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ABSTRACT. In this paper, we consider convex heptagons with the property that
every four consecutive vertices of this heptagon determine a trapezoid in which
the side that is a diagonal of the heptagon is also one of the bases of the trape-
zoid. The existence of such a heptagon embedded in the integer lattice has been
proved.

1. INTRODUCTION

We consider a Cartesian coordinate system. A point in a plane whose both co-
ordinates are integers is called a lattice point. A convex polygon that has lattice
points for all its vertices is called a convex lattice polygon. A quadrilateral whose
vertices are four consecutive vertices of a convex integer polygon is called a bound-
ary quadrilateral of that polygon.

Rabinowitz has constructed a convex lattice polygon with n edges of minimum
area, where n ≥ 6 is an even number ( [1]). All the boundary quadrilaterals of that
polygon are trapezoids ( [1]). Thus, it has been proved that for every even natural
number n (n ≥ 6) there is a convex lattice polygon with n edges, all of whose
boundary quadrilaterals are trapezoids. The existence of a convex lattice polygon
with n edges, where n ≥ 5 is an odd number has shown to be a considerably more
difficult problem. In [2] it has been proved that there does not exist a convex
lattice pentagon such that all of its boundary quadrilaterals are trapezoids. Some
results related to boundary lattice triangles, i.e. triangles whose vertices are three
consecutive vertices of a convex lattice polygon, can be found in [3], [4] and [5].

In this paper, we consider the case of the existence of a convex lattice heptagon
for which all of its boundary quadrilaterals are trapezoids. Section 2 deals with the
properties of convex heptagons with trapezoids as boundary quadrilaterals, even
when they are not drawn on an integer lattice. In other words, it discusses the
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relationships between coefficients associated with the considered trapezoids which
are expressed in Lemma 2 and Lemma 3. In section 3 the following is proved.

Theorem 1.1. There is a convex lattice heptagon such that all of its boundary
quadrilaterals are trapezoids.

The proof includes two examples of such heptagons constructed based on the rela-
tions between the coefficients obtained in Lemma 3.

2. PROPERTIES OF CONVEX HEPTAGONS WITH TRAPEZOIDS AS BOUNDARY

QUADRILATERALS

Suppose A1A2 . . .A7 is a convex heptagon such that all of its boundary quadri-
laterals are trapezoids. (Such a convex heptagon exists, it is a regular heptagon
for example.) Denote ai =

−−−→
AiAi+1, di =

−−−−−→
Ai−1Ai+2, i = 1,2, . . .7 (A0 ≡ A7, A8 ≡ A1,

A9 ≡ A2). Also, denote ai the length of ai and di the length of di. Obviously, due
to convexity, di ∥ ai and di > ai must hold.

Lemma 2.1. Suppose A1A2 . . .A7 is a convex heptagon such that all of its boundary
quadrilaterals are trapezoids. For each trapezoid Ai−1AiAi+1Ai+2 there exists a
positive real number ki such that

ai−1 +ai+1 = kiai,

where ki is a positive real number.

Proof. Because di ∥ ai and di > ai, there is a real number li (li > 1) such that
di = li ai, so we have

ai−1 +ai +ai+1 = liai ⇔ ai−1 +ai+1 = kiai,

where ki is a positive real number (ki = li −1). □

The coefficient ki from the previous lemma will be called the ‘k−coefficient’
associated with the trapezoid Ai−1AiAi+1Ai+2.

Lemma 2.2. For the k−coefficients of the boundary quadrilaterals Ai−1AiAi+1Ai+2

(ki +1)ki+1 = ki+3(ki+4 +1),

(ki +1)(ki+1ki+2 −1) = ki+4,

hold, where i = 1,2, . . . ,7 and k j+7 = k j, for j = 1,2,3,4.

Proof. Let’s express the vectors a1, a2, a5, a6 and a7 from the linearly independent
vectors a3 and a4. Based on previous lemma there are positive real numbers ki,
i = 1,2, . . . ,7, such that

ai−1 +ai+1 = kiai. (2.1)
For i = 3 and i = 4 we respectively get that

a2 = k3a3 −a4,
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a5 = k4a4 −a3.

Using (2.1) and the previous two equations, we get that

a1 = k2a2 −a3 = k2(k3a3 −a4)−a3 = (k2k3 −1)a3 − k2a4,

a6 = k5a5 −a4 = k5(k4a4 −a3)−a4 = (k4k5 −1)a4 − k5a3,

a7 = k1a1 −a2 = (k1k2k3 − k1 − k3)a3 − (k1k2 −1)a4.

