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ABSTRACT. In the paper Global Dynamics of Anti-Competitive Systems in the
Plane [4], the authors proved two major theorems that can be used to determine
the global dynamics of anti-competitive systems of difference equations. These
theorems require three hypotheses to be satisfied: (1) the corresponding map
must be strongly anti-competitive, (2) the determinant of the Jacobian matrix of
the map, evaluated at an interior fixed-point, does not equal zero, and (3) the only
point mapped onto a fixed-point is the fixed-point itself.

In this paper, we prove theorems that obtain the same results as in [4], but do
not require any of these hypotheses; furthermore, the new theorems use weaker
hypotheses that extend the scope of the theorems to apply to many more cases.
Finally, we demonstrate how to use the modified theorems to determine the
global dynamics of a weakly anti-competitive system where hypothesis (1) is
false in every region of the parameter space.

1. INTRODUCTION

In the paper Global Dynamics of Anti-Competitive Systems in the Plane, the au-
thors proved two major theorems that can be used to determine the global dynamics
of anti-competitive systems of difference equations, see [4]. These theorems re-
quire three hypotheses to be satisfied: (1) the corresponding map must be strongly
anti-competitive, (2) the determinant of the Jacobian matrix of the map, evaluated
at an interior fixed-point, does not equal zero, and (3) the only point mapped onto
a fixed-point is the fixed-point itself.

In this paper, we prove theorems that obtain the same results as the theorems
in [4], but do not require any of these hypotheses. The proofs in this paper use
similar arguments as the proofs in [4]; however, the proofs have been modified to
accommodate different hypotheses.
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The modified theorems have weaker hypotheses that extend the scope of the
theorems to apply to more cases.

If you only consider the special case where the anti-competitive map has rational-
linear equations, there are six systems whose corresponding map is homogeneous
of order zero and hypotheses (2) and (3) are false in all regions of the parameter
space. Also, non-homogeneous systems can fail to satisfy hypotheses (2) and (3)
in some regions of the parameter space, see [2], [3], and [8].

There are 24 systems of rational-linear difference equations whose correspond-
ing map is weakly anti-competitive and the second iterate of the map is strongly
competitive. These systems fail to satisfy hypothesis (1) in all regions of the pa-
rameter space. In Section 4, we use the modified theorems to determine the global
dynamics of one of these systems.

Anti-competitive maps are widely studied and there has been much research
focused on anti-competitive maps with rational-linear equations, see [1] - [5] and
[7] - [12]. While it was this type of anti-competitive system that motivated the
creation of the theorems in this paper, the theorems are not restricted to maps that
are rational-linear. The only restrictions on the map are that F' is anti-competitive
and F? is strongly competitive.

The theorems in this paper apply to situations where there is a unique interior
fixed-point and possibly a unique pair of minimal period-two points. When ana-
lyzing strongly competitive maps with multiple fixed-points and multiple pairs of
period-two points, it is often the case that the domain can be separated into invari-
ant rectangular regions, each of which contains a unique fixed-point and possibly
a unique pair of minimal period-two points. The theorems can be applied to each
rectangular region.

2. PRELIMINARIES

In this paper, we use the symbol “C” to mean subset, not necessarily a proper
subset. For ® C R?, we use the notation R, int(R ), and cl(®) to mean the
boundary of &, the interior of &, and the closure of &, respectively. We use the
notation Jr to mean the Jacobian matrix of F and the notation Jr(X) to mean the
Jacobian matrix of F, evaluated at a fixed-point X.

The following definitions are written specifically to apply to planar competitive
and anti-competitive maps.

Definition 2.1. The symbol g denotes the south-east partial ordering on R?. For
(x,y) and (a,b) in R?, we use the following notation.

(a) (x,y) =se (a,b), ifand only if, x > a and y < b.

(b) (x,y) =s (a,b), if and only if, (x,y) =sg (a,b) and (x,y) # (a,b).

(¢) (x,y) >sE (a,b), if and only if, x > a and y < b.



EXTENDING THEOREMS TO WEAKLY ANTI-COMPETITIVE MAPS 255

Definition 2.2. Let R be a subset of R* with nonempty interior and let F : R, — R
be a continuous map.

(a) F is competitive on R, if X =sg y = F(x) =sg F(y), for all x,y € R.
(b) F is strongly competitive, if X =sg y = F(X) >gg F(y).

(¢) F is anti-competitive, if X =sp y = F(y) =g F(X).

(d) F is strongly anti-competitive, if X —sg y = F(y) >sg F(X).

