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ABSTRACT. In sustainable portfolio management, categorizing assets as “brown“
or “green“ based solely on ESG ratings can be misleading. A positive ESG score
does not inherently indicate environmental responsibility unless it is evaluated
relative to a meaningful benchmark. We propose a rescaled ESG rating sys-
tem that measures each asset’s environmental standing relative to a threshold
set by policymakers, reflecting the urgency of the current climate crisis. In this
system, assets are assigned positive scores if they exceed the threshold (green)
and negative scores if they fall below it (brown), enhancing the interpretability
of sustainability metrics in portfolio construction. However, a challenge arises
when aggregating these scores into an overall portfolio rating. Under sustainable
portfolio optimization developed in [11], short positions in brown assets, other-
wise effectively betting against polluting companies, can paradoxically improve
the portfolio’s sustainability score. This creates a misleading incentive struc-
ture. To address this, we introduce a constraint that prohibits short positions in
brown assets, ensuring that such investments do not positively impact the portfo-
lio sustainability rating. While this restriction better aligns with environmental
objectives, it also introduces complexity into the optimization process. To re-
solve this, we present an intuitive algorithm inspired by the active set method,
which we refer to as Green Portfolio Optimization, capable of handling these
constraints efficiently even in high-dimensional settings.

1. INTRODUCTION

As environmental challenges and global climate change intensify, sustainable
investing plays an increasingly significant role in both financial decision-making
and portfolio optimization. Many papers in the literature consider portfolios com-
posed of “green” and “brown” assets, yet often without providing a precise or oper-
ational definition of this distinction. For example, [3,4] study a portfolio optimiza-
tion problem involving “green” and “brown” assets under a utility maximization
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framework, where brown assets are penalized via higher effective risk aversion.
In [5], the authors extend this setup by modeling ESG performance as a stochas-
tic process. Similarly, [2] consider a utility-based portfolio problem with carbon
constraints, in this case distinguishing between green and brown assets based on
carbon scores. However, these studies rely on heuristic classifications based on
ESG or carbon scores without formal thresholds or rules to define green and brown
assets explicitly.

[7] argues in the following way: The ESG framework, originally designed to
serve investors seeking social and environmental impact alongside financial re-
turns, is increasingly being mainstreamed as a tool for assessing material credit
risk. This shift is driven by the growing recognition of climate change as a systemic
financial risk, prompting central banks and regulators to explore mechanisms to in-
tegrate ESG risks into financial oversight. One proposed mechanism is the use of a
benchmark-based classification, in which assets are evaluated against a regulatory
ESG threshold. [7] then argues that central banks could impose a green-supporting
factor on assets scoring above the benchmark, providing them with regulatory re-
lief, while those falling below the threshold would be subject to a brown-penalizing
factor, increasing their regulatory or financial cost. Such a framework aims to cor-
rect market failures stemming from the underpricing of climate risks and would
mark a shift from voluntary ESG adoption to a mandatory, rule-based regulatory
regime.

Before we explain how we implement such brown-penalizing factors, we want
to explain the sustainability setting of the paper. Our model remains grounded in
the sustainable investment principles defined by the EU taxonomy, which outlines
the environmental and social goals of the EU Green Deal [6, 13]. Recognizing
that financial assets often fall somewhere between fully sustainable and entirely
unsustainable, we adopt a more nuanced approach by incorporating sustainability
ratings. As in [11], we assume the existence of a credible rating system to evalu-
ate the sustainability of investments. One example could be the Bloomberg ESG
score, which assesses firms using roughly 800 indicators and provides a rating be-
tween 0 and 100, where 100 stands for the most sustainable rating [9]. While
much of the existing literature addresses sustainable integration using a one-period
mean-variance framework in the spirit of Markowitz, see, for example, [14–16],
our approach extends the sustainable continuous-time utility maximization frame-
work developed in [11]. In [11], the portfolio assets are assigned sustainability
ratings and the investor imposes a minimum acceptable sustainability threshold D
on the portfolio. The sustainability ratings are here normalized to lie within the unit
interval [0,1]. The aim is to construct an optimal portfolio that satisfies this con-
straint while maximizing expected utility over time. However, this approach alone
does not differentiate between “brown“ and “green“ assets, as one might argue that
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simply stating an asset has a positive ESG rating does not necessarily exclude it
from being a “brown“ asset.

To design and implement brown-penalizing factors in a portfolio optimization
context, it is essential to first establish a clear, quantitative criterion for distin-
guishing between green and brown assets. Namely, the first step is to introduce a
benchmark value B ∈ [0,100], where now assets with scores below B are classified
as brown, and those above or equal to B as green. This can be seen as a thresh-
old imposed by the government/regulatory body on the basis of a current climate
crisis situation. To reflect this distinction more clearly, we rescale the ratings so
that green assets are assigned positive values and brown assets assigned negative
ones. For example, setting B = 40, we map the sustainability scores in the interval
[−0.4,0.6], where 0 represents the separation boundary, and the values are linearly
scaled such that [−0.4,0) corresponds to brown assets and [0,0.6] to green ones.

