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CONVEX LATTICE HEPTAGONS WITH BOUNDARY
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MARKO CITIC AND VIDAN GOVEDARICA

Dedicated to Professor Mehmed Nurkanovic¢ on the occasion of his 65th birthday

ABSTRACT. In this paper, we consider convex heptagons with the property that
every four consecutive vertices of this heptagon determine a trapezoid in which
the side that is a diagonal of the heptagon is also one of the bases of the trape-
zoid. The existence of such a heptagon embedded in the integer lattice has been
proved.

1. INTRODUCTION

We consider a Cartesian coordinate system. A point in a plane whose both co-
ordinates are integers is called a lattice point. A convex polygon that has lattice
points for all its vertices is called a convex lattice polygon. A quadrilateral whose
vertices are four consecutive vertices of a convex integer polygon is called a bound-
ary quadrilateral of that polygon.

Rabinowitz has constructed a convex lattice polygon with n edges of minimum
area, where n > 6 is an even number ( [1]). All the boundary quadrilaterals of that
polygon are trapezoids ( [1]). Thus, it has been proved that for every even natural
number n (n > 6) there is a convex lattice polygon with n edges, all of whose
boundary quadrilaterals are trapezoids. The existence of a convex lattice polygon
with n edges, where n > 5 is an odd number has shown to be a considerably more
difficult problem. In [2] it has been proved that there does not exist a convex
lattice pentagon such that all of its boundary quadrilaterals are trapezoids. Some
results related to boundary lattice triangles, i.e. triangles whose vertices are three
consecutive vertices of a convex lattice polygon, can be found in [3], [4] and [5].

In this paper, we consider the case of the existence of a convex lattice heptagon
for which all of its boundary quadrilaterals are trapezoids. Section 2 deals with the
properties of convex heptagons with trapezoids as boundary quadrilaterals, even
when they are not drawn on an integer lattice. In other words, it discusses the
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relationships between coefficients associated with the considered trapezoids which
are expressed in Lemma 2 and Lemma 3. In section 3 the following is proved.

Theorem 1.1. There is a convex lattice heptagon such that all of its boundary
quadrilaterals are trapezoids.

The proof includes two examples of such heptagons constructed based on the rela-
tions between the coefficients obtained in Lemma 3.

2. PROPERTIES OF CONVEX HEPTAGONS WITH TRAPEZOIDS AS BOUNDARY
QUADRILATERALS

Suppose AjA;...A7 is a convex heptagon such that all of its boundary quadri-
laterals are trapezoids. (Such a convex heptagon exists, it is a regular heptagon
— T
for example.) Denote a; = A;A;+1, di = A;1Ai12,i=1,2,...7T (Ag = A7, Ag = A},
Ag = Aj). Also, denote qa; the length of a; and d; the length of d;. Obviously, due
to convexity, d; || a; and d; > a; must hold.

Lemma 2.1. Suppose A1A; ...A7 is a convex heptagon such that all of its boundary
quadrilaterals are trapezoids. For each trapezoid A;_1AjAi+1Ai+2 there exists a
positive real number k; such that

aj_1+ait1 = kaj,
where k; is a positive real number.

Proof. Because d; || a; and d; > a;, there is a real number /; (; > 1) such that
d; = /; a;, so we have

aj_1+aj+aj1 = La; & aj_1+aji = ka;,
where k; is a positive real number (k; = [; — 1). O

The coefficient k; from the previous lemma will be called the ‘k—coefficient’
associated with the trapezoid A;_1A;A;+1A;+2.

Lemma 2.2. For the k—coefficients of the boundary quadrilaterals A;_1AjA;+1A; 12

(ki + l)kH_] = ki+3 (ki+4 + 1)7

(ki 4+ 1) (kiv1kiva — 1) = kiya,
hold, where i =1,2,...,7 and kj7 = kj, for j =1,2,3,4.
Proof. Let’s express the vectors aj, a3, as, ag and a7 from the linearly independent
vectors a3 and a4. Based on previous lemma there are positive real numbers k;,
i=1,2,...,7, such that

aj_1 +aj11 = k;aj. 2.1

For i = 3 and i = 4 we respectively get that

ay = kzaz —ay,
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as = k4a4 —as.