Lemma 2.1. Let R be a subset of R? with nonempty interior and let F : R, — R,
be a continuous map where F(x,y) = (f(x,y),g(x,y)). If F is differentiable, then a
sufficient condition for F to be competitive, strongly competitive, anti-competitive,
or strongly anti-competitive on R, is for the Jacobian matrix of F to have the
respective sign configurations below,

>0 <0] [+ -] [0 >0] [- +
SOZO’_+’ZOSO’+_’

Remark 2.1. 1t follows from the Perron-Frobenius Theorem and a change of vari-
ables [13] that at each point, the Jacobian matrix of a strongly competitive map has
two real and distinct eigenvalues, the larger one being positive in absolute value,
and the corresponding eigenvectors can be chosen to point in the direction of the
second and first quadrant, respectively. Also, one can show that if the map is
strongly competitive then no eigenvector is aligned with a coordinate axis. This
remark is from [4].

ateveryx € R.

Lemma 2.2. Let F be a map on a rectangular region R, C R? and let F* be the
second iterate of the map F. If the map F is anti-competitive on R, then the map
F? is competitive on R. If the map F is strongly anti-competitive on R, then the
map F? is strongly competitive on R.,

For the system analyzed in Section 4, the corresponding map F is anti-compet-
itive, and F2, the second iterate of F, is strongly competitive. We will apply the
next four theorems to the map F2, so the next lemma is helpful.

Lemma 2.3. Let F be a map on R C R? and let X be a fixed-point of F in int(R).
Suppose F is differentiable on a neighborhood of X. Let Jr (X) be the Jacobian
matrix of F evaluated at X. Then, the following statements are true.
(a) Jp2 (%) = (Jp (%))
(b) det/p (X) = (det/r (X))%
(¢) If M and Ny are eigenvalues of Jr (X), then A3 and A3 are eigenvalues of
JF2 (i)

The next four theorems are from [6] and they are used in the proof of Theorem
3.1
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Definition 2.3. Ler X = (X,¥) be a fixed-point of the map F. Define Qi (X) to be
Quadrant I relative to the fixed-point X. That is, Q1 (X) = {(x,y) :x > X and y > y}.
We can define Q; (X), Q3 (X), and Q4 (X) in a similar way.

Theorem 2.1. Let F be a competitive map on a rectangular region ® C R?. Let X
be a fixed-point of F such that A := int(Q;(X) U Q3(X)) N R is nonempty (i.e., X is
not the NW or SE corner of R ), and F is strongly competitive on A. Suppose the
following statements are true.
(a) The map F has a C" extension to a neighborhood of X.
(b) The Jacobian matrix Jg (X) of F at X has real eigenvalues, A and p, such
that 0 < || < u, |A| < 1, and the eigenspace E*, corresponding to A, is not
a coordinate axis.

Then, there exists a curve C C R_through X that is invariant under F and is a
subset of the basin of attraction of X, such that C is tangential to the eigenspace E*
at X, and C is a strictly increasing continuous function of the first coordinate on an
interval. Any endpoints of C in the interior of R_are either fixed-points or minimal
period-two points of the map F.

Theorem 2.2. For the curve C of Theorem 2.1 to have endpoints in OR,, it is suffi-
cient that at least one of the following conditions is satisfied.

(i) The map F has no fixed-points nor minimal period-two points in A.
(ii) The map F has no fixed-points in A, detJr (X) > 0, and F(x) = X has no
solutions in A.
(iif) The map F has no minimal period-two points in A, detJp (X) < 0, and
F(X) = X has no solutions in A.

Theorem 2.3.

(a) Assume the hypotheses in Theorem 2.1, and let C be the curve whose exis-
tence is guaranteed by Theorem 2.1. If curve C has endpoints in 0R, then
C separates R_into two connected components, namely

W_:={xe R\C:3Jz e C where X <5 2.}

and
W, :={xe€ R\C: 3z € C where X =g 2.},

such that the following statements are true.
(i) W-_ is invariant, and dist(F"(x),02(X)) — 0 as n — oo for every x €
(if) Wy is invariant, and dist(F"(x),Q4(X)) — 0 as n — oo for every X €
W+.
(b) If, in addition to the hypotheses in part (a), X is an interior point of R
and F is C? and strongly competitive on a neighborhood of X, then the
following statements are true.
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(i) F has no periodic points in the boundary of Q1 (X) U Q3(X), except for

X.

(ii) For every x € W-_, there exists ng € N such that F"(x) € int(Q2(X))
for n > ny.

(iii) For every x € W., there exists ng € N such that F"(X) € int(Q4(X))
for n > ny.