Since
a1 +a2 +a3 +a4 +a5 +a6 +a7 = 0,

by including previously obtained values for a1, a2, a5, a6 and a7, we get

(k1k2k3 + k2k3 − k1 − k5 −1)a3 +(k4k5 + k4 − k1k2 − k2)a4 = 0,

and therefore
k1k2k3 + k2k3 − k1 − k5 = 1, (2.2)

k4k5 + k4 = k1k2 + k2. (2.3)

Due to symmetry,
(ki +1)ki+1 = ki+3(ki+4 +1) (2.4)

and
(ki +1)(ki+1ki+2 −1) = ki+4, (2.5)

follow (i = 1,2, . . . ,7 and k j+7 = k j, for j = 1,2,3,4). □

Lemma 2.3. For the k−coefficients of the boundary quadrilaterals Ai−1AiAi+1Ai+2

k1 = (ax−1)
ax+a+ x+

√
D

2(a+1)x
,

k2 =
−ax−a+ x+

√
D

2a(x+1)
,

k5 =
−ax− x+a+

√
D

2(a+1)x
,

k6 = (ax−1)
ax+a+ x+

√
D

2a(x+1)
,

k7 =
−ax−a− x−2+

√
D

2
,

hold, where a = k3, x = k4 and

D =
(ax+1)(ax+a+ x)2 +2(a2x2 −a2 − x2)

ax−1
.
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Proof. In order to solve this system, let’s single out the following five equations

(k3 +1)k4 = k6(k7 +1), (2.6)

(k5 +1)k6 = k1(k2 +1), (2.7)

(k7 +1)k1 = k3(k4 +1), (2.8)

k2k3k4 + k3k4 − k2 − k6 = 1, (2.9)

k3k4k5 + k4k5 − k3 − k7 = 1. (2.10)
Suppose k3 = a, k4 = x. Let’s express the other unknowns from the system of

equations (2.6)–(2.10) using a and x. The equations (2.6) and (2.8) get the form of
(a+1)x = k6(k7 +1) and (k7 +1)k1 = a(x+1). From this, as well as from (2.7),
we get that

k6

k1
=

(a+1)x
a(x+1)

=
k2 +1
k5 +1

, (2.11)

whereby

k2 +1 =
(a+1)x(k5 +1)

a(x+1)
. (2.12)

Let’s express the unknowns k1, k6 and k7 in a, x and k5. From equation (2.10), it
follows that

k7 +1 = axk5 + xk5 −a,

k7 = (a+1)(xk5 −1). (2.13)
By substituting the obtained value for k7 in (2.8), we get that

(axk5 + xk5 −a)k1 = a(x+1),

k1 =
a(x+1)

(a+1)xk5 −a
.

From this, as well as from (2.11) we get that

k6 =
(a+1)x

(a+1)xk5 −a
. (2.14)

Equation (2.9) can be written in the form

(k2 +1)(ax−1) = k6. (2.15)

By including the results for k2 +1 from (2.12) we respectively get the following

(a+1)x(k5 +1)
a(x+1)

(ax−1) =
(a+1)x

(a+1)xk5 −a
,

((a+1)xk5 −a)(k5 +1) =
a(x+1)
ax−1

,

(a+1)xk2
5 +(ax+ x−a)k5 =

a(a+1)x
ax−1

. (2.16)
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Similarly, we can get the quadratic equation for k2. Since from (2.11)

(a+1)xk5 = a(x+1)k2 +a− x,

by making a substitution in (2.14), we get that

k6 =
(a+1)x

a(x+1)k2 − x
.

By substituting this value in (2.15), we get that

(k2 +1)(ax−1) =
(a+1)x

a(x+1)k2 − x
,

Whence by multiplying by a(x+1)k2 − x we get the quadratic equation for k2

a(x+1)k2
2 +(ax+a− x)k2 =

ax(x+1)
ax−1

. (2.17)

The discriminants of the quadratic equations (2.16) and (2.17) are as follows

D5 = (ax+ x−a)2 +
4a(a+1)2x2

ax−1
,

D2 = (ax+a− x)2 +
4a2x(x+1)2

ax−1
.

