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ABSTRACT. In the paper Global Dynamics of Anti-Competitive Systems in the
Plane [4], the authors proved two major theorems that can be used to determine
the global dynamics of anti-competitive systems of difference equations. These
theorems require three hypotheses to be satisfied: (1) the corresponding map
must be strongly anti-competitive, (2) the determinant of the Jacobian matrix of
the map, evaluated at an interior fixed-point, does not equal zero, and (3) the only
point mapped onto a fixed-point is the fixed-point itself.

In this paper, we prove theorems that obtain the same results as in [4], but do
not require any of these hypotheses; furthermore, the new theorems use weaker
hypotheses that extend the scope of the theorems to apply to many more cases.
Finally, we demonstrate how to use the modified theorems to determine the
global dynamics of a weakly anti-competitive system where hypothesis (1) is
false in every region of the parameter space.

1. INTRODUCTION

In the paper Global Dynamics of Anti-Competitive Systems in the Plane, the au-
thors proved two major theorems that can be used to determine the global dynamics
of anti-competitive systems of difference equations, see [4]. These theorems re-
quire three hypotheses to be satisfied: (1) the corresponding map must be strongly
anti-competitive, (2) the determinant of the Jacobian matrix of the map, evaluated
at an interior fixed-point, does not equal zero, and (3) the only point mapped onto
a fixed-point is the fixed-point itself.

In this paper, we prove theorems that obtain the same results as the theorems
in [4], but do not require any of these hypotheses. The proofs in this paper use
similar arguments as the proofs in [4]; however, the proofs have been modified to
accommodate different hypotheses.
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The modified theorems have weaker hypotheses that extend the scope of the
theorems to apply to more cases.

If you only consider the special case where the anti-competitive map has rational-
linear equations, there are six systems whose corresponding map is homogeneous
of order zero and hypotheses (2) and (3) are false in all regions of the parameter
space. Also, non-homogeneous systems can fail to satisfy hypotheses (2) and (3)
in some regions of the parameter space, see [2], [3], and [8].

There are 24 systems of rational-linear difference equations whose correspond-
ing map is weakly anti-competitive and the second iterate of the map is strongly
competitive. These systems fail to satisfy hypothesis (1) in all regions of the pa-
rameter space. In Section 4, we use the modified theorems to determine the global
dynamics of one of these systems.

Anti-competitive maps are widely studied and there has been much research
focused on anti-competitive maps with rational-linear equations, see [1] - [5] and
[7] - [12]. While it was this type of anti-competitive system that motivated the
creation of the theorems in this paper, the theorems are not restricted to maps that
are rational-linear. The only restrictions on the map are that F is anti-competitive
and F2 is strongly competitive.

The theorems in this paper apply to situations where there is a unique interior
fixed-point and possibly a unique pair of minimal period-two points. When ana-
lyzing strongly competitive maps with multiple fixed-points and multiple pairs of
period-two points, it is often the case that the domain can be separated into invari-
ant rectangular regions, each of which contains a unique fixed-point and possibly
a unique pair of minimal period-two points. The theorems can be applied to each
rectangular region.

2. PRELIMINARIES

In this paper, we use the symbol “⊂” to mean subset, not necessarily a proper
subset. For R ⊂ R2, we use the notation ∂R , int(R ), and cl(R ) to mean the
boundary of R , the interior of R , and the closure of R , respectively. We use the
notation JF to mean the Jacobian matrix of F and the notation JF(x̄) to mean the
Jacobian matrix of F , evaluated at a fixed-point x̄.

The following definitions are written specifically to apply to planar competitive
and anti-competitive maps.

Definition 2.1. The symbol ≻SE denotes the south-east partial ordering on R2. For
(x,y) and (a,b) in R2, we use the following notation.

(a) (x,y)⪰SE (a,b), if and only if, x ≥ a and y ≤ b.
(b) (x,y)≻SE (a,b), if and only if, (x,y)⪰SE (a,b) and (x,y) ̸= (a,b).
(c) (x,y)≫SE (a,b), if and only if, x > a and y < b.
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Definition 2.2. Let R be a subset of R2 with nonempty interior and let F : R → R
be a continuous map.

(a) F is competitive on R , if x ⪰SE y ⇒ F(x)⪰SE F(y), for all x,y ∈ R .
(b) F is strongly competitive, if x ≻SE y ⇒ F(x)≫SE F(y).
(c) F is anti-competitive, if x ⪰SE y ⇒ F(y)⪰SE F(x).
(d) F is strongly anti-competitive, if x ≻SE y ⇒ F(y)≫SE F(x).

Lemma 2.1. Let R be a subset of R2 with nonempty interior and let F : R → R
be a continuous map where F(x,y) = ( f (x,y),g(x,y)). If F is differentiable, then a
sufficient condition for F to be competitive, strongly competitive, anti-competitive,
or strongly anti-competitive on R , is for the Jacobian matrix of F to have the
respective sign configurations below,[

≥ 0 ≤ 0
≤ 0 ≥ 0

]
,

[
+ −
− +

]
,

[
≤ 0 ≥ 0
≥ 0 ≤ 0

]
,

[
− +
+ −

]
,

at every x ∈ R .