However, this alone is insufficient to ensure that the sustainability of the portfo-
lio aligns with our goals. Consider a green portfolio’s rating R̃π = ∑

n
i=1 πiR̃i, where

R̃i is the rating of asset i adjusted to the benchmark B and πi represents the frac-
tion of wealth invested in it. If both R̃i and πi are negative, the product R̃iπi > 0
actually contributes positively to the green portfolio rating R̃π. This implies that a
negative rating with a corresponding negative investment unintentionally rewards
investment in brown assets, thus undermining the intent of promoting environmen-
tal responsibility.

To address this, we introduce an additional constraint: for any asset i with R̃i < 0,
the portfolio weight must satisfy πi ≥ 0. This ensures that we do not hold short po-
sitions in brown assets, avoiding unintended positive contributions (regarding the
portfolio rating) from such holdings. This means, with investments in brown assets
we only allow negative contributions to the portfolio rating. This can be interpreted
as a direct implementation of a brown-penalizing factor. Taken together, our ap-
proach aligns with both the benchmark-based classification and brown-penalizing
factor argued in [7]. We name this approach green portfolio optimization.

In cases where all brown asset positions of the sustainable optimum are already
positive, no adjustment is needed. However, if this is not met, this constraint com-
plicates the optimization problem, as then the solution cannot be expressed in a
closed-form formula. We develop an algorithm capable of solving the problem
even in such settings.

It should be mentioned that [2] developed an approach that uses a utility-based
framework and with “brown“ and “green“ asset. However, our approach differs
in a few aspects from theirs. Firstly, they consider only one “brown“ and one
“green“ asset, where our approach allows any number of these assets. Additionally,
the differentiation is not based on a benchmark system, as in our case. Further,
their additional constraint is limiting the investment in the green assets (it needs
to be greater than the unconstrained optimal investment), while we are limiting
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the investment in the brown asset (it has to be non-negative). And lastly, their
approach does not assign a rating to the non-risky asset at all. It is also important
to note that they focus on limiting the carbon risk from above, while we want to
limit the sustainable portfolio rating from below.

The structure of the paper is as follows. Section 2 presents the mathematical
framework and portfolio setup. Section 3 builds on this foundation to develop our
green portfolio optimization approach and illustrates it with numerical examples.
Finally, Section 4 summarizes the main findings and provides concluding remarks.
For readers interested in the optimization methods that motivated our approach,
Appendix A provides an overview of quadratic programming and the active set
method.

2. MATHEMATICAL FRAMEWORK AND PORTFOLIO SETUP

We operate within the probabilistic and financial framework laid out in [11],
adapted for the purposes of this paper. Consider a complete probability space
(Ω,F ,P), equipped with a filtration F = (Ft)t∈[0,T ] that is right-continuous. It
is assumed that this space supports a d-dimensional standard Brownian motion
W (t) = (W1(t), . . . ,Wd(t)), adapted to the filtration.

Let B(t) = ert for t ∈ [0,T ] denote the value of a risk-free asset, such as a bank
account, accruing interest at a constant rate r. The prices of d risky assets (e.g.,
stocks), denoted by Si(t) for i = 1, . . . ,d, evolve according to the stochastic differ-
ential equations

dSi(t) = Si(t)

(
bi dt +

d

∑
j=1

σi j dWj(t)

)
, i = 1, . . . ,d, (2.1)

where b = (b1, . . . ,bd)
′ represents the vector of expected returns. The volatility

matrix σ = (σi j)i, j∈{1,...,d} is assumed to be of full rank which implies that σσ′ is
positive definite.

A portfolio strategy is a vector-valued process π(t) = (π1(t), . . . ,πd(t))′, repre-
senting the proportion of wealth invested in each of the risky assets. The fraction al-
located to the riskless asset is given by π0(t) = 1−∑

d
i=1 πi(t). We assume that π(t)

is progressively measurable with respect to F and square integrable component-
wise.

We focus on self-financing investment strategies, where the associated wealth
process Xπ(t) satisfies the stochastic differential equation

dXπ(t) = Xπ(t)
[(

r+π(t)′(b− r1)
)

dt +π(t)′σdW (t)
]
, Xπ(0) = x, (2.2)

with initial capital x > 0, and 1 = (1, . . . ,1)′ ∈ Rd .
To incorporate sustainability into the investment model, we assume that each

asset, including the risk-free one (indexed by i= 0), carries a (scaled) sustainability
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score Ri(t) ∈ [0,1]. These ratings may be constant over time or time-dependent.
The overall sustainability rating of the portfolio is given by a weighted average,

Rπ(t) =
d

∑
i=0

πi(t)Ri(t).

