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COMPACTNESS IN SINGULAR CARDINALS REVISITED

SAHARON SHELAH

ABSTRACT. This is the second combinatorial proof of the compactness theorem
for singular from 1977. In fact it gives a somewhat stronger theorem.

1. INTRODUCTION

For a long time I have been interested in compactness in singular cardinals; i.e.,
whether if something occurs for “many” subsets of a singularλ of cardinality< λ,
it occurs forλ. For the positive side in the seventies we have

Theorem 1.1. Let λ be a singular cardinal,χ∗ < λ. LetU be a set,F a family of
pairs (A,B) of subsets ofU , instead of(A,B) ∈ F we may write A/B∈ F (formal
quotient) or A/B isF-free. Assume further thatF is a nice freeness notion meaning
it satisfies axioms II, III, IV,VI, VII from 1.1 below. Let A∗,B∗ ⊆ U with |B∗|= λ.
Then B∗/A∗ ∈ F is free in a weak sense, that is: there is an increasing continuous
sequence〈Aα : α < δ〉 of subsets of B∗ of cardinality< λ such that A0 = /0,⋃

α<δ
Aα = A∗ and Ai+1/Ai ∪A isF-free for i< λ when (see Definition 1.2 below):

(∗)0 for theDχ∗(B∗)-majority of B∈ [B∗]<λ we have B/A∗ ∈ F
or just

(∗)1 the set{µ< λ : {B∈ [B∗]µ : B/A∗ ∈ F} ∈ E
µ+
µ (B∗)} contains a club ofλ,

or at least
(∗)2 for some set C of cardinals< λ, unbounded inλ and closed (meaningful

only if cf(λ)> ℵ0), for every µ∈C, for anE
µ+
µ (B+) - positive set of

B∈ [B∗]µ we have B/A∗ ∈ F.

Where
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Definition 1.1. For a setU andF ⊆ {(A,B) : A,B⊆ U } but we may write B/A
instead(A,B), we say,F is a χ-nice freeness notionif F satisfies:

Ax.II B/A∈ F ⇔ A∪B/A∈ F
Ax.III if A ⊆ B⊆C,B/A∈ F and C/B∈ F then C/A∈ F,
Ax.IV if 〈Ai : i ≤ θ〉 is increasing continuous,θ = cf(θ),Ai+1/Ai ∈ F then

Aθ/A0 ∈ F,
Ax.VI if A/B ∈ F then for theDχ-majority of A′ ⊆ A we have, A′/B ∈ F (see

below),
Ax.VII if A/B∈ F then for theDχ-majority of A′ ⊆ A we have, A/B∪A′ ∈ F.

Definition 1.2. 2A1) LetD be a function giving for any set B∗ a filter D(B∗) on
P(B∗) (or on [B∗]µ).
Then to say “for theD-majority of B⊆ B∗ (or B ∈ [B∗]µ) we haveϕ(B)”
means{B⊆ B∗ : ϕ(B)} ∈D(B∗) (or {B∈ [B∗]µ : ¬ ϕ(B)}= /0 modD(B∗)).

2A2) LetDµ(B∗) be the family of Y⊆ P(B∗) such that for some algebra M with
universe B∗ and≤ µ functions,

Y ⊇ SM = {B⊆ B∗ : B 6= /0 is closed under the functions of M}.

2A) LetD=µ(B∗) be defined similarly considering only B’s of cardinality≤ µ.
2A3) E

µ
κ (B∗) where µ≤ κ+ is the collection of all Y⊆ [B∗]κ such that: for someχ,x

satisfying{B∗,x} ∈ H (χ), if M̄ = 〈Mi : i < µ〉 is an increasing continuous
sequence of elementary submodels of(H (χ),∈) such that x∈ M0,
κ+1⊆ M0,‖Mi‖= κ and i< µ⇒ M̄ ↾ (i +1) ∈ Mi+1, then
(a) if µ ≤ κ then

⋃
i<µ

Mi ∩B∗ ∈Y

(b) if µ = κ+ then for some club C of µ+ we have i∈C⇒ Mi ∩B∗ ∈Y.