Theorem 2.4. In addition to the hypotheses in Theorem 2.3 part (b), suppose that
u > 1 and that the eigenspace E¥, corresponding to y, is not a coordinate axis. If
the curve C from Theorem 2.1 has endpoints in dR, then C is the stable set W* (X)
of X, and the unstable set W" (X) of X is a curve in R whose graph is a strictly
decreasing function of the first coordinate on an interval and is tangential to the
eigenspace E* at X. Any endpoints of W" (X) in R_are fixed-points of the map F.

The next theorem is from [4] and it is used when analyzing a region of the
parameter space for an anti-competitive system in Section 4.1.

Theorem 2.5. Let I} and I, be intervals in R with endpoints a,, a, by, and by
respectively, where —oo < a; < ap < oo and —oo < by < by < oo, Let F be an anti-
competitive map on R.= I} x L. Suppose F has a unique fixed-point X in R_and
does not have any minimal period-two points.

Then, X is globally asymptotically stable on R.

3. THEOREMS FOR ANTI-COMPETITIVE MAPS

In this section, we extend two theorems and a lemma from [4] to apply to maps
that are not strongly anti-competitive.

The next two theorems (3.1 and 3.2) are similar to Theorem 9 and 10 in [4];
however, there are two differences. First, the hypothesis that F' is strongly anti-
competitive was replaced with the hypothesis that F? is strongly competitive.

If F is strongly anti-competitive, then by Lemma 2.2, F? is strongly competitive.
However, there are maps where F? is strongly competitive, but F is not strongly
anti-competitive, see Section 4. This shows that the scope of Theorems 9 and 10
in [4] is contained in the scope of Theorems 3.1 and 3.2.

The second difference is that the alternative hypothesis (d) part (ii) has been
added to Theorem 3.1.

Adding the alternative hypothesis allows us to determine the global dynamics
of many more systems of difference equations. For systems with maps that are
homogeneous of order zero, in all regions of parameter space, hypothesis (d) part
(i) is false and hypothesis (d) part (i) is true. Also, there are many systems for
which these hypotheses act as a toggle switch. That is, in one region of the pa-
rameter space, hypothesis (d) part (i) is true, and in the compliment of that region,
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part (if) is true, see [2], [3], and [8]. When hypothesis (d) part (i) is false, the Ja-
cobian matrix, evaluated at the fixed-point, has an eigenvalue of zero and there is a
super-attracting manifold.

Theorem 3.1. Let I} and I, be intervals in R with endpoints a,, a, by, and by
respectively, where —oo < a; < ap < oo and —oo < by < by <oo, Let R =11 X I
and let F : R — R_be an anti-competitive map with an interior saddle fixed-point
X. Let A:=int(Q; (X) UQ3 (X)) N R. Suppose the following statements are true.

(a) F(int(R)) C int(R) and F? is a strongly competitive map on int(R).

(b) There are no fixed-points or minimal period-two points of F in A.

(¢) F is a continuously differentiable map in some neighborhood of X.

(d) One of the following is true:

(i) detJp (X) # 0 and if X # X, then F(X) #X.

(ii) There is a curve C C R_that is the graph of a strictly increasing con-
tinuous function of the first coordinate on an interval, that passes
through X, and has endpoints in dR. Also, F(C) =X and if X €
(0R.NQ3(X))\C, then F(x) # %.

Then, the following statements are true.

(1) There is a curve C C R through X that is invariant under F* and is a
subset of the basin of attraction of X. The curve C is the graph of a strictly
increasing continuous function of the first coordinate on an interval and it
has endpoints in OR.

(2) The curve C separates R_into two connected components.

Define

W_:={xe€ R\C:3ze C where x <sg 2.};
W, :={xe€ R\C: 3z e C where X g z.}.

(i) Ifx € W, then {F?"(x)} eventually enters int(Q,(X)) N R _and
{F?"1(x)} eventually enters int(Q4(X)) N K.
(ii) Ifx € W, then {F?"(x)} eventually enters int(Q4(X)) N R and
{F?"*1(x)} eventually enters int(Q»(X)) N R..
(iii) Both int(Q2(X)) N R and int(Q4(X)) N R are invariant under F>.

Proof.

Assume hypothesis (d) part (i).

By Lemma 2.2, F? is competitive, but not necessarily strongly competitive, on
0R. So, in order to apply Theorem 2.1, we need to use the rectangular region
K = int(R ). Note that F? is strongly competitive on X and that F?(%X) C K.

By Lemma 2.3, detJz2(X) > 0. Also, Jr2(X) has eigenvalues A and u such that
0 <A< 1<pu ByRemark 1, the eigenvectors of Jp2(X) are not aligned with
a coordinate axis. In view of hypotheses (a) and (c), we can apply Theorem 2.1
using the rectangular region X, so there is a curve C C X through X that is invariant
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under F? and is a subset of the basin of attraction of X. The curve ( is the graph of
a strictly increasing continuous function of the first coordinate on an interval.

