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ABSTRACT. We investigate global dynamics of the equation
ai+f’
where the parameteessF and f are positive numbers and the initial conditions
X_1,Xg are arbitrary nonnegative numbers such that+ xo > 0. The existence
and local stability of the unique positive equilibrium arealyzed algebraically.

We characterize the global dynamics of this equation wigthidssins of attraction
of its equilibrium point and periodic solutions.

X1 = n:O,l,Z,...,

1. INTRODUCTION AND PRELIMINARIES

We investigate global behavior of the equation
 XpatF
where parametems f andF are positive numbers and the initial conditions , Xy
are arbitrary nonnegative numbers. For Equation (1.1) vilgovacisely define the
basins of attraction of all attractors, which consist ofélilibrium point, period-
two solution and points at infinity. The special case of Eigua{l.1), wherd= =0,

Xn—
Xni1= —m (1.2)

n=0,1,2..., (1.1)

were studied in detail in [8]. The presence of paramEtarthe Equation (1.1) ex-
cludes a scenario of coexistence of infinite number nonlgdier minimal-period
two solutions which is possible in Equation (1.2) for somkiga of parameters.
Both equations, (1.1) and (1.2), are special cases of equati

AR +Ex, 1+F
Xnt1 = 2 ;
axg+ex_1+f

n=0,1,2,... (1.3)
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which was considered in [7]. The global asymptotic stapiigsults were obtained
in [7] for several special cases of Equation (1.3), whergitifé-hand side does not
change its monotonicity. Some special second order quadirattional difference
equations have been considered in the series of papers]l,s&&][6,11, 12, 16,
17]. Also, several global asymptotic results for some spezases of a general
second order quadratic fractional difference equatiorevebtained in [9, 10]. Our
investigation of the global character of Equation (1.1) é based on the theory
of competitive systems and difference inequalities.

We will use the following theorem for a general second ordiéer@nce equation

Xn+1 = f(xn7xl"l—1)7 n:O, 1a2a"'7 (14)
see [4].

Theorem 1.1. Let[a,b] be an interval of real numbers and assume thataf b] x
[a,b] — [a,b] is a continuous function satisfying the following propesti

(@) f(x,y) is non-increasing in first and non-decreasing in secondalae.
(b) Equation (1.4) has no minimal period-two solutionganb].

Then every solution of Equation (1.4) convergeg.to

Theorem 1.2. Let T be a competitive map on a rectangular regi@n— R2. Let
X € R_be afixed point of T such thAt= R Nint (Q1(X)UQs(X)) is nonempty (i.e.,
X is not the NW or SE vertex &), and T is strongly competitive dn Suppose
that the following statements are true.

a. The map T has a'Gextension to a neighborhood xf

b. The Jacobiang(X) of T atx has real eigenvalues, p such thad < |A| <,
where|A| < 1, and the eigenspace’@ssociated with is not a coordinate axis.

Then there exists a curv@ C X throughX that is invariant and a subset of the
basin of attraction o, such thatC is tangential to the eigenspacé &t X, and
C is the graph of a strictly increasing continuous functiontfud first coordinate
on an interval. Any endpoints @f in the interior of ® are either fixed points or
minimal period-two points. In the latter case, the set off@idts ofC is a minimal
period-two orbit of T.

For maps that are strongly competitive near the fixed poippothesis b. of
Theorem 1.2 reduces just td| < 1. Also, one can show that in such case no
associated eigenvector is aligned with a coordinate axis.

Theorem 1.3. (A) Assume the hypotheses of Theorem 1.2, and ket the curve

whose existence is guaranteed by Theorem 1.2. If the enddifi belong tod R,

thenC separatesk into two connected components, namely
W_={xc R\ C:3yec Cwithx <scy} and
Wy ={xe R\ C:3Iye Cwithy=<seX},

such that the following statements are true.

(1.5)
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(i) W_isinvariant, anddist(T"(x),Q2(X)) — 0 as n— o for every xc W_.
(i) . is invariant, anddist(T"(x),Q4(X)) — 0 as n— o for every xe W,.
(B) If, in addition to the hypotheses of part (A),is an interior point of R,

and T is @ and strongly competitive in a neighborhoodxfthen T has
no periodic points in the boundary of;(X) U Qs(X) except forx, and the
following statements are true.