Remark 2.1. It follows from the Perron-Frobenius Theorem and a change of vari-
ables [13] that at each point, the Jacobian matrix of a strongly competitive map has
two real and distinct eigenvalues, the larger one being positive in absolute value,
and the corresponding eigenvectors can be chosen to point in the direction of the
second and first quadrant, respectively. Also, one can show that if the map is
strongly competitive then no eigenvector is aligned with a coordinate axis. This
remark is from [4].

Lemma 2.2. Let F be a map on a rectangular region R ⊂ R2 and let F2 be the
second iterate of the map F. If the map F is anti-competitive on R , then the map
F2 is competitive on R . If the map F is strongly anti-competitive on R , then the
map F2 is strongly competitive on R .

For the system analyzed in Section 4, the corresponding map F is anti-compet-
itive, and F2, the second iterate of F , is strongly competitive. We will apply the
next four theorems to the map F2, so the next lemma is helpful.

Lemma 2.3. Let F be a map on R ⊂ R2 and let x̄ be a fixed-point of F in int(R ).
Suppose F is differentiable on a neighborhood of x̄. Let JF (x̄) be the Jacobian
matrix of F evaluated at x̄. Then, the following statements are true.

(a) JF2 (x̄) = (JF(x̄))2.
(b) detJF2 (x̄) = (detJF (x̄))2.
(c) If λ1 and λ2 are eigenvalues of JF (x̄), then λ2

1 and λ2
2 are eigenvalues of

JF2 (x̄).

The next four theorems are from [6] and they are used in the proof of Theorem
3.1.
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Definition 2.3. Let x̄ = (x̄, ȳ) be a fixed-point of the map F. Define Q1 (x̄) to be
Quadrant I relative to the fixed-point x̄. That is, Q1 (x̄) = {(x,y) : x ≥ x̄ and y ≥ ȳ}.

We can define Q2 (x̄), Q3 (x̄), and Q4 (x̄) in a similar way.

Theorem 2.1. Let F be a competitive map on a rectangular region R ⊂ R2. Let x̄
be a fixed-point of F such that ∆ := int(Q1(x̄)∪Q3(x̄))∩R is nonempty (i.e., x̄ is
not the NW or SE corner of R ), and F is strongly competitive on ∆. Suppose the
following statements are true.

(a) The map F has a C1 extension to a neighborhood of x̄.
(b) The Jacobian matrix JF (x̄) of F at x̄ has real eigenvalues, λ and µ, such

that 0 < |λ|< µ, |λ|< 1, and the eigenspace Eλ, corresponding to λ, is not
a coordinate axis.

Then, there exists a curve C ⊂ R through x̄ that is invariant under F and is a
subset of the basin of attraction of x̄, such that C is tangential to the eigenspace Eλ

at x̄, and C is a strictly increasing continuous function of the first coordinate on an
interval. Any endpoints of C in the interior of R are either fixed-points or minimal
period-two points of the map F.

Theorem 2.2. For the curve C of Theorem 2.1 to have endpoints in ∂R , it is suffi-
cient that at least one of the following conditions is satisfied.

(i) The map F has no fixed-points nor minimal period-two points in ∆.
(ii) The map F has no fixed-points in ∆, detJF (x̄) > 0, and F(x) = x̄ has no

solutions in ∆.
(iii) The map F has no minimal period-two points in ∆, detJF (x̄) < 0, and

F(x) = x̄ has no solutions in ∆.

Theorem 2.3.
(a) Assume the hypotheses in Theorem 2.1, and let C be the curve whose exis-

tence is guaranteed by Theorem 2.1. If curve C has endpoints in ∂R , then
C separates R into two connected components, namely

W− := {x ∈ R \C : ∃z ∈ C where x ≺SE z.}
and

W+ := {x ∈ R \C : ∃z ∈ C where x ≻SE z.},
such that the following statements are true.
(i) W− is invariant, and dist(Fn(x),Q2(x̄))→ 0 as n → ∞ for every x ∈

W−.
(ii) W+ is invariant, and dist(Fn(x),Q4(x̄))→ 0 as n → ∞ for every x ∈

W+.
(b) If, in addition to the hypotheses in part (a), x̄ is an interior point of R

and F is C2 and strongly competitive on a neighborhood of x̄, then the
following statements are true.
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(i) F has no periodic points in the boundary of Q1(x̄)∪Q3(x̄), except for
x̄.

(ii) For every x ∈ W−, there exists n0 ∈ N such that Fn(x) ∈ int(Q2(x̄))
for n ≥ n0.

(iii) For every x ∈ W+, there exists n0 ∈ N such that Fn(x) ∈ int(Q4(x̄))
for n ≥ n0.

Theorem 2.4. In addition to the hypotheses in Theorem 2.3 part (b), suppose that
µ > 1 and that the eigenspace Eµ, corresponding to µ, is not a coordinate axis. If
the curve C from Theorem 2.1 has endpoints in ∂R , then C is the stable set W s (x̄)
of x̄, and the unstable set W u (x̄) of x̄ is a curve in R whose graph is a strictly
decreasing function of the first coordinate on an interval and is tangential to the
eigenspace Eµ at x̄. Any endpoints of W u (x̄) in R are fixed-points of the map F.