A local injectivity implies that F?(x) # X if x # X. In view of hypothesis (b)
and det/p2(X) > 0, we can apply Theorem 2.2 part (i), so curve C has endpoints in
oK.

Since X is an interior fixed-point, we can apply Theorem 2.3 part (b), so W and
W, (restricted to %K) are invariant under F2. Also, for every x € W_, {F?(x)}
eventually enters int(Q>(X)) N & and for every x € W, , {F?"(x)} eventually enters
int(Q4(%)) N K.

By Theorem 2.4, C is the global stable manifold %" (%) of % for F2.

Now consider x € (0R N Q3(X))\C. Lety = CNIR. N QO3(X).

Suppose x € W_. Then y g x. In view of hypothesis (b), neither x nor y
are fixed-points of F2. Since F? is competitive on 0 and F?(x) ¢ C, we have
F?(y) =sg F*(x) and F?(y) € int(R). So, there is a z € int(R )N W/ such that
z —sg F*(x). Since {F?'(z)} eventually enters int(Q»(X)) N R and F? preserves
the south-east ordering, {F2"(x)} must eventually enter int(Q, (X)) N R..

Similarly, if x € W, then {F?"*(x)} eventually enters int(Q4(X)) N R..

Assume hypothesis (d) part (ii).
Then, conclusion (1) holds. Note: in many cases where det/p(X) = 0, we are
able to find a linear super-attracting manifold.

Suppose x € W_.

If x € int(R), then, there exists y € C such that x <sg y. Since F? is strongly
competitive and F2(y) = X, we have F?(x) < X, so F2(x) € int(Q2(X)) N R..

If x € (0R.NQ3(X))\C, then by assumption, F(x) #X. Lety = CNoR NQO3(X).
Then, x <gz y. Since F? is competitive on 0 and F?(y) = %, we have F?(x) <sg
. There is a z € int(R ) N W_ such that F2(x) <sg z. So, F*(x) <sg F?(z) <sg X.
Thus, F4(x) € int(Q>(X)) N R..

Similarly, if x € W, then {F?"*(x)} eventually enters int(Q4(X)) N R..

So, using either hypothesis (d) part (i) or part (ii), we see that for x ¢ C, {F?*(x)}
eventually enters int(Q, (X)) or int(Q4(X)). We now show that int(Q»(X)) N R and
int(Q4(X)) N R are invariant under F2.

If y € int(Q2(X)) N R, then there exists z € int(R ) such thaty <sr z < X. So,
F2(y) =g F?(z) <sg X, thus int(Q2(X)) N R is invariant under F>.

Similarly, int(Q4(X)) N R is invariant under F>.

We now show that if x ¢ C, then {F"(x)} eventually bounces back and forth
between int(Q, (X)) and int(Q4(X)).

Letx € W_. Since {F?"(x)} eventually enters int(Q>(X)) MR, we can choose X €
int(Q, (X)) N K. Since F?(x) € int(Q2(X)), F(x) # X. Since F is anti-competitive,
we have F(x) =gg X. There is a y € int(R) N Wy such that y <sg F(x). Since
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{F?"(y)} eventually enters int(Q4(X)) N K and F? preserves the south-east order-
ing, {F?"*1(x)} eventually enters int(Q4(X)) N R..
Similarly, if x € W, , then {F?""!(x)} eventually enters int(Q, (X)) N K. O

Note: If C came from part (i) of hypothesis (d), then we need to prove that C is
invariant under F'.

Corollary 3.1. Suppose the hypotheses of Theorem 3.1 are true. Then, the follow-
ing statements are true.
(i) Ifx € W, then F(x) € W_.
(i) Ifx € W-, then F(x) € W,.
(iii) Ifx € C, then F(x) € C.

Proof.

(i) Let x € W,. Suppose F(x) € W,. By Theorem 3.1, there is an nyp € N
such that for n > ng, both F?"(x) € int (Q4(X)) and F?"+!(x) € int (Q4(X)).
So, for n > ng, F?'(x) >sg X and F?"*1(x) >>g¢ X. This contradicts the
fact that F reverses the south-east ordering.
Suppose F(x) € C. Then for all n, F?"*!(x) € C and there is an ng € N
such that for n > ngy, F?'(x) € int(Q4(X)). So, for n > ng, F**(x) >s&
X. Since F reverses the south-east ordering, F (F 2”(x)) =gk X. However,
F (F?*'(x)) # X because F2"*2(x) >gg X. Thus, F*""!(x) € W_, which is
a contradiction.
(ii) The proof is similar to part (i) and will be omitted.
(iii) Letx € C. Suppose F(x) ¢ C. Then F?(x) € C and either F(x) € W_ or
F(x) € W,. Without loss of generality, assume F(x) € W,. By part (i),
we have F2(x) € W_, which is a contradiction.

