞

x2n+1 = φ, where

φ =
aF−

√

a2F2−4a( f −1)3

2a( f −1)
andψ =

aF+
√

a2F2−4a( f −1)3

2a( f −1)
.

�

Theorem 4.2. If f > 1 and D≤ 0, then the unique equilibrium solution of Equation
(1.1) is globally asymptotically stable.

Proof. The proof follows from Theorems 1.1 and 3.1 and Lemma 2.1. �

Theorem 4.3. If f ≤ 1, then Equation(1.1)has a unique equilibrium pointx which
is a saddle point and has no minimal period-two solutions. There exists a set C
which is an invariant subset of the basin of attraction of(x,x). The set C is a
graph of a strictly increasing continuous function of the first variable on an interval
and separates R into two connected and invariant componentsW−(x+,x+) and
W+(x+,x+), which satisfy that

(i) (i) if (x−1,x0) ∈W−(x+,x+), then

lim
n→∞

x2n = ∞ and lim
n→∞

x2n+1 = 0;

(ii) (ii) if (x−1,x0) ∈W+(x+,x+), then

lim
n→∞

x2n = 0 and lim
n→∞

x2n+1 = ∞.
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See Figure 2. for visual representation.

FIGURE 2. Global dynamics of Equation(1.1)for f = 1, F = 0.15, a= 3
and inital conditions(x0,x−1) = (0.3,0.1) - red

and(x0,x−1) = (0.7,0.9) - green.
Proof. The point(x,x) is a saddle point for the strictly competitive mapT2 as well.
The existence of the setC with the stated properties follows from Lemma 2.1,
Theorems 1.2, 1.3 and 3.1. Equation (1.1) is equivalent to the system of difference
equations (3.5), which can be decomposed into the system of the even-indexed and
odd-indexed terms as follows:































u2n = v2n−1,

u2n+1 = v2n,

v2n =
u2n−1+F

av2
2n−1+ f

,

v2n+1 =
u2n+F

av2
2n+ f

.

(4.2)

Now, using (4.2) we obtain

i) if (u0,v0) ∈ W−, then

(u2n,v2n) = T2n((u0,v0))→ (0,∞)

and
(u2n+1,v2n+1) = T2n+1((u0,v0))→ (∞,0);

ii) if (u0,v0) ∈ W+, then

(u2n,v2n) = T2n((u0,v0))→ (∞,0)

and
(u2n+1,v2n+1) = T2n+1((u0,v0))→ (0,∞);

Consequently,
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i) if (x−1,x0) ∈ W−((x,x)), then
T2n((x−1,x0))→ (0,∞) andT2n+1((x−1,x0))→ (∞,0), that is

lim
n→∞

x2n = ∞ and lim
n→∞

x2n+1 = 0.

ii) if (x−1,x0) ∈ W+((x,x)), then
T2n+1((x−1,x0))→ (0,∞) andT2n((x−1,x0))→ (∞,0), that is

lim
n→∞

x2n = 0 and lim
n→∞

x2n+1 = ∞. �
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