By substituting π0(t) = 1−1′π(t), we can express this more compactly as

Rπ(t) = R0(t)+π(t)′(R(t)−R0(t)1),

where R(t) = (R1(t), . . . ,Rd(t))′.
A sustainability requirement is introduced via a demand process D(t), which

prescribes a lower bound on the average sustainability rating that must be met by
the portfolio at each point in time. Hence, admissible portfolios must satisfy the
so-called sustainability constraint

Rπ(t)≥ D(t), ∀t ∈ [0,T ]. (2.3)

Definition 2.1 (Benchmark, Green Adjusted Ratings and Demand). Let the bench-
mark be defined as B(t)∈ [0,1],∀t ∈ [0,T ]. Then, the adjusted ratings and demand
for the green portfolio are for t ∈ [0,T ] defined as:

R̃i(t) = Ri(t)−B(t), i = 0,1, ...,d

D̃(t) = D(t)−B(t)≥ 0.
(2.4)

Notice that these imply now that R̃(t) = R(t)−B(t)1, and D(t)≥ B(t),∀t ∈ [0,T ].

Remark 2.1 (On Stochastic Modeling of Sustainability Components). Our frame-
work can accommodate stochastic demand, stochastic ratings, and a stochastic
benchmark as well. In such cases, it becomes necessary to explicitly model the dy-
namics of these quantities and adjust the portfolio strategies accordingly. However,
if demand and ratings are already adapted to the Brownian filtration, no additional
modifications are required. Therefore, in Definition 2.1, we implicitly assume that
the benchmark process B(t) is adapted to the Brownian filtration.

Remark 2.2 (Choice of Sustainability Rating). Note that the ESG score mentioned
in this paper serves merely as an example of a sustainability-related measure. The
proposed framework can be applied using any sustainability score that can be
rescaled to the [0,1] interval. The specific choice of the score is left to the rele-
vant regulatory or governing body, which would also determine the corresponding
benchmark value. The benchmark should be selected consistently with the chosen
scoring methodology to ensure meaningful and comparable evaluations.

Definition 2.2 (Max-offer Condition). In [11], we introduced the following auxil-
iary feasibility condition:

D(t)≤ R∗(t) := max{R0(t),R1(t), . . . ,Rd(t)}, ∀t ∈ [0,T ]. (2.5)
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This guarantees that admissible portfolios satisfying the sustainability constraint
can exist without enforcing short positions. While in the results of [11] this can be
exchanged for a weaker condition (as proposed in [12]), here we need particularly
this assumption to ensure that our green portfolio optimization problem always has
a solution.

Let Xπ(t) again denote the wealth process under the strategy π. We now define
the sustainable portfolio optimization problem as follows:

max
π(·)∈A(x)

E0,x [U (Xπ(T ))]

subject to Rπ(t)≥ D(t), ∀t ∈ [0,T ],
(2.6)

where U is a utility function, and A(x) denotes the class of admissible portfolio
strategies satisfying:

E0,x

[
U (Xπ(T ))−

]
< ∞, (2.7)

with f−(x) = max(− f (x),0) representing the negative part of the function f .
The unconstrained optimal portfolio under log-utility U(x) = ln(x) is given as

(see e.g., [10], but also shown later in Section 3):

π
∗ =

(
σσ

′)−1
(b− r1). (2.8)

In [11] we derived the following explicit form of the sustainable optimal portfolio
process π

opt
S for the logarithmic utility function:

Proposition 2.1 (Korn and Nurkanovic, 2023, [11]). Let the max-offer condition
(2.5) be satisfied. If the bond possesses a sustainability rating R0 ≥ 0, then the
optimal portfolio process for problem (2.6) with U(x) = ln(x) is given by

π
opt
S (t) =



(σσ′)−1 (b− r1) ,
ifR0(t)+(R(t)−R0(t)1)′ (σσ′)−1 (b− r1)≥ D(t)

(σσ′)−1
[
(b− r1)

+D(t)−R0(t)−(b−r1)′(σσ′)−1(R(t)−R0(t)1)
(R(t)−R0(t)1)′(σσ′)−1(R(t)−R0(t)1)

(R(t)−R0(t)1)
]
,

otherwise.

(2.9)

Definition 2.3 (Set of Green/Brown Assets). The set of brown assets, denoted as
Ibrown, represents all indices i with R̃i < 0, and Igreen denotes the set of indices j for
which we have non-negative ratings R̃ j ≥ 0 which are considered green.

Definition 2.4 (Set of Green Portfolios). The set of green portfolios, denoted AG(x),
is the collection of all sustainable strategies π(·) ∈ AS(x) that additionally satisfy
πi ≥ 0 for all i ∈ Ibrown.
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Finally, we define the green portfolio optimization problem as follows

max
π(·)∈A(x)

E0,x [U (Xπ(T ))]

subject to R̃π(t)≥ D̃(t), ∀t ∈ [0,T ],

and πi(t)≥ 0, ∀i ∈ Ibrown(t), ∀t ∈ [0,T ].

(2.10)

Any further technical conditions will be stated as needed in the following sec-
tions.

3. GREEN PORTFOLIO OPTIMIZATION: PUNISHING INVESTMENT IN BROWN

ASSETS

As we use the log-utility function U(x) = ln(x), we consider the portfolio prob-
lem under the following constraints

max
π(·)∈A(x)

E0,x [ln(Xπ(T ))]

subject to R̃π(t)≥ D̃(t), ∀t ∈ [0,T ],

and πi(t)≥ 0, ∀i ∈ Ibrown, ∀t ∈ [0,T ].