O

Before we prove Theorem 3.2, it is helpful to prove the next lemma. The lemma
and its proof are a modified version of Theorem 6 in [4].

Lemma 3.1. Let F be an anti-competitive map on R, C R%. Suppose the following
statements are true.

(a) F? is strongly competitive on int(R).

(b) X is the unique fixed-point of F in int(R) and it is a saddle point.

(¢) F is continuously differentiable on some neighborhood of X.

Then, for all 8 > 0, there is a point t € int(Q2(X) N R) such that | X —t|| < & and

F?(t) <sg t. Also, there is a point u € int(Q4(X) N R)) such that ||X —u|| < & and
F? (u) >gp u.

Proof.
Letd > 0.
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Since X, is a saddle point of F, by Lemma 2.3, X is a saddle point of F? and
Jr2(X) has eigenvalues A and u such that 0 <A < 1 < u. Let v be the eigenvector
of Jp2(X) corresponding to u. By Remark 1, v can be chosen so that it points in the
direction of Quadrant II.

There is an ro > 0 such that X+ rov € int(Q2(X) N R ), X — rov € int(Q4(X) N R)),
and ||rov|| < 8.

There is an r; > 0 such that F is continuously differentiable at x if ||x —X|| < ry.
Let r < ry. Since F? is differentiable,

FX(X4m) — (X+m) =F* () —rv+o(r) = r(u—1)v+o(r). 3.1

Since u > 1, there is an r, such that for 0 < r < r», both expressions on the left-hand
side of Equation (3.1) are of constant sign.
Also,

FX&—rm)—(&—rm)=—F*(m)+rv+o(r)=r(1—uv+o(r). (3.2)

Since p > 1, there is an r3 such that for 0 < r < r3, both expressions on the left-hand
side of Equation (3.2) are of constant sign.

Choose r such that 0 < r < min{rg,r1,r2,r3}. So, for r sufficiently small, F?(x+
rv) — (X+ rv) points in the direction of Quadrant II. Thus, F?(X+rv) <sg (X +1v).
Also, F2(X — rv) — (X — rv) points in the direction of Quadrant IV. Thus, F?(X —
rv) >sg (X—rv). O

Theorem 3.2. Suppose the hypotheses in Theorem 3.1 are true. Then, the following
statements are true.

Set F2'(x) = (xan,y20) and F*" "1 (x) = (x2u11,y2041).

(a) If there exists a unique minimal period-two solution (vi,w;) and (va,ws) in
int(Q2(X)) N R and int(Q4(X)) N R respectively, F(ay,by) >sk (a1,b),
and F*(ay,b1) <sg (az,by), then the following statements are true.

(i) Ifxe Wy, then {x2,} = v, {y2a} = wa and {x2p11} = vi, {y2n+1} —
wi.
(ii) Ifx € W-, then {xz,} — v, {yan} = w1 and {xp11} = va, {yans1} —
wa.
(iii) Ifx € C, then {(xn,y,)} — X.

(b) If there are no minimal period-two points of F, then ay = by = oo and the

following statements are true.
(i) Ifx € Wy, then {x2,} — o0, {yan+1} — oo, and {x2,+1} and {y»,} are
bounded.
(ii) Ifx € W-, then {x241} — o0, {yan} — oo, and {x2,} and {yz,+1} are
bounded.
(iii) Ifx € C, then {(xn,yn)} — X.

Proof.
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(a) Let (vi,w) and (v2,w;) be the unique minimal period-two points of F in
int(Q2(X)) N R and int(Q4(X)) N R, respectively.
(i) Letx € W,;. By Theorem 3.1, there is an ny € N such that for n > ny,

both F2'(x) € int(Q4(X)) N R and F?*!(x) € int(Q»(X)) N K. Let
n > ng and let xg = F?"(x) and x; = F?"1(x).
By Lemma 3.1, there exists ¢ € int(Q4(X)) N R_such that ¢ <sg X and
F?(c) >sg ¢. Letd = (ap,b). Since d is the south-east corner of &,
we have d € int(Q4(X)) N R, d =5 X9, and F?(d) <sf d.
Since F? strongly preserves the south-east ordering in int(R ), the se-
quence {F?"(c)} is strictly increasing with respect to the south-east
ordering and {F?"(d)} is strictly decreasing with respect to the south-
east ordering.
Since F2"(¢) <sg F*'(x9) =sg F?*(d) for all n > ng and (v, w) is
the unique fixed point of F2 in int(Q4(X)) N R, {F*"(x¢)} — (v2,w2),
which means that {x;,} — v, and {yz,} — w».