The next theorem is from [4] and it is used when analyzing a region of the
parameter space for an anti-competitive system in Section 4.1.

Theorem 2.5. Let I1 and I2 be intervals in R with endpoints a1, a2, b1, and b2
respectively, where −∞ < a1 < a2 < ∞ and −∞ < b1 < b2 < ∞. Let F be an anti-
competitive map on R = I1 × I2. Suppose F has a unique fixed-point x̄ in R and
does not have any minimal period-two points.

Then, x̄ is globally asymptotically stable on R .

3. THEOREMS FOR ANTI-COMPETITIVE MAPS

In this section, we extend two theorems and a lemma from [4] to apply to maps
that are not strongly anti-competitive.

The next two theorems (3.1 and 3.2) are similar to Theorem 9 and 10 in [4];
however, there are two differences. First, the hypothesis that F is strongly anti-
competitive was replaced with the hypothesis that F2 is strongly competitive.

If F is strongly anti-competitive, then by Lemma 2.2, F2 is strongly competitive.
However, there are maps where F2 is strongly competitive, but F is not strongly
anti-competitive, see Section 4. This shows that the scope of Theorems 9 and 10
in [4] is contained in the scope of Theorems 3.1 and 3.2.

The second difference is that the alternative hypothesis (d) part (ii) has been
added to Theorem 3.1.

Adding the alternative hypothesis allows us to determine the global dynamics
of many more systems of difference equations. For systems with maps that are
homogeneous of order zero, in all regions of parameter space, hypothesis (d) part
(i) is false and hypothesis (d) part (ii) is true. Also, there are many systems for
which these hypotheses act as a toggle switch. That is, in one region of the pa-
rameter space, hypothesis (d) part (i) is true, and in the compliment of that region,
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part (ii) is true, see [2], [3], and [8]. When hypothesis (d) part (i) is false, the Ja-
cobian matrix, evaluated at the fixed-point, has an eigenvalue of zero and there is a
super-attracting manifold.

Theorem 3.1. Let I1 and I2 be intervals in R with endpoints a1, a2, b1, and b2
respectively, where −∞ < a1 < a2 ≤ ∞ and −∞ < b1 < b2 ≤ ∞. Let R = I1 × I2
and let F : R → R be an anti-competitive map with an interior saddle fixed-point
x̄. Let ∆ := int(Q1 (x̄)∪Q3 (x̄))∩R . Suppose the following statements are true.

(a) F(int(R ))⊂ int(R ) and F2 is a strongly competitive map on int(R ).
(b) There are no fixed-points or minimal period-two points of F in ∆.
(c) F is a continuously differentiable map in some neighborhood of x̄.
(d) One of the following is true:

(i) detJF (x̄) ̸= 0 and if x ̸= x̄, then F(x) ̸= x̄.
(ii) There is a curve C ⊂ R that is the graph of a strictly increasing con-

tinuous function of the first coordinate on an interval, that passes
through x̄, and has endpoints in ∂R . Also, F(C ) = x̄ and if x ∈
(∂R ∩Q3(x̄))\C , then F(x) ̸= x̄.

Then, the following statements are true.
(1) There is a curve C ⊂ R through x̄ that is invariant under F2 and is a

subset of the basin of attraction of x̄. The curve C is the graph of a strictly
increasing continuous function of the first coordinate on an interval and it
has endpoints in ∂R .

(2) The curve C separates R into two connected components.
Define

W− := {x ∈ R \C : ∃z ∈ C where x ≺SE z.};
W+ := {x ∈ R \C : ∃z ∈ C where x ≻SE z.}.

(i) If x ∈ W−, then {F2n(x)} eventually enters int(Q2(x̄))∩R and
{F2n+1(x)} eventually enters int(Q4(x̄))∩R .

(ii) If x ∈ W+, then {F2n(x)} eventually enters int(Q4(x̄))∩R and
{F2n+1(x)} eventually enters int(Q2(x̄))∩R .

(iii) Both int(Q2(x̄))∩R and int(Q4(x̄))∩R are invariant under F2.

Proof.
Assume hypothesis (d) part (i).
By Lemma 2.2, F2 is competitive, but not necessarily strongly competitive, on

∂R . So, in order to apply Theorem 2.1, we need to use the rectangular region
K = int(R ). Note that F2 is strongly competitive on K and that F2(K )⊂ K .

By Lemma 2.3, detJF2(x̄) > 0. Also, JF2(x̄) has eigenvalues λ and µ such that
0 < λ < 1 < µ. By Remark 1, the eigenvectors of JF2(x̄) are not aligned with
a coordinate axis. In view of hypotheses (a) and (c), we can apply Theorem 2.1
using the rectangular region K , so there is a curve C ⊂K through x̄ that is invariant
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under F2 and is a subset of the basin of attraction of x̄. The curve C is the graph of
a strictly increasing continuous function of the first coordinate on an interval.

A local injectivity implies that F2(x) ̸= x̄ if x ̸= x̄. In view of hypothesis (b)
and detJF2(x̄)> 0, we can apply Theorem 2.2 part (ii), so curve C has endpoints in
∂K .