(3.1)

where we have implicitly assumed that the max offer condition (2.5) is satisfied.
Remember, the wealth equation of Xπ(t) is given in (2.2). Now, applying the Itô’s
formula to ln(Xπ(T )), and then taking expectation of both sides, leads to

E0,x (ln(Xπ(T ))) = ln(x)+E0,x

∫ T

0

(
r+π(t)′(b− r1)− 1

2
π(t)′σσ

′
π(t)

)
dt

+σE0,x

(∫ T

0
π(t)dW (t)

)
.

We assume π(t) is progressively measurable with respect to the filtration F and
square integrable in the sense that we have E

(∫ T
0 π2(s)ds

)
< ∞. Then, it follows

E
(∫ T

0 π(t)dW (t)
)
= 0 and we get

E0,x (ln(Xπ(T ))) = ln(x)

+E0,x

∫ T

0

(
r+π(t)′(b− r1)− 1

2
π(t)′σσ

′
π(t)

)
dt.

(3.2)

Now, maximizing the left side is equivalent to pointwise maximization under the
integral on the right side for fixed t ∈ [0,T ] and every ω ∈ Ω. Not considering the
constraints, this yields the unconstrained optimal portfolio process π∗ given by

π
∗(t) = π

∗ := (σσ
′)−1 (b− r1) (3.3)

with 1= (1, ...,1)′ ∈Rd . If the unconstrained optimal portfolio already satisfies the
constraints, then it is also the optimal sustainable portfolio. If this is not the case



240 AJLA NURKANOVIĆ, RALF KORN

then we apply elementary Lagrangian multiplier considerations to the integrand
ω-wise for every t ∈ [0,T ] and get the result from [11].

More precisely, even after including all of the constraints our optimization prob-
lem turns out to be a deterministic problem we have to solve for every t (and every
ω), and it looks as the following

maxπ(t)
(
r+π(t)′(b− r1)− 1

2 π(t)′σσ′π(t)
)
,

R̃π(t)≥ D̃(t),
πi(t)≥ 0 for i ∈ Ibrown(t).

(3.4)

Remember that we have a closed-form solution if we are not imposing the last set of
constraints. Notice how the function which we are maximizing is a function with a
negative sign from the QP problem (A.1). Thus, our approach will be motivated by
the active set method (see Section A.3). Recall that if we ignore the non-negativity
constraints, we actually have a closed form solution π

opt
S .

Remark 3.1 (Rough idea for solving the green portfolio optimization problem). We
first apply the result from Proposition 2.1, and if the additional green constraints
are satisfied, i.e., πi ≥ 0 for i ∈ Ibrown, then we have solved the green portfolio
optimization problem. However, if there exists i ∈ Ibrown with πi < 0, then we set
πi = 0 and start again with the sustainable portfolio optimization without consider-
ing that asset. In what follows we will explain in detail how to deal with this when
we have one, two or more brown assets included.

From now on, for simplicity, we will assume constant ratings and demand in
[0,T ], i.e., we assume

Ri(t) = Ri ∈ [0,1], (3.5)
D(t) = D ∈ [0,1], (3.6)
B(t) = B ∈ [0,1] ∀t ∈ [0,T ]. (3.7)

Such assumption was named as Assumption A1 in [12], and in that paper, in the
remark afterwards, one can read more about its significance.

3.1. One brown asset

One green asset. Let us say that we have only one green asset and one brown asset,
i.e. R̃1 ≥ 0 and R̃2 < 0. If π

opt
S already satisfies π2 ≥ 0, then that is our solution, i.e.

π∗
G = π

opt
S . However, if it does not, then we set π2 = 0 and apply the formula for

π
opt
S without the brown asset, i.e., by returning to the previous constrained problem

with only the bank account and one green asset. The solution in that case is given
as π∗

G =
(

D̃−R̃0
R̃1−R̃0

,0
)

. Let us for a moment analyze this. Consider different cases:

• D̃ ≥ R̃0, R̃1 > R̃0 implies π1 ≥ 0 – due to the max offer condition, here we
would need at least the rating of S1 to be greater than the demand.
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• D̃≤ R̃0, R̃1 < R̃0 implies π1 ≥ 0 – the max offer condition is always satisfied
in this case, which thus still allows a positive position in the green asset.

• D̃> R̃0, R̃1 < R̃0 would imply π1 < 0, but as the max offer condition cannot
be satisfied here, this case is excluded.

• D̃ < R̃0, R̃1 > R̃0 would imply π1 < 0, but notice how that would not make
sense as R̃1 is big enough and so is R̃0. This actually never happens, be-
cause in this case already the unconstrained portfolio π∗

1 satisfies the de-
mand and is our solution.

As the last two cases are not possible, that means, that in the case of one green and
one brown risky asset we always have non-negative investment in the green asset.
This, however, does not have to be true for the higher dimensional case.