By Lemma 3.1, there exists p € int(Q2(X)) N R such that p > X1
and F2(p) <sg p. Let q = (ay,b7). Since q is the north-west corner
of R, we have q € int(Q,(X)) N R, q =sk X1, and F2(q) >sr q.
Since F? strongly preserves the south-east ordering, the sequence
{F?"(p)} is strictly decreasing with respect to the south-east order-
ing and {F?"(q)} is strictly increasing with respect to the south-east
ordering. Since F>'(p) >>se F**(x1) =s& F>*(q) for all n > ng and
(v1,w)) is the unique fixed point of F2 inint(Q, (X)) N R, {F*(x1)} —
(vi,w1), which means that {x,+1} — v; and {y2n+1} — wi.

(if) The proof for x € W_ is similar and will be omitted.

(iii) Letx € C. By Corollary 3.1, F(x) € C. Since (C is a subset of the basin
of attraction of X under F2, we have {F?"(x)} — X and {F?>"*!(x)} —
X, 0 {(xn,yn)} — X.

(b) Suppose there are no minimal period-two points of F.
(i) Letx € W,. By Theorem 3.1, there is an ny € N such that for n > ny,

both F?'(x) € int(Q4(X)) N R and F>'*!(x) € int(Q»(X)) N K. Let
n > ng and let xg = F?'(x) and x; = F?"*1(x).
By Lemma 3.1, there exists ¢ € int(Q4(X)) N R_such that ¢ <sg X and
F?(c) > c. Since F? strongly preserves the south-east ordering, the
sequence {F>"(c)} is strictly increasing with respect to the south-east
ordering.
The second component of {F?"(c)} is decreasing and bounded below
by by, so it must converge. Since F?"(xq) >sg F*'(c) for n > ny,
{y2n} must be bounded.
Combining the facts that F2 has no fixed-points in int(Q4(X)) N R, the
set ®_contains its limit-points, and the second component of {F?"(c)}
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is convergent, we see that the first component of {F?"(c)} is strictly
increasing and must be unbounded. Since F?*(xg) >s¢ F*'(c) for
n > ng, we have {xp,} — oo.

By Lemma 3.1, there exists d € int(Q»(X)) N R such that d >gg x; and
F?(d) <sg d. Since F? strongly preserves the south-east ordering, the
sequence {F2"(d)} is strictly decreasing with respect to the south-east
ordering.
The first component of {F?"(d)} is decreasing and bounded from be-
low by aj, so it must converge. Since F?"(xq) <sg F>*(d) for n > ny,
the first component of F2"(x;) must be bounded. Thus, {x2,, 1} must
be bounded.
Combining the facts that F2 has no fixed-points in int(Q (X)) N R, the
set R contains its limit-points, and the first component of {F?*(d)}
converges, we see that the second component of {F2*(d)} is strictly
increasing and must be unbounded. Since F?'(x;) < F*"(d) for
n > ng, we have {yz,4+1} — oo.

(if) The proof for x € W_ is similar and will be omitted.

(iii) The proof for x € ( is the same as in part (a).

4. EXAMPLE: A WEAKLY ANTI-COMPETITIVE MAP

Before we begin our analysis, it is helpful to prove a lemma that makes it easier
to show that hypothesis (b) in Theorem 3.1 is satisfied.

Lemma 4.1. Let F be an anti-competitive map on a closed and bounded rectangle
R C R?, such that the north-west and south-east corners of R_are minimal period-
two points of F that are mapped onto each other. Let F* be a strongly competitive
map on R.

Then, there is a fixed-point of F in int(R).

Proof.

Let py and p, be the north-west and south-east corners of &, respectively. Let
x € R\(p1Upz2). Then, p1 <sg X <5k p2.

Since F is anti-competitive on R, we have F(p1) =sg F(x) =sg F(p2). So,
P2 ~se F(x) =sg p1 and thus, F(R) C R.

Since F? is strongly competitive on & , we have F?(py) <sg F2(x) <sg F2(p2).
So, p1 sk F?(x) <sg p2 and thus, F?(x) € int(R).

By the Brouwer Fixed-Point Theorem, there is a fixed-point X of F in X.