Since x̄ is an interior fixed-point, we can apply Theorem 2.3 part (b), so W− and
W+ (restricted to K ) are invariant under F2. Also, for every x ∈ W−, {F2n(x)}
eventually enters int(Q2(x̄))∩K and for every x∈W+, {F2n(x)} eventually enters
int(Q4(x̄))∩K .

By Theorem 2.4, C is the global stable manifold W s(x̄) of x̄ for F2.

Now consider x ∈ (∂R ∩Q3(x̄))\C . Let y = C ∩∂R ∩Q3(x̄).
Suppose x ∈ W−. Then y ≻SE x. In view of hypothesis (b), neither x nor y

are fixed-points of F2. Since F2 is competitive on ∂R and F2(x) /∈ C , we have
F2(y) ≻SE F2(x) and F2(y) ∈ int(R ). So, there is a z ∈ int(R )∩W− such that
z ≻SE F2(x). Since {F2n(z)} eventually enters int(Q2(x̄))∩R and F2 preserves
the south-east ordering, {F2n(x)} must eventually enter int(Q2(x̄))∩R .

Similarly, if x ∈ W+, then {F2n(x)} eventually enters int(Q4(x̄))∩R .

Assume hypothesis (d) part (ii).
Then, conclusion (1) holds. Note: in many cases where detJF(x̄) = 0, we are

able to find a linear super-attracting manifold.

Suppose x ∈ W−.
If x ∈ int(R ), then, there exists y ∈ C such that x ≺SE y. Since F2 is strongly

competitive and F2(y) = x̄, we have F2(x)≪SE x̄, so F2(x) ∈ int(Q2(x̄))∩R .
If x ∈ (∂R ∩Q3(x̄))\C , then by assumption, F(x) ̸= x̄. Let y = C ∩∂R ∩Q3(x̄).

Then, x ≺SE y. Since F2 is competitive on ∂R and F2(y) = x̄, we have F2(x)≺SE
x̄. There is a z ∈ int(R )∩W− such that F2(x)≺SE z. So, F4(x)⪯SE F2(z)≪SE x̄.
Thus, F4(x) ∈ int(Q2(x̄))∩R .

Similarly, if x ∈ W+, then {F2n(x)} eventually enters int(Q4(x̄))∩R .

So, using either hypothesis (d) part (i) or part (ii), we see that for x /∈C , {F2n(x)}
eventually enters int(Q2(x̄)) or int(Q4(x̄)). We now show that int(Q2(x̄))∩R and
int(Q4(x̄))∩R are invariant under F2.

If y ∈ int(Q2(x̄))∩R , then there exists z ∈ int(R ) such that y ≺SE z ≪SE x̄. So,
F2(y)⪯SE F2(z)≪SE x̄, thus int(Q2(x̄))∩R is invariant under F2.

Similarly, int(Q4(x̄))∩R is invariant under F2.

We now show that if x /∈ C , then {Fn(x)} eventually bounces back and forth
between int(Q2(x̄)) and int(Q4(x̄)).

Let x∈W−. Since {F2n(x)} eventually enters int(Q2(x̄))∩R, we can choose x∈
int(Q2(x̄))∩R . Since F2(x) ∈ int(Q2(x̄)), F(x) ̸= x̄. Since F is anti-competitive,
we have F(x) ≻SE x̄. There is a y ∈ int(R )∩W+ such that y ≺SE F(x). Since
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{F2n(y)} eventually enters int(Q4(x̄))∩R and F2 preserves the south-east order-
ing, {F2n+1(x)} eventually enters int(Q4(x̄))∩R .

Similarly, if x ∈ W+, then {F2n+1(x)} eventually enters int(Q2(x̄))∩R . □

Note: If C came from part (i) of hypothesis (d), then we need to prove that C is
invariant under F .

Corollary 3.1. Suppose the hypotheses of Theorem 3.1 are true. Then, the follow-
ing statements are true.

(i) If x ∈ W+, then F(x) ∈ W−.
(ii) If x ∈ W−, then F(x) ∈ W+.
(iii) If x ∈ C , then F(x) ∈ C .

Proof.
(i) Let x ∈ W+. Suppose F(x) ∈ W+. By Theorem 3.1, there is an n0 ∈ N

such that for n ≥ n0, both F2n(x)∈ int(Q4(x̄)) and F2n+1(x)∈ int(Q4(x̄)).
So, for n ≥ n0, F2n(x) ≫SE x̄ and F2n+1(x) ≫SE x̄. This contradicts the
fact that F reverses the south-east ordering.

Suppose F(x) ∈ C . Then for all n, F2n+1(x) ∈ C and there is an n0 ∈ N
such that for n ≥ n0, F2n(x) ∈ int(Q4(x̄)). So, for n ≥ n0, F2n(x) ≫SE
x̄. Since F reverses the south-east ordering, F

(
F2n(x)

)
⪯SE x̄. However,

F
(
F2n(x)

)
̸= x̄ because F2n+2(x)≫SE x̄. Thus, F2n+1(x) ∈ W−, which is

a contradiction.
(ii) The proof is similar to part (i) and will be omitted.
(iii) Let x ∈ C . Suppose F(x) /∈ C . Then F2(x) ∈ C and either F(x) ∈ W− or

F(x) ∈ W+. Without loss of generality, assume F(x) ∈ W+. By part (i),
we have F2(x) ∈ W−, which is a contradiction.