Remark 3.2 (Short selling of green assets vs. short selling of brown assets). In our
green portfolio optimization framework, short selling green assets is preferable to
short selling brown assets. Short selling brown assets is excluded because, due to
R̃i < 0 and πi < 0, it would increase the portfolio sustainability rating. If permitted,
this could allow a portfolio consisting solely of shorted brown assets to meet the
sustainability requirement, which is clearly undesirable.

In contrast, green assets have positive sustainability ratings. Thus, short selling
green assets reduces the overall portfolio rating. As a result, even short selling of
green assets will be minimized in the optimization, since it negatively affects the
portfolio sustainability profile. On the other hand, in a market consisting solely of
green assets, short selling of a green asset due to its bad risk-return characteristics
becomes a normal case.

In what follows we will give two examples – one where the sustainable portfolio
is already the green one, and one where they differ. Those examples will also be
represented in respective figures 1 and 2. Both figures illustrate the relationship
between green, sustainable, and unconstrained portfolio choices. The x- and y-
axes represent π1 (the fraction of wealth invested in the green asset) and π2 (the
fraction of wealth invested in the brown asset), respectively. The feasible set of
green portfolios is represented as the green shaded area, while the light blue shaded
area represents the feasible set for sustainable portfolios. The feasible region of
green assets is a subset of the sustainable portfolios region. The three different
optima are represented as well. The green portfolio optimum is represented as a
green diamond, the sustainable optimum as a blue square, while the unconstrained
optimum is represented by a red dot. Finally, the ellipses represent the level-lines
of the growth function that we are maximizing.

Example 3.1 (Sustainable portfolio optimum which is also green). To illustrate
our findings with some numbers we choose the following figures:

D = 0.45,r = 0.01,b1 = 0.04,b2 = 0.05,σ1 = 0.2,σ2 = 0.3,
R0 = 0.55,R1 = 0.35,R2 = 0.1,B = 0.3,
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meaning that S1 is green and S2 is brown (since R1 > B and R2 < B). This then
yields

π
∗ = (0.75,0.44), Rπ∗

= 0.2 < 0.45 = D,

implying the unconstrained optimal portfolio does not satisfy the sustainability
constraint. Now, we obtain the optimal admissible sustainable portfolio as

π
opt
S = (0.365,0.059), Rπ

opt
S = 0.45 = D.

Hence, both the portfolio return decreases from 0.05 to 0.02 and the portfolio
volatility decreases from 0.2 to 0.075 for the optimal sustainable portfolio. Further,
as a consequence of the sustainability constraint, the optimal growth rate decreases
from 0.03 to 0.02.

Now, our ratings and demand become

D̃ = 0.15, R̃0 = 0.25, R̃1 = 0.05, R̃2 =−0.2.

The sustainable optimum π
opt
S stays the same, and as we already have a positive

position for the brown asset, that is also our green optimum, i.e. π∗
G = π

opt
S . We

represent this graphically in (1).

Example 3.2 (Green portfolio optimum different from the sustainable optimum).
Compared to the previous example, let us only lower the rating of the riskless asset
from 0.55 to 0.5 and keep all the other parameters as in the previous example.
The unconstrained portfolio is given in the same way and it still does not satisfy
the sustainability constraint. Now, we obtain the optimal admissible sustainable
portfolio as

π
opt
S = (0.365,−0.011), R0 = 0.45 = D.

The optimal growth rate decreases from 0.03 to 0.02. Unfortunately, this portfolio
is not green, because we have a negative position in the brown asset.

In the green investment our ratings and demand become

D̃ = 0.15, R̃0 = 0.25, R̃1 = 0.05, R̃2 =−0.2,

since as in the previous example we shift the ratings and demand for B = 0.3. The
π

opt
S stays the same, but due to the negative position in the brown asset, as already

mentioned, it is not green. Thus, we set π∗
G,2 = 0, and get π∗

G,1 =
D̃−R̃0
R̃1−R̃0

, i.e. we get

π
∗
G = (0.333,0), R̃0 = 0.15 = D̃.

The graphical representation can be found in Figure 2.

Comparison of Figure 1 and Figure 2: The difference between the figures in Figure
1 and 2 is in the rating of the non-risky asset. That is, in the first one we have
R0 = 0.55, while in the second one a slightly lower R0 = 0.5. Due to the smaller
rating in the second case, one can notice that the regions of green and sustainable
portfolios are much smaller in the second case compared to the first.
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FIGURE 1. The plot represents values of π1 (the fraction of wealth
invested in the green asset) and π2 (the fraction of wealth invested
in the brown asset) as x and y axes, respectively. The feasible set
of green portfolios is represented as the green shaded area, while
the light blue shaded area represents the feasible set for sustainable
portfolios, for figures given as in Example 1. The green optimum,
represented as green diamond is in this case matching the sus-
tainable optimum, represented as blue square. The unconstrained
optimum is represented by the red dot. The ellipses represent the
value level lines of the growth function that we are maximizing.