Using (2.1) and the previous two equations, we get that

a = kzaz —az = kz(k3a3 — 34) —az = (k2k3 — 1)33 — k2a4,

A — k535 —aq = k5 (k4a4 — 33) — a4 = (k4k5 — 1)34 — k533,

a7 = klal —az = (k1k2k3 —k1 —k3)a3 — (klkz — 1)34.
Since
a;+ay+az+astas+agt+a;=0,
by including previously obtained values for a;, a3, as, ag and a7, we get
(kikaks + koks — ki — ks — 1)az + (kaks + ks — kiky —ka)ag = 0,

and therefore

kikoks + koks — k1 —ks =1, 2.2)
kaks + kg = k1ky + k. (2.3)
Due to symmetry,
(ki + 1)kir1 = ki3 (kiza+1) 2.4)
and
(ki +1)(kit1kiy2 — 1) = kiya, (2.5
follow (i =1,2,...,7and k7 = kj, for j =1,2,3,4). O
Lemma 2.3. For the k—coefficients of the boundary quadrilaterals A;_1AjA;11Ai12
D
o = (ax— l)ax+a+x+ \F’
2(a+1)x
b, T —at+x+ VD
2T 2a(x+1) ’
ke — —ax—x+a—+ \/5
> 2a+1)x
D
ks = (ax— 1)a)H—cH—)H— \f7
2a(x+1)
—ax—a—x—2++D
k7 = D) )

hold, where a = k3, x = k4 and

ax—+1 ax+a+x2+2 a2x2—a2—x2
ax—1 '

D=
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Proof. In order to solve this system, let’s single out the following five equations

(ks + Dy = ko (k7 +1), 2.6)
(ks +1)ke = ki (ko + 1), 2.7
(ko + Dy = ks (ks +1), 2.8)
koksks + k3ks —ky — ke =1, 2.9)
k3kaks + koks — ks — k7 = 1. (2.10)

Suppose k3 = a, ky = x. Let’s express the other unknowns from the system of
equations (2.6)—(2.10) using a and x. The equations (2.6) and (2.8) get the form of
(a+1)x =ke(k7 + 1) and (k7 + 1)k; = a(x+ 1). From this, as well as from (2.7),
we get that

ke  (a+1)x k41

== = 2.11

ki a(x+1) ](5—!—17 ( )
whereby

k+1_(a+1)x(k5+1) (2.12)

2T a1y ’

Let’s express the unknowns ki, kg and k7 in a, x and k5. From equation (2.10), it
follows that

k7 + 1 = axks + xks — a,
k7= (a+1)(xks —1). (2.13)
By substituting the obtained value for k7 in (2.8), we get that
(axks +xks —a)k; = a(x+ 1),

= a(x+1)
" la+ Dxks—a’
From this, as well as from (2.11) we get that
6= ﬂ _ (2.14)
(a+1)xks —a
Equation (2.9) can be written in the form
(ko +1)(ax—1) = kg. (2.15)
By including the results for k> 4+ 1 from (2.12) we respectively get the following
1)x(ks+1 1
(a+1)x(ks + )(ax—l): (a+1)x ’
a(x+1) (a+1)xks —a
a(x+1)
1)xks —a)(ks+1) =
((a+ ks = a) (ks +1) = 222
1
(a+1)xk§—|—(ax+x—a)k5:m. (2.16)

ax—1
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Similarly, we can get the quadratic equation for k;. Since from (2.11)
(a+1)xks = a(x+ 1)ky +a—x,
by making a substitution in (2.14), we get that
_ (a+1)x
6~ a(x+1)ky —x
By substituting this value in (2.15), we get that

(a+1)x
ko +1 —1)=—7>+—
(ke +1{ax—1) a(x+1)ky —x’
Whence by multiplying by a(x + 1)k, —x we get the quadratic equation for &
ax(x+1)

a(x+1)i3 + (ax+a—x)ky = (2.17)

ax—1
The discriminants of the quadratic equations (2.16) and (2.17) are as follows