□

Before we prove Theorem 3.2, it is helpful to prove the next lemma. The lemma
and its proof are a modified version of Theorem 6 in [4].

Lemma 3.1. Let F be an anti-competitive map on R ⊂R2. Suppose the following
statements are true.

(a) F2 is strongly competitive on int(R ).
(b) x̄ is the unique fixed-point of F in int(R ) and it is a saddle point.
(c) F is continuously differentiable on some neighborhood of x̄.

Then, for all δ > 0, there is a point t ∈ int(Q2(x̄)∩R ) such that ||x̄− t||< δ and
F2(t)≪SE t. Also, there is a point u ∈ int(Q4(x̄)∩R ) such that ||x̄−u||< δ and
F2(u)≫SE u.

Proof.
Let δ > 0.
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Since x̄, is a saddle point of F , by Lemma 2.3, x̄ is a saddle point of F2 and
JF2(x̄) has eigenvalues λ and µ such that 0 ≤ λ < 1 < µ. Let v be the eigenvector
of JF2(x̄) corresponding to µ. By Remark 1, v can be chosen so that it points in the
direction of Quadrant II.

There is an r0 > 0 such that x̄+ r0v ∈ int(Q2(x̄)∩R ), x̄− r0v ∈ int(Q4(x̄)∩R ),
and ||r0v||< δ.

There is an r1 > 0 such that F is continuously differentiable at x if ||x− x̄||< r1.
Let r < r1. Since F2 is differentiable,

F2(x̄+ rv)− (x̄+ rv) = F2(rv)− rv+o(r) = r(µ−1)v+o(r). (3.1)

Since µ> 1, there is an r2 such that for 0< r < r2, both expressions on the left-hand
side of Equation (3.1) are of constant sign.

Also,

F2(x̄− rv)− (x̄− rv) =−F2(rv)+ rv+o(r) = r(1−µ)v+o(r). (3.2)

Since µ> 1, there is an r3 such that for 0< r < r3, both expressions on the left-hand
side of Equation (3.2) are of constant sign.

Choose r such that 0< r <min{r0,r1,r2,r3}. So, for r sufficiently small, F2(x̄+
rv)−(x̄+rv) points in the direction of Quadrant II. Thus, F2(x̄+rv)≪SE (x̄+rv).
Also, F2(x̄− rv)− (x̄− rv) points in the direction of Quadrant IV. Thus, F2(x̄−
rv)≫SE (x̄− rv). □

Theorem 3.2. Suppose the hypotheses in Theorem 3.1 are true. Then, the following
statements are true.

Set F2n(x) = (x2n,y2n) and F2n+1(x) = (x2n+1,y2n+1).
(a) If there exists a unique minimal period-two solution (v1,w1) and (v2,w2) in

int(Q2(x̄))∩R and int(Q4(x̄))∩R respectively, F2(a1,b2) ≫SE (a1,b2),
and F2(a2,b1)≪SE (a2,b1), then the following statements are true.
(i) If x∈W+, then {x2n}→ v2, {y2n}→w2 and {x2n+1}→ v1, {y2n+1}→

w1.
(ii) If x∈W−, then {x2n}→ v1, {y2n}→w1 and {x2n+1}→ v2, {y2n+1}→

w2.
(iii) If x ∈ C , then {(xn,yn)}→ x̄.

(b) If there are no minimal period-two points of F, then a2 = b2 = ∞ and the
following statements are true.
(i) If x ∈ W+, then {x2n}→ ∞, {y2n+1}→ ∞, and {x2n+1} and {y2n} are

bounded.
(ii) If x ∈ W−, then {x2n+1}→ ∞, {y2n}→ ∞, and {x2n} and {y2n+1} are

bounded.
(iii) If x ∈ C , then {(xn,yn)}→ x̄.

Proof.
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(a) Let (v1,w1) and (v2,w2) be the unique minimal period-two points of F in
int(Q2(x̄))∩R and int(Q4(x̄))∩R , respectively.
(i) Let x ∈ W+. By Theorem 3.1, there is an n0 ∈N such that for n ≥ n0,

both F2n(x) ∈ int(Q4(x̄))∩R and F2n+1(x) ∈ int(Q2(x̄))∩R . Let
n ≥ n0 and let x0 = F2n(x) and x1 = F2n+1(x).
By Lemma 3.1, there exists c ∈ int(Q4(x̄))∩R such that c ≺SE x0 and
F2(c)≫SE c. Let d = (a2,b1). Since d is the south-east corner of R ,
we have d ∈ int(Q4(x̄))∩R , d ⪰SE x0, and F2(d)≪SE d.
Since F2 strongly preserves the south-east ordering in int(R ), the se-
quence {F2n(c)} is strictly increasing with respect to the south-east
ordering and {F2n(d)} is strictly decreasing with respect to the south-
east ordering.
Since F2n(c) ≪SE F2n(x0) ⪯SE F2n(d) for all n ≥ n0 and (v2,w2) is
the unique fixed point of F2 in int(Q4(x̄))∩R , {F2n(x0)}→ (v2,w2),
which means that {x2n}→ v2 and {y2n}→ w2.

