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COMPLEMENTARY DISTANCE AND RECIPROCAL
COMPLEMENTARY DISTANCE SPECTRUM FOR INDU-BALA

PRODUCT OF GRAPHS

HARISHCHANDRA S. RAMANE AND DANESHWARI D. PATIL

ABSTRACT. For two graphs G1 and G2, graph obtained with two disjoint copies
of join structure G1∨G2 by joining the corresponding vertices in G2’s, is the Indu–
Bala product G1▼G2. Present work focuses on the study of complementary dis-
tance (CD) and reciprocal complementary distance (R CD) spectrum for Indu–
Bala product of regular graphs via the concept of equitable partition. Hence note
CD and R CD spectrum of dumbbell graph as a particular case of the Indu–Bala
product.

1. INTRODUCTION

In 2016 [4], Indulal and Balakrishnan defined a new graph operation, namely,
Indu–Bala product of graphs and studied its distance spectrum using eigen ver-
tor technique. Recently in 2019 [8], S. Patil and M. Mathapati studied adjacency,
Laplacian and signless Laplacian spectra of Indu–Bala product of graphs using the
concept of coronal. Present work focuses on the study of CD and R CD spectrum
for Indu–Bala product of regular graphs via the concept of equitable partition. As a
consequence, we provide CD and R CD spectrum of dumbbell graph as a particular
case of the Indu–Bala product. Product structure considered here involves join struc-
ture G1 ∨G2 as well as Cartesian product structure K2□G2. Literature related to the
study of CD and R CD spectrum involving join structure can be seen in [9–12].

2. PRELIMINARIES

All the graphs that are taken into consideration are finite, simple and undirected.
An ordered pair (V (G),E(G)) comprising of vertex set V (G) and edge set E(G)
accompanied by a relation of incidence between them, is defined as a graph G. Order
of G is equal to its vertex count. Those vertices which are connected by an edge are
adjacent or neighbors. Number of edges at the vertex v amounts to its degree di, if
di = r (a constant) for every vertex vi then G is a graph with regularity r (r-regular
graph). An alternating sequence of vertices and edges of G with distinct vertices

2020 Mathematics Subject Classification. 05C12, 05C50.
Key words and phrases. Join of two graphs; Indu-Bala product; CD-spectrum; R CD-spectrum.



22 HARISHCHANDRA S. RAMANE AND DANESHWARI D. PATIL

and edges is defined as a path, distance di j between two vertices vi and v j is the
minimal length of the path connecting them, maximal distance between the vertices
is diameter (D) of G. Graph obtained from G, with same vertex count as G and
adjacency relation is such that two vertices are connected by an edge if and only if
they are not connected in G is the complement G. For a graph G with vertex count
n, adjacency matrix is A(G) = [ai j]n×n with ai j = 1 if there is adjacency among
vertices vi and v j and ai j = 0, in other case. Eigenvalues associated to A(G) are
adjacency eigenvalues (λi’s) and their collection is the A-spectrum (σA ). J denote
all 1’s matrix, I is the unit matrix, Cn is cycle graph on n vertices, Km is the empty
graph on m vertices. We adhere to the book [3] for undefined graph theoretical terms
and notations.

Due to the significant interest in obtaining supplementary structural descriptors
for QSPR and QSAR models, O. Ivanciuc et al. [5] defined CD-matrix and R CD-
matrix, indicating new molecular graph metric derived from graph distances. CD
and R CD matrices are notable in graph theoretical matrices in the field of chem-
istry [6]. For a graph G with vertex count n and diameter D, complementary distance
matrix CD(G) = [ci j] with ci j = 1+D− di j if i ̸= j and 0 otherwise. Eigenvalues
associated to CD(G) are CD-eigenvalues and their collection is the CD-spectrum.
For a graph G with vertex count n and diameter D, reciprocal complementary dis-

tance matrix R CD(G) = [rci j] with rci j =
1

1+D−di j
if i ̸= j and 0 otherwise.

Eigenvalues associated to R CD(G) are R CD-eigenvalues and their collection is
the R CD-spectrum.

Definition 2.1. [3] Graph having vertex set as V (G1)
⋃

V (G2) and
E(G1)

⋃
E(G2)

⋃
{uv : u ∈ V (G1),v ∈ V (G2)} as set of edges is the join structure

G1 ∨G2 of graphs G1 and G2.

Definition 2.2. [3] Cartesian product K2□G2 of graphs K2 and G2 is a graph ob-
tained from two disjoint copies of G2 by joining corresponding vertices in two copies
of G2.

Definition 2.3. [4] For two graphs G1 and G2, graph obtained from two disjoint
copies of join structure G1 ∨G2 by joining the corresponding vertices in G2’s, is the
Indu–Bala product G1▼G2.