Multiple green assets Let us now assume that we have multiple green assets, e.g.,
from n total assets, let n− 1 be green, i.e., R̃i ≥ 0, i = 1, ...,n− 1, and one brown
asset, i.e. R̃n < 0. Again, we only have one additional constraint compared to
the sustainable optimization. The procedure would again be to check if our π

opt
S

satisfies the brown non-negativity constraint. If it does, then that is our solution,
i.e., π∗

G = π
opt
S . However, if that is not the case, then we again set πn = 0 and apply

π
opt,(n)
S , which is the formula from sustainable optimization applied on the rest of

the green assets, i.e., now on a lower dimension of n− 1, without considering the
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FIGURE 2. The plot represents values of π1 (the fraction of wealth
invested in the green asset) and π2 (the fraction of wealth invested
in the brown asset) as x and y axes, respectively. The feasible set
of green portfolios is represented as the green shaded area, while
the light blue shaded area represents the feasible set for sustainable
portfolios, for figures given as in Example 2. The green optimum,
represented as green diamond is in this case matching the sustain-
able optimum, represented as the blue square. The unconstrained
optimum is represented by the red dot. The ellipses represent the
value level lines of the growth function that we are maximizing.

brown asset n. Here, (n) in the superscript of the portfolio strategy means that we
are considering the portfolio problem without asset n.

3.2. Two brown assets

In Figure 3 we give an algorithmic representation when we deal with n−2 green
assets, i.e., R̃i ≥ 0, for i = 1, ...,n−2 and two brown assets, i.e. R̃n−1, R̃n < 0. Let
us explain what exactly we have there. Firstly, we start by calculating π

opt
S , and

from there one of the three scenarios can happen, each colored in a different color
in the algorithmic scheme.
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Case 1: Sustainable optimum does not violate brown non-negativity constraints
In this case π

opt
S already satisfies the brown non-negativity constraints, and our

problem is solved, i.e. π∗
G = π

opt
S .

Case 2: Sustainable optimum violates exactly one brown non-negativity constraint
Here we assume π

opt
S violates exactly one of the brown non-negativity constraints,

either for asset n− 1 or asset n. We denote that asset by i, and then set π
opt
S,i = 0,

and now do the sustainable portfolio optimization on one dimension below without
that asset, i.e., we calculate π

opt,(i)
S . Now, the following two cases can happen:

• In case π
opt,(i)
S does not violate the non-negativity constraint for the remain-

ing brown asset, let us denote it by j, then π
opt,(i)
S together with π

opt
S,i = 0 is

our green optimum.
• However, if π

opt,(i)
S does violate the non-negativity constraint for the brown

asset j, then we need to set π∗
G, j = 0 along with π∗

G,i = 0, and calculate the
sustainable optimum without considering either of the brown assets, i.e.,
π

opt,(i, j)
S , which is then the green optimum.

In the graphic illustration, for writing simplicity, let us w.l.o.g. assume i = n.
Case 3: Sustainable optimum violates both brown non-negativity constraints
Here, π

opt
S immediately violates both of the non-negativity constraints. In this case

we will have to repeat Case 2 two times, once starting from i = n−1 and the other
time with i = n. Thus, from the two subcases we get (at most) two possible solu-
tions denoted by π

∗,1
G and π

∗,2
G . We compare their objective function, and choose

the solution which gives the highest objective.

3.3. Multiple brown assets

The case with multiple brown assets is carried out in the same fashion as when
we had two brown assets, where we just end up having more cases. Starting again
from sustainable optimal portfolio solution π

opt
S , it adjusts the portfolio iteratively

to ensure that the specified non-negativity constraints for brown assets are satisfied.
The main idea is summarized within the following steps.

• Initialization and Check: The algorithm first checks if the sustainable
solution already satisfies the non-negativity constraints. If it does, this
solution is directly outputted as optimal.

• Iterative Constraint Satisfaction: If the constraints are violated, the al-
gorithm evaluates combinations of ”forcing” some constrained assets to
zero, solving the reduced optimization problem for the remaining free as-
sets at each iteration. It prioritizes combinations with fewer forced-zero
constraints, progressing systematically.
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Compute πopt
S

πopt
S,n−1, π

opt
S,n ≥ 0

π∗
G = πopt

S

πopt
S,n < 0

Set π∗
G,n = 0

Calculate π
opt,(n)
S

π
opt,(n)
S,n−1 ≥ 0

π∗
G = (π

opt,(n)
S , 0)

π
opt,(n)
S,n−1 < 0

Set π∗
G,n−1 = 0

Calculate π
opt,(n−1,n)
S

π∗
G = (π

opt,(n−1,n)
S , 0, 0)

πopt
S,n−1, π
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S,n < 0

Set π∗,1
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π
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S , 0, 0)

FIGURE 3. Algorithm for green optimization when considering
two brown assets and multiple green ones.

• Objective Evaluation: For each feasible candidate solution, it computes
the objective function value. The solution with the highest objective value
is retained as the best feasible solution for that iteration.

• Output the Solution: Once a feasible solution is found, the algorithm
outputs the optimal constrained portfolio.

This approach is explained in detail in Algorithm 1.