4 1)2x

ax—1

4 2 12

D2: (ax+a,x)2+m.
ax—1

Denote by

(ax+1)(ax +a+x)>+2(a*x* —a® — x?)
ax—1 '
It is easy to check that the identities Ds = D, = D are valid, from which it follows
that D, and D5 are symmetric functions of the variables a and x. Since k, and ks
are the positive solutions of equations (2.17) and (2.16) respectively, it follows that

D= (2.18)

—ax— D
fy = — & a”“r, (2.19)
2a(x+1)
—ax— D
ks = & xtatvD (2.20)
2(a+1)x
From (2.15), we get that
ax+a+x++D
ke = (ax—1 221
o= (=)= 71 (2.21)

while from (2.13) we get that

—ax—a—x—2+4D
ey — &4 ; +vD. (2.22)

From (2.11) and (2.21) we get that

ax—|—a—i—x—|—\/5

ki =(ax—1) 2(a+1)x

(2.23)
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O

By checking, we conclude that the ordered septuple (ki,kz,k3,ka,ks, ke, k7),
where k3 = a and k4 = x are arbitrary positive real numbers, where ax > 1 and
ko, ks, ke, k7 and k| are expressed via a and x in formulas (2.19)-(2.23), is the
solution of the system of equations (2.4)—(2.5). From equation (2.5), it follows that
kiki+1 > 1 for each i. Specifically, when i = 3 we get that ax > 1.

For each pair (a,x) of positive real numbers where ax > 1, it is easy to construct
a convex heptagon A|A; ...A7 such that all of its boundary quadrilaterals are trape-
zoids for which the relations of parallel sides, respectively ki, ky, k3 = a, k4 = x,
ks, ke, k7 are obtained from the above formulas.

Example 2.1. Let’s say, for example, that we have A3(0,1), A4(0,0) and As(1,0).
Let’s construct the point A, so that AyAs = (1 + k3)AsAa, and then let’s do the
same for the points Ag, A7, A so that AzAe = (1 +ka)A4As, AgA7 = (1 +ks)AsAe
and A1Ag = (1 +ka)A2A3. We respectively get Ay (1,1+k3), Ag(1+ka, 1), A7(ks+
kaks,1+ks) and A1 (1 +ky, ks +koks). Let’s check if the remaining three equations
also apgly to the points thus determined i.e. AsA| = (1+ke)AsA7, AgAr = (1+
k7)A7A1 andA7A3 = (1 +k1 )A]Az.

e
The equation AsA| = (1 +ke)AsA7 comes down to two equations

kakske + kaks —ke — 1 = ka,
k3 + koks = ks + kske.
The first equation kaks (ke + 1) — ky — ke = 1 based on (2.4) when i = 2 reduces to
ka(ko+ 1)ks —ky —ke =1,

and that is equation (2.9). The second equation is equation (2.4) when i = 2.
The equation A¢Ay = (1 +k7)A7A) reduces to the following equations

1+ ky — kaks + k7 + koky — kak7 — kaksk7 = 0,

koks — 1 — ks + ksk7 + koksk7 — k7 — ksk7; = 0.

By applying (2.4) when i = 1 and (2.5) when i =7, we once again reduce the first
equation to (2.4) when i = 1 in the following way

1+ ko — kaks + k7 + koky — kyka (ks + 1) = 0,
14 ko — kaks -+ k7 -+ koky — ks (ky + 1)ko = O,
ko — kaks = kykiko — k7 — 1,
ky — kaks = kg — kik,
kiky +ky = kaks +ky.
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By applying (2.4) when i =2 and (2.5) when i =5, we reduce the second equation
to (2.4) when i = 6, in the following way

koks — 1 — ks + (ko + 1)ksky — k7 — ksk; = 0,
koks — 1 — ks + ks (ke + 1)k7 — k7 — ksk7 = 0,
kskek7 —ks — 1 = k7 — kaks,
ky — kek7 = k7 — kaks,
ky +koks = kek7 + k7.
The equation er; =(1+ kl)m is equivalent to the following equations
kg +kaks = ko + ki ka,
1+ ki +ks — koks — k1kyks =0,

which are valid based on (2.4) when i = 1 and (2.5) when i = 1.
By including the values for ki, ky, k3, k4 and ks in the function of a and x we get
that the coordinates of the heptagon are A1A; ...A7 given by

