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COMPACTNESS IN SINGULAR CARDINALS REVISITED

SAHARON SHELAH

ABSTRACT. This is the second combinatorial proof of the compactrisssrem
for singular from 1977. In fact it gives a somewhat strongjeotem.

1. INTRODUCTION

For a long time | have been interested in compactness inlgingardinals; i.e.,
whether if something occurs for “many” subsets of a singhlaf cardinality < A,
it occurs forA. For the positive side in the seventies we have

Theorem 1.1. LetA be a singular cardinalx* < A. Let% be a setF a family of
pairs (A,B) of subsets o/, instead of(A,B) € F we may write AB € F (formal
quotient) or A'B is F-free. Assume further th&tis a nice freeness notion meaning
it satisfies axioms I, Ill, IV,\VI, VII from 1.1 below. Let B* C % with |B*| = A.
Then B /A" € Fis free in a weak sense, that is: there is an increasing cootis
sequencgAq : o < d) of subsets of Bof cardinality < A such that 4 =0,
U Aq =A. and A, 1/A UA isF-free for i< A when (see Definition 1.2 below):
a<d
(x)o for the 2. (B*)-majority of B& [B*]<* we have BA* € F
or just
(¥)1 these{p<A:{Be [B'M:B/A"cF} e é"f(B*)} contains a club o,
or at least
(x)2 for some set C of cardinals A, unbounded i\ and closed (meaningful
only if cf(A) > Oy), for every pe C, for an é"uw(BJf) - positive set of
B € [B*]* we have BA* € F.

Where
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Definition 1.1. For a set% andF C {(A,B) : A/B C % } but we may write BA
instead(A,B), we sayF is ax-nice freeness notioiif F satisfies:

Ax.Il B/Ac F< AUB/AcF
Ax.IIl ifACBCC,B/AcFandC/BeFthenCAcF,
AX.IV if (A 1 i < 8) is increasing continuoud = cf(0),A+1/A € F then
Ag/Ag € F,
Ax.VI if A/B e F then for theZy-majority of A C A we have, AB < F (see
below),
Ax.VIl if A/B € F then for theZ,-majority of A C A we have, ABBUA ¢ F.

Definition 1.2. 1) LetZ be a function giving for any set*Ba filter Z(B*) on
2(B*) (or on [B*]H).
Then to say “for theZz-majority of BC B* (or B € [B*]") we haved(B)”
means(BC B*:$(B)} € 2(B*) (or {Be [B*]*: = ¢(B)} =0 modZ(B")).
2) LetZ,(B*) be the family of YC &?(B*) such that for some algebra M with
universe B and < pu functions,

Y O Su={BCB":B+#0is closed under the functions ofjM

2A) LetZ_,(B*) be defined similarly considering only B’s of cardinalityp.

3) &(B*) where u< k* is the collection of all YC [B*]¥ such that: for somg, x
satisfying{B*,x} € s (x), if M = (M; : i < p) is an increasing continuous
sequence of elementary submodel§#f(x), €) such that xc Mg,

K+1C Mg, |[Mi]| =k and i< p=M [ (i+1) € Mi;4, then
(a) ifp<k then MiNB* €Y
i<p
(b) if p= k™ then for some club C offuwe have e C= MiNB* €Y.

On %, see Kueker [6], and Otﬁ“’pH+ see [9] repeated in 82 below, note that in [9]
the axioms are phrased with elementary submodels ratheisthgng “majority”.
The theorem was proved in [9] but with two extra axioms, havat included
the full case for varieties (i.e., including the non-Sceraines). Later, the author
eliminated those two extra axioms: Ax.V and Ax.l. Now Ax.V svased in one
point only in [9, 81], and | eliminated it early (as presentadl]). Axiom I is
more interesting: it say that & C AandA/B free thenA' /B is F-free”; this is like
“every subgroup of a free group if free; (this was shown nobeonecessary for
varieties already in [9]).