Remark 3.3 (Why is this approach justified?). The algorithms we presented are
justified, firstly because we go through all of the combinations where we set vio-
lated non-negative constraints to be active, and secondly since we are using π

opt
S

which satisfies the sustainability constraint. The matrix H, in our case σσ′ is in-
deed positive definite, implying that the KKT conditions are both necessary and
sufficient and the solution is unique. See A.1, A.2 and Lemma A.1.
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Algorithm 1 Portfolio Optimization with k Non-negativity Constraints on Brown
Assets

1: Input: Unconstrained optimal solution π
opt
S ; indices of brown assets with non-

negativity constraints Ibrown = {i1, i2, . . . , ik}.
2: Initialize: Set π∗

G = π
opt
S and mark all constraints in Ibrown as active.

3: Step 1: Check if all non-negativity constraints are satisfied:
4: if πS,i ≥ 0 for all i ∈ Ibrown then
5: All constraints are satisfied. Output π∗

G = π
opt
S as the solution and stop.

6: end if
7: Step 2: Iterative Constraint Satisfaction
8: for m = 1 to k do
9: Evaluate all combinations of setting m assets in Ibrown to zero.

10: for each combination C ⊂ Ibrown with |C|= m do
11: Set πi = 0 for all i ∈C.
12: Solve the reduced optimization problem for remaining free assets, yield-

ing candidate solution π(C).
13: Check if π(C) satisfies πi ≥ 0 for all i ∈ Ibrown \C.
14: if all remaining non-negativity constraints are satisfied then
15: Compute the objective function value for π(C): Objective(C) = f (π(C)).
16: Store π(C) as a feasible candidate solution.
17: end if
18: end for
19: if at least one feasible solution is found in this iteration then
20: Select the feasible solution π∗

G with the highest objective value among all
candidates from this iteration.

21: Output π∗
G as the optimal constrained solution and stop.

22: end if
23: end for

Remark 3.4 (Why not use the standard active set method?). In the active set method
one has to deal with solving different systems of equations, while our approach is
quite straight forward since we have a closed formula for π

opt
S which is the only

quantity we calculate. This is by far easier to implement and it is quite intuitive as
well.

Remark 3.5 (Reducing running time of the algorithm). One can notice already in
the case of two brown assets that some steps overlap. For instance, looking at
Figure 3, we see that π

opt,(n−1,n)
S was calculated three times, or to be exact, once

in Case 2, and two times in Case 3. Case 2 is basically a part of the Case 3. This
means that the algorithm could be written in such a way that these overlapping steps
are saved and reused, instead of calculated every time, which would then reduce
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the running time. The more brown sets there are, the more drastically would the
running time be reduced.

4. CONCLUSION

In this paper, we have proposed a framework for sustainable portfolio optimiza-
tion that addresses key deficiencies in the standard use of sustainability ratings.
Recognizing that sustainability scores in isolation may offer a misleading repre-
sentation of environmental impact, we introduced a benchmark-based rescaling
that classifies assets as “green” or “brown” relative to a policy-driven threshold.
This adjustment allows for a more transparent and normatively grounded interpre-
tation of sustainability.

A central issue identified in benchmark-constrained portfolio construction is the
unintended positive contribution of short positions in brown assets to the overall
sustainability rating. To mitigate this distortion, we imposed a non-negativity con-
straint on such positions. While this additional constraint aligns the optimization
problem with sustainability objectives, it introduces new complexity by restricting
the feasible investment set.

To address this, we proposed a computationally efficient algorithm inspired by
the active set method, leveraging the closed-form solution of the unconstrained
problem. This approach systematically enforces the green constraints by iteratively
adjusting the set of active (i.e., zero-weighted) brown assets until a feasible and
optimal solution is found. The algorithm remains tractable in high-dimensional
settings and avoids the need for solving full quadratic programs at each step.

Our findings lead to several important conclusions:
• By setting the minimum level of sustainability for an asset to be considered

as green we prevent ambiguous interpretations of sustainability.
• Shorting brown assets can artificially inflate sustainability ratings, which

necessitates explicit constraints to preserve the integrity of the portfolio
green objective.

• The proposed non-negativity constraint of portfolio positions in the brown
assets provides a simple and effective correction that aligns the optimiza-
tion output with the environmental intent, even though it reduces the flexi-
bility of the portfolio construction.

• Our algorithm provides a practical and scalable solution to the constrained
optimization problem, offering clear advantages over standard active set
methods in this context.

Overall, this work contributes both a theoretical advancement and a practical
toolset for constructing environmentally responsible portfolios. Future research
may explore stochastic or dynamic benchmark thresholds, integration of broader
ESG dimensions, or empirical testing on real-world asset data to validate the pro-
posed methodology.
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A. QUADRATIC PROGRAMMING PROBLEMS

A quadratic programming (QP) problem is an optimization problem with a
(convex) quadratic objective function, and affine constraint functions, as defined
by the following

min
x∈Rn

f (x) =
1
2

x′Hx+ c′x

subject to [A]ix ≤ [b]i,
(A.1)

where x ∈ Rn represents the vector over which we minimize the objective func-
tion f . The objective function is defined through a quadratic term H ∈ Rn×n and
a linear term c ∈ Rn. The notation [·]i represents the ith row of a matrix, and by
A ∈ Rmxn and b ∈ Rm the feasible set is given as a polyhedron. Here we will
briefly cover this topic with a type of algorithm called active set method which will
be enough for our needs in green portfolio optimization. For further reference, see,
e.g. [1], [8], [17].