Since F? (R \(p1Up2)) € int(R) and X is a fixed-point of F2, X €int(R). [
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Consider the system of difference equations

Xn+1 = x,,erny,,
forn=0,1,2,... @.1)

— Ban

yn+1 A2+X,1

where B2, A, and xq are positive and yy is nonnegative.
Let F be the map corresponding to system (4.1). Then,

¥ Xty
F< ) ().
y <B>
Foralln >0, x, > 0. So, foralln > 1, y, > 0.
Forn >0,

Xn+Yn Ban
> 1 and = < pa.
X, el Yn+1 Az T, BZ

So, foralln > 1, x,.1 > 1 and

Xnt+1 =

ot g I gy Py
X X 1

Xn+1 =

Let R = [1,1+B2] x [0, B2].

Then, R is an attracting, invariant rectangle. Also, F(int(®)) C int(®) and if
X9 € (0,00) x [0,00), then for n > 2, X, € int(R).

The Jacobian matrix of F is

= 1
JF =1 B, 6 .
(Az+x)?
In the region &, y is nonnegative, while x and all of the parameters are positive.

From the sign configuration of the Jacobian matrix and Lemma 2.1, we see that F/
is anti-competitive, but not strongly anti-competitive, on X.

2
4.1. Analysis for the Case A, < 1 or B, < %
-

In this section, we use Theorem 2.5 to show that in this region of the parameter
space, every solution of System (4.1) converges to the unique equilibrium point.

Solving the equilibrium equations shows that in all regions of the parameter
space, there is a unique interior equilibrium point X = (&, ) where

1-A 1-A5)2+4(A X
2+ /(1 -A2)? +4(42+Bo) and 5= 2%
2 Ay +Xx

X =

4.2)
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Suppose (vi,wy) and (v, w;) are distinct minimal period-two points of System
(4.1). Then, we have the following equations:

(a) vi =202, (b) v =",
(c) wi = 22, (d) w2 =22

Subtracting Equation (a) from Equation (b), we obtain
Vi—V2 =Wy —Wj. (43)

This shows that vi = v, if and only if, w; = w;. So, to have a minimal period-two
solution, we must have v; # v, and wy # wy.
Subtracting Equation (c) from Equation (d), we obtain

AQ(WZ — Wl) +Vviwy —vowy = BQ(Vl — Vz).
Using the additive identity, we have
Ar(wy —wi) +viwa —viwy +viwy —vowy = Ba(vi —v2).
So,
A2(W2 — Wl) +v; (Wz — Wl) +w (Vl — Vz) = [32(1/1 — Vz).
Using Equation (4.3) and the fact that w; # w,, we obtain
wi = —vi+ P2 —A.

So, a minimal period-two point (v,w) must be on the line w = —v+ 3, — A».
This fact, combined with Equation (c) gives us

Pava
= — —A = .
wi vi+B2—Az Ain

Solving for v, in terms of v; yields
_ —Ayvy +BrAr — A3
vi+Ar ’

4.4)

V2

Using Equation (c), we have
_Vatwy v —v+Br—Ar _ Br—Ar
1% 1% V2 ’

V1

Substituting for v, using Equation (4.4), we see that in order to have minimal
period-two solutions, we must have

(1 A0)(A0 = B2) — /(1= A2)2 (42 — B2)? + 443(A2 — B2)

e 24, :
(1= A2)(A2 = B2) /(1 — A2)2(Aa — B2)2 + 443 (42 — Bo)
2 24, ;

w1 = —vi+ B2 —Az;
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wy = -+ By —As.

If B, < Ay, then wi,w, < 0 and no minimal period-two solution exists. Also, if
B2 > A; and A, < 1, then v; < 0, and no minimal period-two solution exists.

Suppose By > Ay > 1.

If )
Bz < Ao (Az -+ 12)

(A2—1)

then the discriminant in the formula for v; is negative and no minimal period-two
solution exists.

Let (%,7) be the unique equilibrium point of System (4.1). If

By — Ay (A +1)
(A —1)*
then the discriminant in the formula for v{ and v, is zero and

o (1=A)(A—By)

Vi =V2 = 24, =X.
One can also show that w; = wy = j and no minimal period-two solution exists.
By Theorem 2.5, when A, < 1 or 3, < Ax(Ag+1)®

( ,— 1)2 D)
converges to the unique equilibrium point.

)

every solution of System (4.1)

4.2. Analysis for the Case 1 < A, < A(z AZH < B2

In this section, we use Theorem 3.1 and Theorem 3.2 to show that in this region
of the parameter space, almost every solution of System (4.1) converges to the
unique minimal period-two solution. This shows that System (4.1) possesses a
period-doubling bifurcation.