(i) Forevery xc - there exists fic N such that T'(x) € intQz(X) for n > no.
(iv) Foreveryxc W, there exists gic N such that T'(x) € int Q(X) for n> n.

If T isamap onaseR and ifX is a fixed point ofT, the stable set/5(X) of X
is the sef{x € R : T"(x) — X} and unstable set/’(X) of X is the set

{ x€ R :there existdxn}3- _., C R s.t.
T(X0) = Xne1, Xo =X, and limy__wx, =X }.

WhenT is non-invertible, the se?##/S(X) may not be connected and made up of
infinitely many curves, ofiW!(X) may not be a manifold. The following result
gives a description of the stable and unstable sets of aessaddit of a competitive
map. If the map is a diffeomorphism ), the setsiW/3(x) and W' (X) are actually
the global stable and unstable manifoldxof

Remarkl.1 We say thatf(u,v) is strongly decreasing in the first argument and
strongly increasing in the second argument if it is difféiedsle and has first partial
derivativeD; f negative and first partial derivatiig, f positive in a considered set.
The connection between the theory of monotone maps andyheéstic behavior

of Equation (1.4) follows from the fact that if is strongly decreasing in the first
argument and strongly increasing in the second argumeart ttie second iterate of
a map associated to Equation (1.4) is a strictly competitie@ onl x |, see [14].

Next result is one of the basic results on difference egoatiequalities which
we will use in this paper.

Theorem 1.4. [3] Letn € Ny and gn,u,v) be a nondecreasing function in u and
v for any fixed n. Suppose that foenng, the inequalities

Y1 < 9(N,Yn,Yn-1) (1.6)
Un+1 > g(n7 Un, ul’l—l) (17)
hold. Then
yl’lo—l < ul’lo—la Yno < Uno
implies that

ynSUn n = no.

The rest of this paper is organized as follows. The secontibsegresents the
local stability of the unique positive equilibrium solutioThe third section gives
conditions for existence of the minimal period-two solat@nd its local stability.
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The fourth section presents global dynamics in certainoregiof the parametric
space.

2. LOCAL STABILITY ANALYSIS

In this section, we present the local stability of the unipasitive equilibrium of
Equation (1.1). The equilibrium points of Equation (1.1¢ #re positive solutions
of the equation

_ X+F
o ax?+ f’
i.e.
aC+(f—1)x—F =0. (2.1)

We will denote the left side of the previous relation by
G(x) =ax + (f — 1)x—F.
Then it holds
G(x) = 3al+f-1and

[1—f
/ —_— —_—
G(x) = 0ex ==+ =

SinceG(—w) = —o0, G(0) = —F, andG(+) = 4, by using the above relations,
it implies that there exists unique positive equilibriunirg.
Next result uses standard local stability analysis, sepdi@ [13].
Let
of _ _ _of _
p_w(xvx) and q_m(xﬂ()
denote the partial derivatives 6fu,v) evaluated at the equilibrium of Equation
(1.4). Then the equation
Yn+1 = P¥n+0Q¥n-1, N=0,1,... (2.2)
is called the linearized equation associated with Equdtiof) about the equilib-
rium pointx.
Proposition 2.1. (a) If both roots of the quadratic equation
NM—pr—q=0 (2.3)

lie in the open unit disk\| < 1, then the equilibriunx of Equation(1.4)is locally
asymptotically stable.

(b) If at least one of the roots of Equatid8.3) has absolute value greater than
one, then the equilibriurk of Equation(1.4)is unstable.

(c) A necessary and sufficient condition for both roots ofdfigu (2.3) to lie in
the open unit disk\| < 1, is

lpl<l-qg<2 (2.4)
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In this case the locally asymptotically stable equilibrittris also called a sink.
(d) A necessary and sufficient condition for both roots of digm (2.3) to have
absolute value greater than one is

laf>1 and [p|/<|1—q.

In this casex is a repeller.
(e) A necessary and sufficient condition for one root of Eiquaf2.3) to have
absolute value greater than one and for the other to havelatswalue less than
one is

p’+49>0 and |p/>|1—q|.
In this case the unstable equilibriuris called a saddle point.
(f) A necessary and sufficient condition for a root of Equaf 3)to have absolute
value equal to one is

lpl=[1—q or (q=-1i|p/<2).
In this case the equilibriur® is called a nonhyperbolic point.