In 77 Fleissner has asked for a simpler “combinatorial” payal we find such
proof circulateding it in mimeographed notes [10]. In May @md lecture on it in
Berlin (summer 77 giving the full details only for the casesd to Abelian groups).
This proof eliminates the two extra axioms (as its assumptiwlds by [9, Lemma
3.4,p.349], see 82 below).

Continuing this Hodges do [5] which contain a compactnessiliteand new
important applications. | have thought he just representiiborem but looking at
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it lately it seems to me this is not exactly so; the main painthie proof appears
but the frame is different so it is relative. This exemplifiee old maxim *“if you
want things done in the way you want it, you have to do them sl

Anyhow below in 81,82 we repeat the mimeographed notes. tRat&2 repeats
[9, 3.4] needed for deducing 1.1. Restricted to the needsd; aaote 3.3 give

hypothesis | (the noéf_f—non freeness iéx), of 1.1 where hypothesis Il is a weak
form of Ax VII. |
We thank Wilfred Hodges for help with some corrections andoemnagement

and Paul EKlof for preserving and giving me a copy of the mignaphed notes
after many years.

2. A COMPACTNESS THEOREM FOR SINGULAR

Here we somewhat improve and simplify the proof of [9] (anf).[1t may be
considered an answer to question B2 of Fleissner [4].

Theorem 2.1. Assume

(a) Ais a singular cardinal Ai(i < K) an increasing and continuous sequence of
cardinals (we lefA(i) = A;) and
Ao =0,k =cfA),K<ApL,A= 3 A

1<K

(b) LetS={ACA:|Al=A}and $=SU{0}

(c) Fis a family of pairs (A,B),A O A D B; we may write “A/B belong toF”

(d) hypothesis: for each ii < k,i a successor, there is a functior, gvo-place,
from 3 to S, such that: if A C Ay are from $ A; € {0} URangégg;), then
A2 C gi(A1,A2) and[gi (A1, Az) /A1) € F

(e) hypothesis Il ifi <k,ABeS,;,ACBandB/AcFandBec Ranggi1),
then player Il has a winning strategy in the following game (AwB]. In the
n-th move(n < w) player | choose A€ S, such that B_1 C A,, and then
player Il choose B, such that A C B, € § (where we stipulate B = 0).
Player 1l wins in the play ifBU | By, AU U Bn) € F (for i =0 this is an

n<w n<w
empty demand ag S {0}).

Then we can find an increasing and continuous chajfioA< wk), such that
Ap=0,A =UAq and Ay1/Aq € F for eacha.
a

Proof. Let in Hypothesis Il the winning strategy of player Il in thargeGm be
given by the function$i’(Ao,...,An; A, B). We define by induction on< w sets
A, B (for i < k) such that:

(1) Al(i < k) is increasing and continuousiimndA!, B! € §

(2) AT C BN C AT

INote that none of the axioms of 1.1 is assumed.
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(3) (B"/B"1) € F where we stipulat® ' = 0 andB" ¢ Rangdg;) for i successor
(4) fori <k,0<m<n,i <wwe have

hinim(Aim_FlyAim—an s 7A|'n; Birtlt:j_la Blr:ll) C Ain+1'

For n=0

Let A = A, B? = g;(0,A); clearly condition (1) holds, (2) and (4) say nothing
and condition (3) holds by Hypothesis I.
For n+ 1 assuming that fon we have defined.

Let

Ch=[Jh ™ AN AN AN B B UBY
m<n

clearly |C'| = Ai, hence we can |62 = {°b' : a < A }.

Now we defineAl™ = {®b] : j < k,a < min{A;,Aj}}.

Clearly condition (4) and the relevant parts of conditiohsdnd (2) hold. We
have to choos&" ! such that

AM1c B! and|BM?| = \;, andi successor= B"!/BI € F.
So we letBM = g;(B", A1) except thaBf ™ = 0. By Hypothesis | this is O.K.