Denote by

D =
(ax+1)(ax+a+ x)2 +2(a2x2 −a2 − x2)

ax−1
. (2.18)

It is easy to check that the identities D5 = D2 = D are valid, from which it follows
that D2 and D5 are symmetric functions of the variables a and x. Since k2 and k5
are the positive solutions of equations (2.17) and (2.16) respectively, it follows that

k2 =
−ax−a+ x+

√
D

2a(x+1)
, (2.19)

k5 =
−ax− x+a+

√
D

2(a+1)x
. (2.20)

From (2.15), we get that

k6 = (ax−1)
ax+a+ x+

√
D

2a(x+1)
, (2.21)

while from (2.13) we get that

k7 =
−ax−a− x−2+

√
D

2
. (2.22)

From (2.11) and (2.21) we get that

k1 = (ax−1)
ax+a+ x+

√
D

2(a+1)x
. (2.23)
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□

By checking, we conclude that the ordered septuple (k1,k2,k3,k4,k5,k6,k7),
where k3 = a and k4 = x are arbitrary positive real numbers, where ax > 1 and
k2, k5, k6, k7 and k1 are expressed via a and x in formulas (2.19)–(2.23), is the
solution of the system of equations (2.4)–(2.5). From equation (2.5), it follows that
kiki+1 > 1 for each i. Specifically, when i = 3 we get that ax > 1.

For each pair (a,x) of positive real numbers where ax > 1, it is easy to construct
a convex heptagon A1A2 . . .A7 such that all of its boundary quadrilaterals are trape-
zoids for which the relations of parallel sides, respectively k1, k2, k3 = a, k4 = x,
k5, k6, k7 are obtained from the above formulas.

Example 2.1. Let’s say, for example, that we have A3(0,1), A4(0,0) and A5(1,0).
Let’s construct the point A2 so that

−−→
A2A5 = (1+ k3)

−−→
A3A4, and then let’s do the

same for the points A6, A7, A1 so that
−−→
A3A6 = (1+ k4)

−−→
A4A5,

−−→
A4A7 = (1+ k5)

−−→
A5A6

and
−−→
A1A4 = (1+k2)

−−→
A2A3. We respectively get A2(1,1+k3), A6(1+k4,1), A7(k4 +

k4k5,1+k5) and A1(1+k2,k3+k2k3). Let’s check if the remaining three equations
also apply to the points thus determined i.e.

−−→
A5A1 = (1+ k6)

−−→
A6A7,

−−→
A6A2 = (1+

k7)
−−→
A7A1 and

−−→
A7A3 = (1+ k1)

−−→
A1A2.

The equation
−−→
A5A1 = (1+ k6)

−−→
A6A7 comes down to two equations

k4k5k6 + k4k5 − k6 −1 = k2,

k3 + k2k3 = k5 + k5k6.

The first equation k4k5(k6 +1)− k2 − k6 = 1 based on (2.4) when i = 2 reduces to

k4(k2 +1)k3 − k2 − k6 = 1,

and that is equation (2.9). The second equation is equation (2.4) when i = 2.
The equation

−−→
A6A2 = (1+ k7)

−−→
A7A1 reduces to the following equations

1+ k2 − k4k5 + k7 + k2k7 − k4k7 − k4k5k7 = 0,

k2k3 −1− k5 + k3k7 + k2k3k7 − k7 − k5k7 = 0.

By applying (2.4) when i = 1 and (2.5) when i = 7, we once again reduce the first
equation to (2.4) when i = 1 in the following way

1+ k2 − k4k5 + k7 + k2k7 − k7k4(k5 +1) = 0,

1+ k2 − k4k5 + k7 + k2k7 − k7(k1 +1)k2 = 0,

k2 − k4k5 = k7k1k2 − k7 −1,

k2 − k4k5 = k4 − k1k2,

k1k2 + k2 = k4k5 + k4.
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By applying (2.4) when i = 2 and (2.5) when i = 5 , we reduce the second equation
to (2.4) when i = 6, in the following way

k2k3 −1− k5 +(k2 +1)k3k7 − k7 − k5k7 = 0,

k2k3 −1− k5 + k5(k6 +1)k7 − k7 − k5k7 = 0,

k5k6k7 − k5 −1 = k7 − k2k3,

k2 − k6k7 = k7 − k2k3,

k2 + k2k3 = k6k7 + k7.

The equation
−−→
A7A3 = (1+ k1)

−−→
A1A2 is equivalent to the following equations

k4 + k4k5 = k2 + k1k2,

1+ k1 + k5 − k2k3 − k1k2k3 = 0,

which are valid based on (2.4) when i = 1 and (2.5) when i = 1.
By including the values for k1, k2, k3, k4 and k5 in the function of a and x we get

that the coordinates of the heptagon are A1A2 . . .A7 given by

A1

(
ax+a+ x+

√
D

2a(x+1)
,
ax+a+ x+

√
D

2(x+1)

)
, A2(1,1+a), A3(0,1), (2.24)

A4(0,0), A5(1,0), A6(1+ x,1), A7

(
ax+a+ x+

√
D

2(a+1)
,
ax+a+ x+

√
D

2(a+1)x

)
.