By Lemma 3.1, there exists p ∈ int(Q2(x̄))∩R such that p ≻SE x1
and F2(p)≪SE p. Let q = (a1,b2). Since q is the north-west corner
of R , we have q ∈ int(Q2(x̄))∩R , q ⪯SE x1, and F2(q)≫SE q.
Since F2 strongly preserves the south-east ordering, the sequence
{F2n(p)} is strictly decreasing with respect to the south-east order-
ing and {F2n(q)} is strictly increasing with respect to the south-east
ordering. Since F2n(p) ≫SE F2n(x1) ⪰SE F2n(q) for all n ≥ n0 and
(v1,w1) is the unique fixed point of F2 in int(Q2(x̄))∩R , {F2n(x1)}→
(v1,w1), which means that {x2n+1}→ v1 and {y2n+1}→ w1.

(ii) The proof for x ∈ W− is similar and will be omitted.
(iii) Let x∈C . By Corollary 3.1, F(x)∈C . Since C is a subset of the basin

of attraction of x̄ under F2, we have {F2n(x)}→ x̄ and {F2n+1(x)}→
x̄, so {(xn,yn)}→ x̄.

(b) Suppose there are no minimal period-two points of F .
(i) Let x ∈ W+. By Theorem 3.1, there is an n0 ∈N such that for n ≥ n0,

both F2n(x) ∈ int(Q4(x̄))∩R and F2n+1(x) ∈ int(Q2(x̄))∩R . Let
n ≥ n0 and let x0 = F2n(x) and x1 = F2n+1(x).
By Lemma 3.1, there exists c ∈ int(Q4(x̄))∩R such that c ≺SE x0 and
F2(c)≫SE c. Since F2 strongly preserves the south-east ordering, the
sequence {F2n(c)} is strictly increasing with respect to the south-east
ordering.
The second component of {F2n(c)} is decreasing and bounded below
by b1, so it must converge. Since F2n(x0) ≫SE F2n(c) for n ≥ n0,
{y2n} must be bounded.
Combining the facts that F2 has no fixed-points in int(Q4(x̄))∩R , the
set R contains its limit-points, and the second component of {F2n(c)}
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is convergent, we see that the first component of {F2n(c)} is strictly
increasing and must be unbounded. Since F2n(x0) ≫SE F2n(c) for
n ≥ n0, we have {x2n}→ ∞.

By Lemma 3.1, there exists d∈ int(Q2(x̄))∩R such that d≻SE x1 and
F2(d)≪SE d. Since F2 strongly preserves the south-east ordering, the
sequence {F2n(d)} is strictly decreasing with respect to the south-east
ordering.
The first component of {F2n(d)} is decreasing and bounded from be-
low by a1, so it must converge. Since F2n(x1)≪SE F2n(d) for n ≥ n0,
the first component of F2n(x1) must be bounded. Thus, {x2n+1} must
be bounded.
Combining the facts that F2 has no fixed-points in int(Q2(x̄))∩R , the
set R contains its limit-points, and the first component of {F2n(d)}
converges, we see that the second component of {F2n(d)} is strictly
increasing and must be unbounded. Since F2n(x1) ≪SE F2n(d) for
n ≥ n0, we have {y2n+1}→ ∞.

(ii) The proof for x ∈ W− is similar and will be omitted.
(iii) The proof for x ∈ C is the same as in part (a).

□

4. EXAMPLE: A WEAKLY ANTI-COMPETITIVE MAP

Before we begin our analysis, it is helpful to prove a lemma that makes it easier
to show that hypothesis (b) in Theorem 3.1 is satisfied.

Lemma 4.1. Let F be an anti-competitive map on a closed and bounded rectangle
R ⊂R2, such that the north-west and south-east corners of R are minimal period-
two points of F that are mapped onto each other. Let F2 be a strongly competitive
map on R .

Then, there is a fixed-point of F in int(R ).

Proof.
Let p1 and p2 be the north-west and south-east corners of R , respectively. Let

x ∈ R \(p1 ∪p2). Then, p1 ≺SE x ≺SE p2.
Since F is anti-competitive on R , we have F(p1) ⪰SE F(x) ⪰SE F(p2). So,

p2 ⪰SE F(x)⪰SE p1 and thus, F(R )⊂ R .
Since F2 is strongly competitive on R , we have F2(p1)≪SE F2(x)≪SE F2(p2).

So, p1 ≪SE F2(x)≪SE p2 and thus, F2(x) ∈ int(R ).
By the Brouwer Fixed-Point Theorem, there is a fixed-point x̄ of F in R .
Since F2 (R \(p1 ∪p2)) ∈ int(R ) and x̄ is a fixed-point of F2, x̄ ∈ int(R ). □
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Consider the system of difference equations

xn+1 =
xn+yn

xn

yn+1 =
β2xn

A2+xn

 for n = 0,1,2, . . . (4.1)

where β2, A2, and x0 are positive and y0 is nonnegative.
Let F be the map corresponding to system (4.1). Then,

F
(

x
y

)
=

(
x+y

x
β2x

A2+x

)
.

For all n ≥ 0, xn > 0. So, for all n ≥ 1, yn > 0.
For n ≥ 0,

xn+1 =
xn + yn

xn
≥ 1 and yn+1 =

β2xn

A2 + xn
< β2.