On Dµ see Kueker [6], and onE µ+
µ see [9] repeated in §2 below, note that in [9]

the axioms are phrased with elementary submodels rather then saying “majority”.
The theorem was proved in [9] but with two extra axioms, however it included
the full case for varieties (i.e., including the non-Schreier ones). Later, the author
eliminated those two extra axioms: Ax.V and Ax.I. Now Ax.V was used in one
point only in [9, §1], and I eliminated it early (as presentedin [1]). Axiom I is
more interesting: it say that ifA′ ⊆ A andA/B free thenA′/B is F-free”; this is like
“every subgroup of a free group if free; (this was shown not tobe necessary for
varieties already in [9]).

In 77 Fleissner has asked for a simpler “combinatorial” proof and we find such
proof circulateding it in mimeographed notes [10]. In May 77, and lecture on it in
Berlin (summer 77 giving the full details only for the case close to Abelian groups).
This proof eliminates the two extra axioms (as its assumptions holds by [9, Lemma
3.4,p.349], see §2 below).

Continuing this Hodges do [5] which contain a compactness result and new
important applications. I have thought he just represent the theorem but looking at
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it lately it seems to me this is not exactly so; the main point in the proof appears
but the frame is different so it is relative. This exemplifiesthe old maxim “if you
want things done in the way you want it, you have to do them yourself”.

Anyhow below in §1,§2 we repeat the mimeographed notes. Notethat §2 repeats
[9, 3.4] needed for deducing 1.1. Restricted to the needed case; note 3.3 give

hypothesis I (the nonE
λ+

i

λγ
i

-non freeness is(∗)2 of 1.1 where hypothesis II is a weak

form of Ax VII.
We thank Wilfred Hodges for help with some corrections and encouragement

and Paul Eklof for preserving and giving me a copy of the mimeographed notes
after many years.

2. A COMPACTNESS THEOREM FOR SINGULAR

Here we somewhat improve and simplify the proof of [9] (and [1]). It may be
considered an answer to question B2 of Fleissner [4].

Theorem 2.1. Assume

(a) λ is a singular cardinal,λi(i < κ) an increasing and continuous sequence of
cardinals (we letλ(i) = λi) and

λ0 = 0, κ = cf(λ),κ ≤ λ1,λ = ∑
i<κ

λi.

(b) Let Si = {A⊆ λ : |A|= λi} and S′i = Si ∪{ /0}
(c) F is a family1 of pairs(A,B),λ ⊇ A⊇ B; we may write “A/B belong toF”
(d) hypothesis I: for each i, i < κ, i a successor, there is a function gi , two-place,

from S′i to S′i , such that: if A1 ⊆ A2 are from S′i ,A1 ∈ { /0} ∪Range(gi), then
A2 ⊆ gi(A1,A2) and [gi(A1,A2)/A1] ∈ F

(e) hypothesis II: if i < κ, A,B∈ S′i+1, A⊆ B and B/A∈ F and B∈ Rang(gi+1),
then player II has a winning strategy in the following game Gmi[A,B]. In the
n-th move(n < ω) player I choose An ∈ Si , such that Bn−1 ⊆ An, and then
player II choose Bn, such that An ⊆ Bn ∈ Si (where we stipulate B−1 = /0).
Player II wins in the play if(B∪

⋃
n<ω

Bn,A∪
⋃

n<ω
Bn) ∈ F (for i = 0 this is an

empty demand as S′i = { /0}).

Then we can find an increasing and continuous chain Aα(α < ωκ), such that
A0 = /0,λ =

⋃
α

Aα and Aα+1/Aα ∈ F for eachα.

Proof. Let in Hypothesis II the winning strategy of player II in the gameGmi be
given by the functionshn

i (A0, . . . ,An;A,B). We define by induction oni < ω sets
An

i ,B
n
i (for i < κ) such that:

(1) An
i (i < κ) is increasing and continuous ini andAn

i ,B
n
i ∈ Si

(2) An
i ⊆ Bn

i ⊆ An+1
i

1Note that none of the axioms of 1.1 is assumed.
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(3) (Bn
i /Bn−1

i ) ∈ F where we stipulateB−1
i = /0 andBn

i ∈ Rang(gi) for i successor
(4) for i < κ,0≤ m< n, i < ω we have

hn−m
i (Am+1

i ,Am+2
i , . . . ,An

i ;Bm−1
i+1 ,Bm

i+1)⊆ An+1
i .