Now, we prove the following lemma.

Lemma2.1.
(1) If f > 1, then the unique equilibrium poitof Equation (1.1) is:
i) Jlocally asymptotically stable i2(f —1)\/a(f —1) —aF >0,
ii) anonhyperbolic pointi2(f —1) /a(f —1)—aF =0,
iii) a saddle pointi2(f —1)\/a(f —1)—aF <0.
(2) If f <1, then the unique equilibrium poirtof Equation (1.1) is a saddle point.

Proof. Denote as
v+F

H(u,v) = P
Then we have

. —2aX(X+F) _ -1
:H/X = —— 25 :—H/X — —/ & < 9
and

—2ax(X+F 1 —3axé+1-—f G/(X

b-1_q= _2( + )_lJr SN _2+ _ _2( ) ’
(ax? + f)2 ax® + f axc+ f axc+ f

_|_l_|_ —ﬂ'
P a= ax?+ f

Since the functior3(x) is increasing when it passes through the equilibrium point
X, that isG'(x) > 0, so it impliesp— 1—q < 0. Hence, we need to determine the
sign of the ternp+ 1+ g. Since the denominator is obviously positive, the sign of
the expression depends on the sign of the numerator.



160 M. GARIC-DEMIROVIC, S. HRUSTEC, AND S. MORANJKIC

—al+f-1 = O:Xi:i\/ff;l.

1. Letf > 1. Since

2a(f —1)\/a(f —1)—a’F >0 G(x.) >0 X<Xx, = p+1+9>0,
the unique equilibrium poirt is locally asymptotically stable. Analogously,

2a(f —1)y/a(f —1)—a’F =0 G(x, ) =0 X=X, = p+1+q=0,
which implies that the equilibrium point is nonhyperbolknally, if

2a(f —1)y/a(f —1)—a’F <0< G(x;) <0 X>x, = p+1+9<0,
which implies that the equilibrium point is a saddle point.

2. 1f f <1,thenp+q+1= %ﬂ‘l < 0 and the statement is true. O

3. PERIOD-TWO SOLUTIONS

Now we present results about existence and local stabilitpinimal period-
two solutions of Equation (1.1).

Theorem 3.1. Assume that £ 1. If aF? — 4(f — 1)3 > 0, then Equatior(1.1) has
a minimal period-two solution

{(p7lp7(p7l'|’l7"'} and{lp7(p7l'|’l’(p"'} (3'1)

where
_aF—/a&F?—4a(f—-1)3 = aF+./a&?F2—4a(f - 1)°
2a(f — 1) ' 2a(f — 1) '
which is locally asymtotically stable.

(3.2)

Proof. Suppose that there exists a minimal period-two solufieny, @, u, ...} of
Equation (1.1), wherep and ) are distinct nonnegative real numbers such that
@ +? # 0. Then we have the following system:

o= 2F 5
ap? app+ fo=0+F
o (3.3)
p— YiF aP+ fu=Y+F
a?+f

which is equivalent to
(@—w)(f —1-app) =0.
Since@ # Y, we have that

f—1 f—-1
CDlIJZ—a =@ = v > 1 (3.4)

Substituting (3.4) in (3.3) we obtain

f—1)2
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i.e.
a(f —1)Y?—aFyp+(f—1)2=0,
from which

2
We = aF +vD andg, — f—12a(f-1) _ 2(f—1) ’
2a(f —1) a aF+vD aF++vD
whereD = a?F2 —4a(f —1)3. One can prove thaji, = ¢@;. Soif f >1andD >0
there exists minimal period-two solutidy;,W_, W, Y_, ...}, where_ andy .
are given by (3.2). By substitutiox,_1 = un, X, = Vn, Equation (1.1) becomes the
system of equations

Un+1 = Vn,
V. _ uptF (35)
1l T Al

The mapT is of the form

(V)= (o)

u+F . The second iteration of the mdpis

av+ f

(2= (o )= (209)- (e, )

u+F)2+f(av+f)?

whereh(u,v) =

The Jacobian matrix of the ma at the pointg @, ) is of the form
% 0w %oy )
Few F(ew