So, for all n ≥ 1, xn+1 > 1 and

xn+1 =
xn + yn

xn
= 1+

yn

xn
< 1+

β2

1
= 1+β2.

Let R = [1,1+β2]× [0,β2].
Then, R is an attracting, invariant rectangle. Also, F(int(R )) ⊂ int(R ) and if

x0 ∈ (0,∞)× [0,∞), then for n ≥ 2, xn ∈ int(R ).
The Jacobian matrix of F is

JF =

[ −y
x2

1
x

β2A2
(A2+x)2 0

]
.

In the region R , y is nonnegative, while x and all of the parameters are positive.
From the sign configuration of the Jacobian matrix and Lemma 2.1, we see that F
is anti-competitive, but not strongly anti-competitive, on R .

4.1. Analysis for the Case A2 ≤ 1 or β2 ≤ A2(A2+1)2

(A2−1)2

In this section, we use Theorem 2.5 to show that in this region of the parameter
space, every solution of System (4.1) converges to the unique equilibrium point.

Solving the equilibrium equations shows that in all regions of the parameter
space, there is a unique interior equilibrium point x̄ = (x̄, ȳ) where

x̄ =
1−A2 +

√
(1−A2)2 +4(A2 +β2)

2
and ȳ =

β2x̄
A2 + x̄

. (4.2)
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Suppose (v1,w1) and (v2,w2) are distinct minimal period-two points of System
(4.1). Then, we have the following equations:

(a) v1 =
v2+w2

v2
, (b) v2 =

v1+w1
v1

,

(c) w1 =
β2v2

A2+v2
, (d) w2 =

β2v1
A2+v1

.

Subtracting Equation (a) from Equation (b), we obtain

v1 − v2 = w2 −w1. (4.3)

This shows that v1 = v2, if and only if, w1 = w2. So, to have a minimal period-two
solution, we must have v1 ̸= v2 and w1 ̸= w2.

Subtracting Equation (c) from Equation (d), we obtain

A2(w2 −w1)+ v1w2 − v2w1 = β2(v1 − v2).

Using the additive identity, we have

A2(w2 −w1)+ v1w2 − v1w1 + v1w1 − v2w1 = β2(v1 − v2).

So,
A2(w2 −w1)+ v1(w2 −w1)+w1(v1 − v2) = β2(v1 − v2).

Using Equation (4.3) and the fact that w1 ̸= w2, we obtain

w1 =−v1 +β2 −A2.

So, a minimal period-two point (v,w) must be on the line w =−v+β2 −A2.
This fact, combined with Equation (c) gives us

w1 =−v1 +β2 −A2 =
β2v2

A2 + v2
.

Solving for v2 in terms of v1 yields

v2 =
−A2v1 +β2A2 −A2

2
v1 +A2

. (4.4)

Using Equation (c), we have

v1 =
v2 +w2

v2
=

v2 − v2 +β2 −A2

v2
=

β2 −A2

v2
.

Substituting for v2 using Equation (4.4), we see that in order to have minimal
period-two solutions, we must have

v1 =
(1−A2)(A2 −β2)−

√
(1−A2)2(A2 −β2)2 +4A2

2(A2 −β2)

2A2
;

v2 =
(1−A2)(A2 −β2)+

√
(1−A2)2(A2 −β2)2 +4A2

2(A2 −β2)

2A2
;

w1 =−v1 +β2 −A2;
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w2 =−v2 +β2 −A2.

If β2 ≤ A2, then w1,w2 ≤ 0 and no minimal period-two solution exists. Also, if
β2 > A2 and A2 ≤ 1, then v1 < 0, and no minimal period-two solution exists.

Suppose β2 > A2 > 1.
If

β2 <
A2 (A2 +1)2

(A2 −1)2 ,

then the discriminant in the formula for v1 is negative and no minimal period-two
solution exists.

Let (x̄, ȳ) be the unique equilibrium point of System (4.1). If

β2 =
A2 (A2 +1)2

(A2 −1)2 ,

then the discriminant in the formula for v1 and v2 is zero and

v1 = v2 =
(1−A2)(A2 −β2)

2A2
= x̄.

One can also show that w1 = w2 = ȳ and no minimal period-two solution exists.
By Theorem 2.5, when A2 ≤ 1 or β2 ≤ A2(A2+1)2

(A2−1)2 , every solution of System (4.1)
converges to the unique equilibrium point.

4.2. Analysis for the Case 1 < A2 <
A2(A2+1)2

(A2−1)2 < β2

In this section, we use Theorem 3.1 and Theorem 3.2 to show that in this region
of the parameter space, almost every solution of System (4.1) converges to the
unique minimal period-two solution. This shows that System (4.1) possesses a
period-doubling bifurcation.

To determine the local stability of the unique fixed-point x̄ = (x̄, ȳ), we examine
the simplified Jacobian matrix of F evaluated at the fixed-point,

JF (x̄, ȳ) =


−ȳ
x̄2

1
x̄

A2ȳ2

β2x̄2 0

 . (4.5)

Both eigenvalues of Matrix (4.5) are inside the unit circle, if and only if,

ȳ
x̄2 < 1− A2ȳ2

β2x̄3 < 2.