For n= 0
Let A0

i = λi,B0
i = gi( /0,λi); clearly condition (1) holds, (2) and (4) say nothing

and condition (3) holds by Hypothesis I.

For n+1 assuming that forn we have defined.
Let

Cn
i =

⋃

m<n

hn−m−1
i (Am+1

i ,Am+2
i , . . . ,An

i ,B
m−1
i+1 ,Bm

i+1)∪Bn
i

clearly |Cn
i |= λi , hence we can letCn

i = {αbn
i : α < λi}.

Now we defineAn+1
i = {αbn

j : j < κ,α < min{λi ,λ j}}.
Clearly condition (4) and the relevant parts of conditions (1) and (2) hold. We

have to chooseBn+1
i such that

An+1
i ⊆ Bn+1

i and|Bn+1
i |= λi, andi successor⇒ Bn+1

i /Bn
i ∈ F.

So we letBn+1
i = gi(Bn

i ,A
n+1
i ) except thatBn+1

0 = /0. By Hypothesis I this is O.K.

Now we can prove the conclusion of the theorem.
We letDωi+k = (Bk−1

i+1 ∩
⋃

m<ω
Am

i )∪
⋃

j<i,m<ω
Am

j for i < κ. ClearlyD0 = /0, (in fact

An
i ,B

n
i are /0 for i = 0); λ =

⋃
i<ωκ

Di as λi = A0
i ⊆ Dω(i+1) ⊆ λ. The sequence is

increasing and continuous.
[

that is e.g., ifδ = ωi +ω so δ = ω(i +1)+0 then Dδ ⊆
⋃

α<δ
Dα as B−1

i+1 = /0,

so Dδ =
⋃

j<i+1,m<ω
Am

j = (
⋃

j<i,m<ω
Am

j )∪
⋃
m

Am
i but Am

i ⊆ Am
i+1 ⊆ Bm

i+1.

so Dδ ⊆
⋃
k

[ ⋃

( j<i
m<ω)

Am
j ∪ (Bk−1

i+1 ∩
⋃

m<ω
Am

i ) =
⋃
k

Dωi+k ⊆
⋃

α<δ
Dα

]]

.

Now Dωi+k+1/Dωi+k ∈ F asBk
i+1/Bk−1

i+1 ∈ F by condition (3), and then use con-
dition (4)) and the choice of thehi

n−s′
[

that is, player II wins the play
〈Ak+ℓ

i ,hk+ℓ
i (Ak+1

i ,Ak+2
i . . . ,Ak+ℓ

i ,Bk−1
i+1 ,B

k
i+1) : ℓ < ω〉

of the gameGmi[B
k−1
i+1 ,B

k
i+1]

]

. �

Remark2.1. 1) In the context of [8], [1] Hypothesis I holds quite straightforwardly
whereas Hypothesis II is proved separately, see [9, Lemma 3.4 p. 344].
2) Usually the choice of theλi ’s is not important, and then Hypothesis I, Hypothesis
II should speak onµ< λ,µ< µ′ < λ.

3) In the construction proving the Theorem we can continueχ < λ1 steps instead
of ω steps. We succeed if: in Hypothesis II the game has lengthχ and we add to
hypothesis II: ifAi/A0 ∈ F for i < χ,Ai increasing continuous then

⋃
i<χ

Ai/A0 ∈ F.
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An example is:G is a group with universeλ and

F = {(A,B) : Ext(A/B,C∗) = /0}
whereA⊆ B are subgroup ofG, cf(λ)< χ < λ,χ measurable(C∗ a fixed group of
cardinality< χ) and e.g. G.C.H. (see below).

4) We can improve a little Eklof’s results on compactness [3]where “A free” is
replace by “Ext(A,Z) = 0”.
Note that in his proofs♦S can be replaced by “S not small” e.g. (see [2]), and
instead “♦S for stationaryS” by the above “Snot small for all stationarySsuch that
(∀δ ∈ S)cf(δ) = ℵ0” suffice but if sup(S) = λ+,λℵ0 = λ,2λ = λ+, this holds. So
we can get compactness foriα+ω assuming G.C.H.