Now we can prove the conclusion of the theorem.
We letDgik = (BY,1N U AU U AMfori < k. ClearlyDo = 0, (in fact
m<w 1 <I,m<w
A B! are0 fori=0); A= U Dj asAi = A C Dwi+1) € A. The sequence is
increasing and continuous.KmK
[thatis e.g., ifd=wi +w s0 &=w(i+1)+0 thenDs C |J Dy as B} =0,

i+1—
a<d
soDsg= U A'=( U AMUUA"butA"C AT, C BT,
j<i+lm<w j<im<w m
so DsCU[ U ATUBSIN U A™ =UDuisk € U Da].
k (r’rjé:u) m<w k a<o

Now Dgji+k+1/Daitk € F asBE, /B 1 € F by condition (3), and then use con-

dition (4)) and the choice of thd, — s [that is, player Il wins the play

k+0 k40 pk k k+0 pk— .
<Ai+[7hi+/(Ai+l> '+2"'7 '+[7Bi+f>B=(+l)'€<w>

of the gameGm B 1, B, ,]]. O

Remark2.1 1) In the context of [8], [1] Hypothesis | holds quite stratiginwardly
whereas Hypothesis Il is proved separately, see [9, Lem#p. B44].

2) Usually the choice of thi’s is not important, and then Hypothesis I, Hypothesis
Il should speak op < A, < i <A.

3) In the construction proving the Theorem we can contiue, steps instead
of w steps. We succeed if: in Hypothesis Il the game has lexgthd we add to
hypothesis II: ifA; /Ag € F for i < X, A increasing continuous thelg) Ai/Ap € F.

<X
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An example isG is a group with universa and
F={(AB):Ext(A/B,C") =0}

whereA C B are subgroup 08, cf(A) < X < A,x measurabl¢C* a fixed group of
cardinality< x) and e.g. G.C.H. (see below).
4) We can improve a little Eklof’s results on compactnessw8gre ‘A free” is
replace by “ExtA,Z) = 0".
Note that in his proofg)s can be replaced byS'not small” e.g. (see [2]), and
instead O s for stationaryS’ by the above Snot small for all stationargsuch that
(V8 € S)cf(8) = O¢” suffice but if sugS) = A+, AP0 = A, 2 = A*, this holds. So
we can get compactness 8., assuming G.C.H.
4A) Hypothesis | can be rephrased similary to Hypothesiadlthe existence of a
winning strategy (to player II) in appropriate game.

5) For the Whithead problem we need only “akyree abelian group ia"-free”
for singularA. So suppos& is aA—free group with universa andF = {(A,B) :
A/Bis free}. There we do not need Hypothesis |, and can represent thé proo
somewhat differently.

In the construction we choosgure subgroupsA', B! and choose a free badjs
of A" and demand satisfying

(@) (1) +(2)

(b) form<n, AT, NB'is generated by a subsetIdf,
(c) for eachm < nand integem,
v

(vx € BINAT[(By e AT [ay+x e ATy — By € AT NBay+x € AlLy)]
By (c) we shall ge®\™ ,/ U B[ hence itis known (Hill) that
m<w

A/ Uer = UAT

is free thus finishing.

3. ON THE HYPOTHESIS
Context3.1 % ,F is as in Definition 1.1.

Notation3.2 0) A,B,C,D denote subsets &% .

1) #(A) ={BCA:|B| <K}.

2) A/Bis free mear{A,B) € F.

3) A, B,D denote subsets d¥ .

4) 4 = (A (X), €,<y) wherey is large enough such tha# (7% ) € 7(x) and<;
a well ordering of 7. We say.#* is ak-expansion of# if we expand.# by <k
additional relations and functions.

5) £40(A) is the following filter or.% (A) : Y € £UP(A) iff Y D Yo = Yc(A) for some
Y CACe “(A) whereYc = {B € .%(A) : C C B} we callYc[A] a generator.
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Definition 3.1. 1) The pair AB is &-free (where&’, or &(A), is a filter over a
family of subsets of Aso€EX € & = C C A)if:

{C:Ceu&andC/B isfreg c &.
2) We can replace “free” by any other property.

Remark3.1 Obvious monotonicity results hold.