0G 1

%((@q’]):awz_'_fv

aG ~ (e+F)2ap  gay?+f)2ap  2aqy
av (OW) = (ap2+ )2 (ap?+f)2  ay?+f’

o (o) = _(¢+F)2aa$§if atu21+f B _zaw(a(pz+f)¢(a¢2+f)(alu21+f)z

o _
” () ()

B 2<’:1(|>th(<’:1(|>2—~-f)(allJZ—&-f)3 - 200

(ap2+f)(ag+f)" (P +f)(agr+1)’

Jrz2 (@) = (

where

and
oH (alP(@.p) + ) — (+F)2ah(e y) 3 (o, )

o (W= (a2 (g, ) + f)?
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@+F 2ay(p+F)
1 (qJ+F)2aan2+f (ap2+1)?

+
(@ar (e.u) + f) (ay?+1)*(agp+ 1)

(a2+1)*
1 n 42 @P?
a4+ f o (aW2+ f) (a®2+ f)

Now we have
Tr,=p =L (@,W)+ % (o,W) =

(422D?W2+ad?+aw?42f)
(a®2+f)(aW2+¥) ’

1 + 1 + 4a2p2y?
awZ+f ' ad?+f | (aWe+f)(ad?+-f)

and

_ _ 1 1 42222 2ady 2ady
DetJrZ =aq = aw2+f (a¢2+f + (a'~P2+f)(a¢2+f)> o a$2+f ((aw2+?)(acb2+f)>
_ 1
~ (@) @2+ 1)
Notice thatp > 0 andg < 1, so we just need to show thak 1+ q.

141 42222 <1+ 1
aw?+f | a®?+f ' (aW?+f)(a®?+1) (ad2+f)(aW2+ )
— a®?+f+aW?+ f+4a202W2 < (a®?+ f) (aW?+ ) +1
ad?(1— f)+aw?(1—f)— (1— )2+ 320292 < 0

2
a(1—f)(cp2+w2)—(1—f)2+3a2(f-1) <0

<

— a
= (- f)REEA® | o 12 <0
<

<

22 4&”3_1)2
A 2(f-1)2<0
a’F—4a(f-1)3

a(l-f)

which is true sincef > 1 andD = aF —4a(f —1)® > 0. O

<0,

4. GLOBAL DYNAMICS

In this section, we present global dynamic results for Equafl.1). Every
solution of Equation (1.1) satisfies

_ F
Xﬂ+1§¥+?7 nzo,l,
which in view of Theorem 1.4, means that< z,, n=0,1,..., where{z,} sat-
isfy
Zn F
Zny1= Tl‘i‘T (4.1)

So we obtain that, < f%l if f>1since
_F C (=1)"C,
- f o 1 + \/—fn + \/—fn Y

Z, n=0,1,...
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So, every solution of Equation (1.1) is bounded it 1 and in that casf.,U] =
[0, +] is an invariant interval for solutions of the Equation (1.1)

Theorem 4.1. If f > 1and D= a?F —4a(f —1)® > O then there exist equilibrium
point X which is a saddle point and the minimal period-two soluta®iined by
(3.1) and (3.2) which is locally asymptotically stable. fehexists a set @ R=
[0,00) x [0,0) such that(X;,X,) € C, and W¥((X;,X.)) = C is an invariant subset
of the basin of attraction ofx,,X;). The set C is a graph of a strictly increasing
continuous function of the first variable on an interval arparates R into two
connected and invariant components &, ,X; ) and W, (X;,X, ), which satisfy
that

(i) if (x_1,%) € W, (%;,%;.), then

aF —\/a?F2—4a(f —1)3

N—oo 2a(f —1)
and y
: aF +/a2F2 —4a(f —1)3.
o Xan+1 = 2a(f—1) ’

(i) I (x_1,%) €W (X, %, ), then
. _ aF+/a?F2—4a(f —1)3
M, Xon = 2a(f —1)

and

. aF — \/a?F2—4a(f — 1)3
lim x =
noe 2t 2a(f—1)

For visual representation see Figure 1.