4A) Hypothesis I can be rephrased similary to Hypothesis II,as the existence of a
winning strategy (to player II) in appropriate game.

5) For the Whithead problem we need only “anyλ-free abelian group isλ+-free”
for singularλ. So supposeG is aλ−free group with universeλ andF = {(A,B) :
A/B is free}. There we do not need Hypothesis I, and can represent the proof
somewhat differently.

In the construction we choosepure subgroupsAn
i ,B

n
i and choose a free basisIn

i
of An

i and demand satisfying

(a) (1) + (2)
(b) for m< n, Am

i+1∩Bn
i is generated by a subset ofIm

i+1
(c) for eachm< n and integera,

(∀x∈ Bn
i ∩Am+1

i+1 )[(∃y∈ Am+1
i+1 )[ay+x∈ Am

i+1]→ (∃y∈ Am+1
i+1 ∩Bn

i )ay+x∈ Am
i+1)]

By (c) we shall getAm
i+1/

⋃
m<ω

Bn
i hence it is known (Hill) that

⋃

m

Am
i+1/

⋃

m

Bm
i =

⋃

n

Am
i

is free thus finishing.

3. ON THE HYPOTHESIS

Context3.1. U ,F is as in Definition 1.1.

Notation3.2. 0) A,B,C,D denote subsets ofU .

1) Sκ(A) = {B⊆ A : |B|< κ}.

2) A/B is free mean(A,B) ∈ F.

3) A,B,D denote subsets ofU .

4) M = (H (χ),∈,<∗
χ) whereχ is large enough such thatP(U )∈H (χ) and<∗

χ
a well ordering ofM . We sayM ∗ is aκ-expansion ofM if we expandM by≤ κ
additional relations and functions.

5) E ub
κ (A) is the following filter orSκ(A) :Y ∈ E ub

κ (A) iff Y ⊇YC =YC(A) for some
Y ⊆ A,C∈ Sκ(A) whereYC = {B∈ Sκ(A) : C ⊆ B} we callYC[A] a generator.
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Definition 3.1. 1) The pair A/B is E -free (whereE , or E (A), is a filter over a
family of subsets of A so C∈ X ∈ E ⇒C⊆ A) if:

{C : C ∈ ∪E and C/B is free} ∈ E .

2) We can replace “free” by any other property.

Remark3.1. Obvious monotonicity results hold.

Definition 3.2. 1) For every µ≦ κ < λ,C ∈ Sκ(A),A⊆ U such that|A|= λ, and
B ⊆ U and filter E over Sκ(A), we define the rank R(C,E )Rµ

κ(C,E ;A/B) as an
ordinal or ∞, so that

(a) R(C,E ) ≧ α+1 iff C/B is free and{D ∈ Sκ(A) : C ⊆ D and D/C∪B is
free and R(D,E )≧ α} 6= /0 modE

(b) R(C,E )≧ δ(δ = 0 or δ limit) iff C/B is free andα < δ implies
Rµ

κ(C,E )≧ α.

2) R(A/B,E ) = sup{Rµ
κ(C,E ) : C∈ Sκ(A)}.

3) Writing Rµ
κ(C) = Rµ

κ(C;A/B) means R(C,E µ
κ ;A/B) and writing

Rub
κ (C) = Rub

κ (C;A/B) means R(C,E ub
κ ;A/B). Similarly Rµ

κ(A/B) means
R(A/B,E µ

κ ) and Rub
κ (A/B) means R(A/B,E ub

κ ).

Remark3.2. Note that omittingA/B is reasonable because mostly they are clear
from the content.

Lemma 3.3. Supposeκ+< λ,µ≦ κ,A/B is notE κ+

κ+ -non-free and S1 ∈ E κ+

κ+ (A).
Then Rub

κ = ∞, [moreover for every S1 ∈ E κ+

κ+ (A) andκ-expansionM ∗ of M there
are C∈ S2 and D∈ S1 and N≺ M ∗,{A,B} ∈ N,‖N‖= κ such that D∈ N,
C = D∩N and Rµ

k(C) = ∞.]