Definition 3.2. 1) For every p= K < A,C € %(A),AC % such thatA| = A, and
B C % and filter & over.%(A), we define the rank [, )Ry (C,&;A/B) as an
ordinal or o, so that
(@) RC,&) 2a+1iff C/Bis free and{D € .#c(A) :CC D and D/CUB is
freeand RD,&) =2 a} #0 modé&
(b) R(C,&) = 8(d=0o0rdlimit) iff C/B is free andx < dimplies
R(C,&) Z a.
2) R(A/B,&) = sup(R(C,&) :C e &(A)}.
3) Writing R;(C) = R{(C;A/B) means RC, &}; A/B) and writing
RUP(C) = RYP(C; A/B) means RC, 5%, A/B). Similarly R{(A/B) means
R(A/B,&¢) and RP(A/B) means RA/B, &),

Remark3.2 Note that omittingA/B is reasonable because mostly they are clear
from the content.

Lemma 3.3. Suppose* < A, i < k,A/B is not&X -non-free and 8¢ &5 (A).
Then RP = «, [moreover for every S¢ éoK"f (A) andk-expansion#* of . there
areCe S and De S and N< 7%, {A,B} € N,|IN|| =K such that De N,
C=DnNNand R(C) = /]

Proof. LetS; D . (.#*) if C € #(A),0 < RP(C) < , then there is a generator
S(C) € £*0(A),S(C) = #(4E), such that foD € S(C),D/CUB is not free or
RWP(D) < RIP(C). If C Bis not free oiRYP(C) = =, let . be anyk-expansion of
A, and letS; = §P(.#?). Let.# ™ be ak-expansion of# ,expanding#*,.#?
and having the relatiori® P, where
P= {(C>N) :Ce tSﬂK(A%N = '//57 ||N|| < XZ}
P = {N:N < .2%|N|| < Xz2}.
AS . +
{DeS+(A):D/Bisfree} A0 mod&s (A)
andS; € &5 (A) and (by 3.1%- (A)); there areD, N such that:
(1) S/Bis free
(2) Deg
(3) Ni(i <k™)is an.Z"-sequence anfiNi|| =k, so
(4) D=An U N, without loss of generality{N;|| = K, K C N;.

i<kt
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LetA"=DnNN;, soA’ e NiypandletN= [J N;. Clearly(N;:i <k™)isalsoan
i<k™
?-sequence hence for eadh k*, (N, : i < 8) is an.#?-sequence, hence, if
dividesd, cf(8) =, thenAj € S. If Ce N;,C € 7 (A), then for everyj > i, j <k™
there is a modeN, <.7¢, [IN/[| =, |N/| andN} € Nj 1, henceN} C N;. 1.

Hence, for any limit ordinad,i < & < k™ impliesNs < ..

Clearly (Nj :i < j < k™, limit ) is an.#"-sequence, hence it is a# se-
guence, hence, is< 8 < k", 3is limit, k? dividesd, cf(3) = , thenA; € SC). As
S/B is free, by [9],1.2(7) there is a closed unbounded subset ofV, such that
fori,jeW, i <j, Aj/A'UBIs free andA’ /B is free. We can assume that such
i € W is divisible byk2. Hence, ifi, j ¢ W,i < j, cf(j) = 1, RP(A?) < o, then
RE(AT) < RK(AY) < o (by the definition ofS(C)).

So, if for some € W, R((A) < o, cf(in) = W in € W,i <in <ins1 thenRE(A!)
is an infinite decreasing sequence of ordinals, a contiadict

Hence,i € W implies Ry (A) = co.

Let D= {J A/, andchoos®l <.Z*, DeN, NN U A’ =A;, deW, cf(d) =,

i<kt o i<kt
andC = A;. So we are finished. O

Lemma3.4. 1) Ifu<K <A, C€ %(A), R(C) =, Sc &'(A), then for some

DeS CCD, R{(D) = and D/CUB is free.
2) The same holds for any filter oveg(8,).

Proof. 1) As .%(A) is a set, for some ordinaly < |-#«(A)|, for noC € % (A)

is Ry (C) = ag. We can easily prove tha;(C) > ay iff R(C) = ». Using the
definition we get our assertion.

2) The same proof. O
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