To determine the local stability of the unique fixed-point X = (&, 7), we examine
the simplified Jacobian matrix of F evaluated at the fixed-point,

X X

JF (xay) = o . (45)
Ay
[

Both eigenvalues of Matrix (4.5) are inside the unit circle, if and only if,
y Ary?

3 Bo¥3
The second inequality is true in all regions of the parameter space. Thus, one

eigenvalue is always inside the unit circle.
The inequality

y
= <L 1_7
xZ B2x3
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is true, if and only if,
Baiy < Boi’® — Ar3”. (4.6)
Using the first equation in System 4.1, we see that y = (X — 1) with ¥ > 1. Substi-
tuting this into (4.6) and simplifying, we obtain
Ay(Z—1)* < By 4.7)
Using the second equation in System 4.1, we see that

By — J(A2 +f).

X
Substituting x(x — 1) for y, we get
Ba = (x—1)(A2+X).
Substituting for B, in (4.7), we get
Az()f— 1) <Ay +x.
So,
X(Az — 1) < 2A2,
which is always true if A, < 1.
Let Ay > 1. Then, the equilibrium point is locally asymptotically stable, if and
only if,
2A,
< .
Ay —1
Using the formula for ¥ in (4.2) and a bit of algebra, we arrive at the following
analysis.

(a) The equilibrium point is locally asymptotically stable when Ay < 1 or B, <

Ax(Ar+1)?
(A1)
(b) The equilibrium point is non- hyperbolic with one eigenvalue inside the unit
circle when 1 <A, < B, = /M.
(A2-1)

A2 A2+l
<
4 P2.

Thus, the equilibrium point is a saddle-point when the mlmmal period-two
points exist.

Let F be the map corresponding to system (4.1). From Section 4, for R =
[1,14+B2] x[0,B2], F(R) C R, and F is anti-competitive, but not strongly anti-
competitive, on X.

The Jacobian matrix for F2, the second iterate of F, is

(¢) The equilibrium point is a saddle point when 1 < A, <

Box(xy+Arx+242y) Box?
(A2+x)?(x+y)? (Az+x) (x+y)?
JFZ -
Arfoy Arfox

T (rtAxty)? (x+Azx+y)?
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In the interior of &, x > 1 and y > 0. From the sign configuration of the Jaco-
bian matrix and Lemma 2.1, we see that F2 is strongly competitive on int(® ) and
competitive on 0.

In Section 4.1, we showed that v; and v, were the roots of a quadratic equa-
tion and w; = —v; + 2 — Az. Choose v; < v,. Then, (vi,w;) <sg (v2,w2). Since
F? is strongly competitive on int(®), we can apply Lemma 4.1 on the rectan-
gle formed by (vi,w;) and (v2,w;). Since X is the unique fixed-point of F, we
have (vi,w)) <sg X <sg (v2,w2), and so (vi,w) € int(Q2(X))NR and (vo,wy) €
int(Q4(X)) N R.. Since these are the only minimal period-two points of F, there are
no minimal period-two points of F in int(Q (X) UQ3(X)) N R..

Using the Jacobian matrix in (4.5), one can see that det(Jr(¥,y)) < O in all
regions of the parameter space. Also, the map is one-to-one.

This satisfies the hypotheses in Theorem 3.1 using the region ..

The map F? moves the north-west corner of & to the south-east since

B2 B2(1+B2)
(1 +A2)(1 —1—[32)’1424— 1 —1—62

P = (14 ) s (1)

The map F? moves the south-east corner of & to the north-west since

Po(1+PB2) B
Ay+1+4PB2 Az +1

F?(14B,,0) = <1—|— > <sg (14B2,0).

We can apply Theorem 3.2, using the region &, to obtain the following result.

(i) x e Wy, {xon} = vo, {y2n} — wr and {x2,41} = vi, {yont1} —= wi.
(ii) Ifxe W, {x2n} — V1, {y2n} — wi and {X2n+1} — vy, {y2n+1} — wy.
(iii) Ifx € C, {(xn,yn)} — X

5. FUTURE RESEARCH

We plan to investigate the global dynamics of all anti-competitive systems of
two rational-linear difference equations, so it was necessary to extend theorems to
include more types of systems, such as weakly anti-competitive or homogeneous
systems. While it may seem as though hypothesis (d) part (ii) was tacked on to the
theorem just to include systems with homogeneous maps, there are many systems
for which these hypotheses act as a toggle switch. That is, in one region of the pa-
rameter space, hypothesis (d) part (i) is true, and in the compliment of that region,
part (ii) is true. In the future, we plan to investigate the many systems with this
property.

We also plan to develop other theorems to determine the basin of attraction of
fixed-points and periodic points for anti-competitive maps.
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