Proof. Let S1 ⊇ Sκ(M
∗) if C∈ Sκ(A),0≦ Rub

κ (C)< ∞, then there is a generator
S(C) ∈ E ub

κ (A),S(C) = S ub
κ (M ∗

C), such that forD ∈ S(C),D/C∪B is not free or
Rub

κ (D)< Rub
κ (C). If C B is not free orRub

κ (C) = ∞, let M ∗
C be anyκ-expansion of

M , and letS2 = Sub
κ (M 2). Let M+ be aκ-expansion ofM ,expandingM ∗,M 2

and having the relationsP,P2 where

P= {(C,N) : C∈ Sκ(A),N ≺ M
∗
C,‖N‖< χ2}

P2 = {N : N < M
2,‖N‖< χ2}.

As
{D ∈ Sκ+(A) : D/B is free} 6= /0 modE

κ+

κ+ (A)

andS1 ∈ E κ+

κ+ (A) and (by 3.1Sκ+(A)); there areD, N̄ such that:

(1) S/B is free
(2) D ∈ S1

(3) Ni(i < κ+) is anM+-sequence and‖Ni‖≦ κ, so
(4) D = A∩

⋃

i<κ+

Ni, without loss of generality‖Ni‖= κ, κ ⊆ Ni.
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Let A∗
i =D∩Ni, soA∗

i ∈Ni+1 and letN =
⋃

i<κ+
Ni. Clearly〈Ni : i < κ+〉 is also an

M 2-sequence hence for eachδ < κ+,〈Ni : i < δ〉 is anM 2-sequence, hence, ifκ
dividesδ,cf(δ) = µ, thenA∗

δ ∈S2. If C∈Ni,C∈Sκ(A), then for everyj > i, j < κ+

there is a modelN j
i ≺ M ∗

C,‖N j
i ‖= κ, |N j

i | andNi
j ∈ Nj+1, henceNi

j ⊆ Nj+1.
Hence, for any limit ordinalδ, i < δ < κ+ impliesNδ ≺ M ∗

C.
Clearly 〈Nj : i < j < κ+, j limit 〉 is anM+-sequence, hence it is anM ∗

C se-
quence, hence, isi < δ < κ+,δ is limit, κ2 dividesδ,cf(δ) = µ, thenA∗

δ ∈ S(C). As
S/B is free, by [9],1.2(7) there is a closed unbounded subset ofκ+,W, such that
for i, j ∈W, i < j, A∗

j/A∗
i ∪B is free andA∗

i /B is free. We can assume that such
i ∈ W is divisible byκ2. Hence, ifi, j ∈ W, i < j, cf( j) = µ,Rub

κ (A∗
i ) < ∞, then

Rµ
κ(A∗

j )< Rµ
κ(A∗

i )< ∞ (by the definition ofS(C)).
So, if for somei ∈W,Rµ

κ(A∗
i ) < ∞,cf(in) = µ, in ∈W, i < in < in+1 thenRµ

κ(A∗
in)

is an infinite decreasing sequence of ordinals, a contradiction.
Hence,i ∈W impliesRµ

κ(A∗
i ) = ∞.

Let D=
⋃

i<κ+
A∗

i , and chooseN≺M ∗, D∈N, N∩
⋃

i<κ+
A∗

i =A∗
δ, δ∈W, cf(δ) =µ,

andC = A∗
δ. So we are finished. �

Lemma 3.4. 1) If µ≦ κ < λ, C ∈ Sκ(A), Rµ
κ(C) = ∞, S∈ E

µ
κ (A), then for some

D ∈ S, C ⊆ D, Rµ
κ(D) = ∞ and D/C∪B is free.

2) The same holds for any filter over Sκ(A).

Proof. 1) As Sκ(A) is a set, for some ordinalα0 < |Sκ(A)|+, for noC ∈ Sκ(A)
is Rµ

κ(C) = α0. We can easily prove thatRµ
κ(C) ≧ α0 iff Rµ

κ(C) = ∞. Using the
definition we get our assertion.
2) The same proof. �
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