A (ax—l—cH—x—i—\@ ax+a+x++vD
|

2a(x+1) 7 2(x+1) )’AZ(LH“)’A?'(OJ% (2.24)

ax+a+x+vVD ax+a+x++/D
A4(0,0), As(1,0), Ag(1 1), A
4( Y )7 5( 9y )7 6( +'x7 )7 7< 2(a+1) Y 2(a+1)x )
In this heptagon the seven boundary quadrilaterals are trapezoids for which the

relations of the parallel sides are d;j/a; =1+ k;, i =1,2,...,7. [l

Example 2.2. Specifically, when a =1 and x =2 in (2.18) D =73, from (2.24)
we get one such heptagon whose vertices are A»(1,2), A3(0,1), A4(0,0), As(1,0),
Ae(3,1),

5473 5+V73 5473 5473
A7 1 2 and Ay 6 G .

3. PROOF OF THEOREM 1.1

We shall now deal with the problem of the existence of a convex lattice heptagon
such that its boundary quadrilaterals are all trapezoids. It is obvious that in a convex
lattice heptagon the k—coefficients are rational numbers.
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Proof. Suppose there is a convex lattice heptagon such that all of its boundary
quadrilaterals are trapezoids. If we multiply its coordinates by an arbitrary posi-
tive rational number, all k; in the obtained convex heptagon will also be rational
numbers.

Suppose therefore that there are positive rational numbers a, x such that that
V/D is a rational number. Let’s now consider the heptagon from the Example 2.1.
Taking into account (2.24) we get a convex heptagon whose vertices have ratio-
nal coordinates. If we multiply these coordinates by the common denominator of
their denominators, we get a convex lattice heptagon for which all of its boundary
quadrilaterals are trapezoids. Thus, if there are a,x € Q*, ax > 1, such that D is
the square of a rational number, then there is also a convex lattice heptagon such
that all of its boundary quadrilaterals are trapezoids. U

Example 3.1. For (a,x) = (3,3) from (2.18) we know that D = (71/8)?, so based
on (2.24), we get a convex heptagon with vertices whose coordinates are rational
numbers:

8 7 7 8
Cl (534> ) CZ <172) 3 CS(Oal)a C4(070)7 C5(170)7 C6 <431> y C7 (273> .

Multiplying the coordinates of these T vertices by 60, that is, with the least common
denominator of their denominators, we get a convex integer heptagon B1B; ...B;
such that all of its boundary quadrilaterals are trapezoids, with vertices

B1(96,240), B,(60,210), B3(0,60), B4(0,0), Bs(60,0), Bs(105,60), B7(120, 160)

(Figure 1).
By using formulas (2.19)—(2.23), where k3 = a and k4 = x, we get that the coef-
ficients of parallelism for this heptagon are

7353577
(k17k27k37k47k57k67k7) - <37 ga 57 17 ga 57 8) .
O
Example 3.2. For (a,x) = (3,2) from (2.18) we know that D = (47/5)?, so based
on (2.24) we get a convex heptagon with rational vertices:

7 35 7 8 10
C; <4’8> ) Cé <172) ) Cé(ovl)v CA(0,0), C;(I,O), Cé <571> ) C; <2’3> )

Multiplying the coordinates of these T vertices by 120, we get a convex integer
heptagon B\B) ...B; such that all of its boundary quadrilaterals are trapezoids,
with vertices

B (210,525), B}(120,420), B4(0,120), B,(0,0), B4(120,0), B,(192,120)
and B%(240,400) (Figure 2).
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The coefficients of parallelism for this heptagon are
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The existence of the polygon BB, ...B7; from Example 3.1 and the polygon

BB, ... B, from Example 3.2 confirm the statements of Theorem 1.1.

Remark 3.1. Since the parallelism of the line A;A;;; and A;_1A;;» is equivalent
to the equality of the surface areas of the triangles A;_1A;A;+1 and A;A;11Ai42, it
follows that in an arbitrary heptagon for which all of its boundary quadrilaterals
are trapezoids, the surface areas of all boundary triangles are equal to each other.
For example, in the heptagon AjA;...A7 this value is 1/2, while in the heptagon

BB, ...B7 this value is 1800.
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