The second inequality is true in all regions of the parameter space. Thus, one
eigenvalue is always inside the unit circle.

The inequality
ȳ
x̄2 < 1− A2ȳ2

β2x̄3
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is true, if and only if,
β2x̄ȳ < β2x̄3 −A2ȳ2. (4.6)

Using the first equation in System 4.1, we see that ȳ = x̄(x̄−1) with x̄ > 1. Substi-
tuting this into (4.6) and simplifying, we obtain

A2(x̄−1)2 < β2. (4.7)

Using the second equation in System 4.1, we see that

β2 =
ȳ(A2 + x̄)

x̄
.

Substituting x̄(x̄−1) for ȳ, we get

β2 = (x̄−1)(A2 + x̄).

Substituting for β2 in (4.7), we get

A2(x̄−1)< A2 + x̄.

So,
x̄(A2 −1)< 2A2,

which is always true if A2 ≤ 1.
Let A2 > 1. Then, the equilibrium point is locally asymptotically stable, if and

only if,

x̄ <
2A2

A2 −1
.

Using the formula for x̄ in (4.2) and a bit of algebra, we arrive at the following
analysis.

(a) The equilibrium point is locally asymptotically stable when A2 ≤ 1 or β2 <
A2(A2+1)2

(A2−1)2 .

(b) The equilibrium point is non-hyperbolic with one eigenvalue inside the unit

circle when 1 < A2 < β2 =
A2(A2+1)2

(A2−1)2 .

(c) The equilibrium point is a saddle point when 1 < A2 <
A2(A2+1)2

(A2−1)2 < β2.

Thus, the equilibrium point is a saddle-point when the minimal period-two
points exist.

Let F be the map corresponding to system (4.1). From Section 4, for R =
[1,1+ β2]× [0,β2], F(R ) ⊂ R , and F is anti-competitive, but not strongly anti-
competitive, on R .

The Jacobian matrix for F2, the second iterate of F , is

JF2 =


β2x(xy+A2x+2A2y)
(A2+x)2(x+y)2 − β2x2

(A2+x)(x+y)2

− A2β2y
(x+A2x+y)2

A2β2x
(x+A2x+y)2

 .
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In the interior of R , x > 1 and y > 0. From the sign configuration of the Jaco-
bian matrix and Lemma 2.1, we see that F2 is strongly competitive on int(R ) and
competitive on ∂R .

In Section 4.1, we showed that v1 and v2 were the roots of a quadratic equa-
tion and wi = −vi +β2 −A2. Choose v1 < v2. Then, (v1,w1)≪SE (v2,w2). Since
F2 is strongly competitive on int(R ), we can apply Lemma 4.1 on the rectan-
gle formed by (v1,w1) and (v2,w2). Since x̄ is the unique fixed-point of F , we
have (v1,w1)≪SE x̄ ≪SE (v2,w2), and so (v1,w1) ∈ int(Q2(x̄))∩R and (v2,w2) ∈
int(Q4(x̄))∩R . Since these are the only minimal period-two points of F , there are
no minimal period-two points of F in int(Q1(x̄)∪Q3(x̄))∩R .

Using the Jacobian matrix in (4.5), one can see that det(JF(x̄, ȳ)) < 0 in all
regions of the parameter space. Also, the map is one-to-one.

This satisfies the hypotheses in Theorem 3.1 using the region R .
The map F2 moves the north-west corner of R to the south-east since

F2 (1,β2) =

(
1+

β2

(1+A2)(1+β2)
,

β2(1+β2)

A2 +1+β2

)
≫SE (1,β2) .

The map F2 moves the south-east corner of R to the north-west since

F2 (1+β2,0) =
(

1+
β2(1+β2)

A2 +1+β2
,

β2

A2 +1

)
≪SE (1+β2,0) .

We can apply Theorem 3.2, using the region R , to obtain the following result.

(i) If x ∈ W+, {x2n}→ v2, {y2n}→ w2 and {x2n+1}→ v1, {y2n+1}→ w1.
(ii) If x ∈ W−, {x2n}→ v1, {y2n}→ w1 and {x2n+1}→ v2, {y2n+1}→ w2.
(iii) If x ∈ C , {(xn,yn)}→ x̄.

5. FUTURE RESEARCH

We plan to investigate the global dynamics of all anti-competitive systems of
two rational-linear difference equations, so it was necessary to extend theorems to
include more types of systems, such as weakly anti-competitive or homogeneous
systems. While it may seem as though hypothesis (d) part (ii) was tacked on to the
theorem just to include systems with homogeneous maps, there are many systems
for which these hypotheses act as a toggle switch. That is, in one region of the pa-
rameter space, hypothesis (d) part (i) is true, and in the compliment of that region,
part (ii) is true. In the future, we plan to investigate the many systems with this
property.

We also plan to develop other theorems to determine the basin of attraction of
fixed-points and periodic points for anti-competitive maps.
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[4] S. Kalabušić, M.R.S. Kulenović, and E. Pilav, Global Dynamics of Anti-Competitive Systems in

the Plane, Dynamics of Cont., Disc., and Impulsive Systems, Series A: Mathematical Analysis,
2 no. 4 (2013), 477–505.
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