In this heptagon the seven boundary quadrilaterals are trapezoids for which the
relations of the parallel sides are di/ai = 1+ ki, i = 1,2, . . . ,7. □

Example 2.2. Specifically, when a = 1 and x = 2 in (2.18) D = 73, from (2.24)
we get one such heptagon whose vertices are A2(1,2), A3(0,1), A4(0,0), A5(1,0),
A6(3,1),

A7

(
5+

√
73

4
,
5+

√
73

8

)
and A1

(
5+

√
73

6
,
5+

√
73

6

)
. □

3. PROOF OF THEOREM 1.1

We shall now deal with the problem of the existence of a convex lattice heptagon
such that its boundary quadrilaterals are all trapezoids. It is obvious that in a convex
lattice heptagon the k−coefficients are rational numbers.
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Proof. Suppose there is a convex lattice heptagon such that all of its boundary
quadrilaterals are trapezoids. If we multiply its coordinates by an arbitrary posi-
tive rational number, all ki in the obtained convex heptagon will also be rational
numbers.

Suppose therefore that there are positive rational numbers a, x such that that√
D is a rational number. Let’s now consider the heptagon from the Example 2.1.

Taking into account (2.24) we get a convex heptagon whose vertices have ratio-
nal coordinates. If we multiply these coordinates by the common denominator of
their denominators, we get a convex lattice heptagon for which all of its boundary
quadrilaterals are trapezoids. Thus, if there are a,x ∈ Q+, ax > 1, such that D is
the square of a rational number, then there is also a convex lattice heptagon such
that all of its boundary quadrilaterals are trapezoids. □

Example 3.1. For (a,x) =
(5

2 ,
3
4

)
from (2.18) we know that D = (71/8)2, so based

on (2.24), we get a convex heptagon with vertices whose coordinates are rational
numbers:

C1

(
8
5
,4
)
, C2

(
1,

7
2

)
, C3(0,1), C4(0,0), C5(1,0), C6

(
7
4
,1
)
, C7

(
2,

8
3

)
.

Multiplying the coordinates of these 7 vertices by 60, that is, with the least common
denominator of their denominators, we get a convex integer heptagon B1B2 . . .B7
such that all of its boundary quadrilaterals are trapezoids, with vertices

B1(96,240), B2(60,210), B3(0,60), B4(0,0), B5(60,0), B6(105,60), B7(120,160)

(Figure 1).
By using formulas (2.19)–(2.23), where k3 = a and k4 = x, we get that the coef-

ficients of parallelism for this heptagon are

(k1,k2,k3,k4,k5,k6,k7) =

(
7
3
,
3
5
,
5
2
,
3
4
,
5
3
,
7
5
,
7
8

)
.

□

Example 3.2. For (a,x) =
(5

2 ,
3
5

)
from (2.18) we know that D = (47/5)2, so based

on (2.24) we get a convex heptagon with rational vertices:

C′
1

(
7
4
,
35
8

)
, C′

2

(
1,

7
2

)
, C′

3(0,1), C′
4(0,0), C′

5(1,0), C′
6

(
8
5
,1
)
, C′

7

(
2,

10
3

)
.

Multiplying the coordinates of these 7 vertices by 120, we get a convex integer
heptagon B′

1B′
2 . . .B

′
7 such that all of its boundary quadrilaterals are trapezoids,

with vertices

B′
1(210,525), B′

2(120,420), B′
3(0,120), B′

4(0,0), B′
5(120,0), B′

6(192,120)

and B′
7(240,400) (Figure 2).
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FIGURE 1 FIGURE 2

The coefficients of parallelism for this heptagon are

(k1,k2,k3,k4,k5,k6,k7) =

(
5
3
,
3
4
,
5
2
,
3
5
,
7
3
,
7
8
,
7
5

)
.

□
The existence of the polygon B1B2 . . .B7 from Example 3.1 and the polygon

B′
1B′

2 . . .B
′
7 from Example 3.2 confirm the statements of Theorem 1.1.

Remark 3.1. Since the parallelism of the line AiAi+1 and Ai−1Ai+2 is equivalent
to the equality of the surface areas of the triangles Ai−1AiAi+1 and AiAi+1Ai+2, it
follows that in an arbitrary heptagon for which all of its boundary quadrilaterals
are trapezoids, the surface areas of all boundary triangles are equal to each other.
For example, in the heptagon A1A2 . . .A7 this value is 1/2, while in the heptagon
B1B2 . . .B7 this value is 1800.
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Doktorska disertacija, Univertzitet u Istočnom Sarajevu, Filozofski fakultet, Pale, 2005.
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