3np

(k]

0o

FIGURE 1. Global dynamics of Equatiail.1)for f =5 F =12, a=2
and inital conditiongXp,x_1) = (0.3,0.1) - red
and (xo,x-1) = (1.6,1.7) - green.
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Proof. Itis clear that the pointx,X) and the period-two solutior(g, @) and (Y, @)
are the equilibrium points of the maf?. Since the maT? is competitive, by
Theorems 1.2 and 1.3, there exists a cufvihrough(X,X) that is invariant and a
subset of the basin of attraction (€ X) and C is the graph of a strictly increasing
continuous function of the first coordinate on an intervalub,vp) € W, ((X,X)),
then by Theorem 1.32"(ug, Vo) € W, ((X,X)), and T2 (ug,vo) € W_((X,X) for
allne {0,1,2,...}. So we obtain that

lim T2"(Uo, Vo) = (Y, ¢) and ”mTan(Uo,Vo) =(y).

If (Uo,Vo) € W_((X,X)), thenT?"(ug, Vo) € W_((X,X)) and
T2 (ug,vo) € W, ((X,X) forallne {0,1,2,...} which yields

1im T2'(uo, vo) = (@.W) and ImT>"(uo,vo) = (. 9).
Consequently, ifx_1,%) € W, ((X,X)), then
im T2 (x_1,%0) = (@) and mT2™(x 1,%0) = (@ W),
which means thzi}JimZn =@and nimx2n+1 =Y. If (x_1,%) € W-((X,X)), then
im T2(x1,%0) = (,0) and imT?™(x_1,%) = (¢.).

which means that linxo, = @ and limxon.1 = @, where
n—-o0 n—o

_aF—./a?F2—4a(f —1)3
N 2a(f —1)

aF +/a2F2—4a(f — 1)3
2a(f —1)

andy =
O

Theorem 4.2. If f > 1and D< 0, then the unique equilibrium solution of Equation
(1.1)is globally asymptotically stable.

Proof. The proof follows from Theorems 1.1 and 3.1 and Lemma 2.1. O

Theorem 4.3. If f <1, then Equatior{1.1)has a unique equilibrium poimtwhich
is a saddle point and has no minimal period-two solutionserétexists a set C
which is an invariant subset of the basin of attraction(®fx). The set C is a
graph of a strictly increasing continuous function of thetfirariable on an interval
and separates R into two connected and invariant compon&n(x. ,x,) and
W, (X+,X; ), which satisfy that

() (i) if (_1,%0) € W (R, %y ), then

lim Xon = 0 and I|m 1 Xont1 = 0;
Nn—o0

(i) (il) if (x_1,%) € W, (X, %), then

lim xon =0 and lim Xon4+1 = .
n—oo n— oo
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See Figure 2. for visual representation.

B5E

o, n T n r
n.o o3 1.0 L5 p i)

FIGURE 2. Global dynamics of Equatiofi.1)for f =1, F =0.15,a=3
and inital conditiongXo,x_1) = (0.3,0.1) - red
and (xp,x-1) = (0.7,0.9) - green.
Proof. The point(x,X) is a saddle point for the strictly competitive m#pas well.
The existence of the s& with the stated properties follows from Lemma 2.1,
Theorems 1.2, 1.3 and 3.1. Equation (1.1) is equivalented@yistem of difference
equations (3.5), which can be decomposed into the systehe @ven-indexed and
odd-indexed terms as follows:

Uon = Von-1,

Uont+1 = Von,
Upn—1+F

" aV%n—l"i_f,
u2n+F

av, + f’

V2 (4.2)

Vont1 =

Now, using (4.2) we obtain
i) if (uo,vo) € M-, then
(U2n,V2n) = Tzn((UO,Vo)) — (0,00)
and
(Uzns1,Vont1) = T2 ((Ug, Vo)) — (0,0);
ii) if (uo,vo) € Wy, then
(Ugn,VZn) = Tzn((UO,Vo)) — (00,0)
and
(Uzns1,Vont1) = T2 ((Ug, Vo)) — (0,);
Consequently,
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i) if (x_1,%) € W_((X,X)), then
T2 ((X_1,%0)) — (0,00) andT?"1((x_1,%0)) — (e0,0), that is

lim xon = 0 and limxpn.1 =0.
n—oo n—-o0
i) if (x_1,%) € W, ((%,X)), then
T2 1((x-1,%)) — (0,00) andT?((x-1,%0)) — (,0), that is

lim Xon =0 and limXpn, 1 = . O
n—oo n—oo
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