A.1. Feasibility

A quadratic program (QP) in the form of (A.1) is deemed infeasible if no solu-
tion exists, which can happen in two distinct ways:

(1) Primal Infeasibility: This occurs when there is no point that satisfies the
constraints Ax ≤ b, meaning the feasible set is empty, i.e.,

{x ∈ Rn : Ax ≤ b}= /0.

(2) Dual Infeasibility: This happens when H (the Hessian matrix of the qua-
dratic term) is singular, and there exist points within the feasible region that
make the objective function arbitrarily small. In such cases, the problem
has no finite minimum and is considered dual infeasible or unbounded.

A.2. Optimality

A solution to the QP in (A.1), denoted as x∗, satisfies a set of conditions known
as the Karush-Kuhn-Tucker (KKT) conditions, given as:

Hx∗+A′
λ+ c = 0, λ ≥ 0, Ax∗ ≤ b, λ

′(Ax∗−b) = 0,

where λ ∈ Rm represents the dual variables (or multipliers).
In general, the KKT conditions are necessary for optimality, but for convex

problems (e.g., when H is positive semi-definite), they are also sufficient. Addi-
tionally:

(1) If H is positive definite, the solution x∗ is unique.
(2) If H is only positive semi-definite, there may be multiple solutions.

Among the conditions, complementary slackness λ′(Ax∗ − b) = 0 introduces
nonlinearity, which makes solving QPs more challenging. In active-set methods,
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which we introduce in the next subsection, this condition is maintained throughout
all iterations using a working set, while the other conditions are gradually satisfied.

A.3. The Active Set Method

The main challenge in solving the QP in problem (A.1) arises due to the pres-
ence of inequality constraints Ax ≤ b. If the QP instead involved only equality
constraints (referred to as an equality-constrained QP or EQP), it could be solved
simply by resolving a system of linear equations. Specifically, the minimizer x∗ of
the EQP

min
x

1
2

x′Hx+ c′x subject to Ex = d,

is the solution to the following linear system, also known as the KKT system:[
H E ′

E 0

][
x∗

λ∗

]
=

[
− f
d

]
.

In the case of EQPs, only stationarity and primal feasibility are necessary
conditions for optimality. However, when inequality constraints are introduced,
additional conditions such as dual feasibility and complementary slackness also
become essential.

The simplicity of solving EQPs forms the foundation for active-set methods.
An important observation underlying these methods is that, at the optimal solu-
tion x∗, only those inequality constraints that hold as equalities are relevant. This
motivates the following definitions:

Definition A.1 (Active Constraint). An inequality constraint a′x ≤ c is said to be
active at a point x̃ ∈ Rn if it is satisfied as an equality, i.e., a′x̃ = c.

Definition A.2 (Active set). The active set at a point x ∈ Rn, denoted as A(x), is
the set of indices of all inequality constraints that are active at x, formally defined
as:

A(x) = {i ∈ {1, . . . ,m} : [A]ix = [b]i}.
The following lemma establishes the significance of the active set at x∗. Intu-

itively, it shows that removing inactive constraints at x∗ does not affect the solution.
The lemma itself and the following remark can be found in more detail in [1].

Lemma A.1 (Sufficiency of the Active Set, [1]). Let x∗ be the solution to (A.1),
and let A∗ = A(x∗) be the active set at x∗. Then, x∗ is also the solution to the EQP:

min
x

1
2

x′Hx+ c′x subject to [A]ix = [b]i,∀i ∈ A∗.
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Remark A.1 (Key Insight from Lemma A.1). The result of Lemma A.1 emphasizes
that the active set contains all the information needed to determine the solution x∗.
That is, if A∗ was known, the solution to Problem (A.1) would reduce to solving a
single system of linear equations. This observation underpins the primary goal of
active-set methods: identifying A∗. To achieve this, these methods iteratively refine
an estimate of A∗, referred to as the working set, denoted by W . The working
set is updated by adding or removing constraints, with the choice of constraints
dictated by solving an equality-constrained quadratic program (EQP) defined by
the current working set W . Thus, the overall quadratic program (QP) is solved
through a sequence of EQPs, where each EQP corresponds to the current state of
W .

Active Set Method Algorithm Description The active set method is described via
the following steps.

(1) Initialization: Start with a feasible point x0 and an initial active set A0.
(2) Solve Subproblem: Solve the equality-constrained QP using the active

constraints.
(3) Optimality Check: Verify Lagrange multipliers and constraint feasibility.
(4) Update Active Set: Modify A by adding/removing constraints.
(5) Repeat: Iterate until KKT conditions are satisfied.

This algorithm of the active set method motivates our approach developed in Al-
gorithm 1 for solving green portfolio optimization.
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