Definition 2.4. [13] Partition Π : V1
⋃

V2
⋃
. . .

⋃
Vk of set of vertices in graph G is

equitable if for two partite sets Vi and Vj of partition Π, there is a constant qi j such
that a vertex vi ∈Vi has exactly qi j neighbors in Vj, regardless of the choice of vi.

The matrix associated with the equitable partition is called quotient matrix (Q).
In the structure of join of two regular graphs, whole vertex set of that regular graph
will be taken as a partite set for the equitable partition (which results in two partite
sets).
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Definition 2.5. [1] Generalized wheel graph Wm,n is defined as the join Cn ∨Km, for
m ≥ 2,n ≥ 3.

Definition 2.6. [7] Dumbbell graph DB(Wm,n), is obtained by connecting m vertices
at the centres of two generalized wheel graphs Wm,n through m edges.

It is noted that, DB(Wm,n) =Cn▼Km.

Lemma 2.1. [2] For a 2 × 2 block symmetric matrix D =

[
D0 D1
D1 D0

]
, eigenvalues of

D are those of D0 +D1 and D0 −D1.

Lemma 2.2. [3] A-spectrum of cycle graph Cn and empty graph Km are:

σA(Cn) =
{

2cos
(

2πk
n

)
: k = 0,1, . . . ,n−1

}
and

σA(Km) =
{

0 : appearing m times
}
.

Theorem 2.1. [13] For equitable partition Π : V1
⋃

V2
⋃
. . .

⋃
Vk of the vertex set

V (G) of a graph G, spectrum due to the quotient matrix Q will be a part of that due
to the adjacency matrix A(G).

2.1. Complementary distance spectrum for Indu-Bala product of graphs

Theorem 2.2. CD-spectrum of Indu-Bala product G1▼G2 of two regular graphs G1
and G2 with orders n1,n2 and regularity r1,r2 respectively, consists of the following:

i. λi(G1)−2 appearing twice for i = 2,3, . . . ,n1

ii. 2λi(G2) for i = 2,3, . . . ,n2

iii. −4 appearing (n2 −1) times

iv.
n1

2
+

n2

2
+

r1

2
−3± 1

2

√
n2

1 +n2
2 + r2

1 +2(n1 −2)n2 +2(n1 −n2 +2)r1 +4n1 +4

and
3n1

2
+

3n2

2
+

r1

2
+ r2 −1±

1
2

√
9n2

1 +9n2
2 + r2

1 +4r2
2 +2(41n1 +6)n2 +2(3n1 −3n2 −2)r1 −4(3n1 −3n2 + r1 −2)r2 −12n1 +4.

Proof. With a proper labeling of the vertices forming the product structure, general
CD matrix is:

CD(G1▼G2) =


3A(G1)+2A(G1) Jn1×n1 3Jn1×n2 2Jn1×n2

Jn1×n1 3A(G1)+2A(G1) 2Jn1×n2 3n1×n2

3Jn2×n1 2Jn2×n1 3A(G2)+2A(G2) 3In2 +2A(G2)+A(G2)
2Jn2×n1 3Jn2×n1 3In2 +2A(G2)+A(G2) 3A(G2)+2A(G2)

.
As G1,G2 are regular graphs,
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(a) vertex vi in V (G1) has exactly r1 +n2 neighbors in V (G2), regardless of the
choice of vi (same follows for other copy of G1)

(b) vertex vi in V (G2) has exactly r2 +n1 neighbors in V (G1), regardless of the
choice of vi

(c) vertex vi in V (G2) has exactly r2+1 neighbors in V (G2) (with the other copy
of G2), regardless of the choice of vi (same follows for other copy of G2).

Thus, we can have the equitable partition Π : V (G1)
⋃

V (G1)
⋃

V (G2)
⋃

V (G2). Due
to this equitable partition, CD(G1▼G2) is reduced to a smaller matrix (order 4×4),
as each entry of the 4×4 block matrix has constant row sums.
Therefore,

QCD(G1▼G2) =


2n1 + r1 −2 n1 3n2 2n2

n1 2n1 + r1 −2 2n2 3n2
3n1 2n1 2n2 + r2 −2 n2 + r2 +2
2n1 3n1 n2 + r2 +2 2n2 + r2 −2

.
Since, QCD is a reduced matrix, eigenvalues of QCD are those of CD(G1▼G2).
Expanding determinant of QCD , we have:

σQCD =

{
n1

2
+

n2

2
+

r1

2
−3± 1

2

√
n2

1 +n2
2 + r2

1 +2(n1 −2)n2 +2(n1 −n2 +2)r1 +4n1 +4 ,

3n1

2
+

3n2

2
+

r1

2
+ r2 −1± (2.1)

1
2

√
9n2

1+9n2
2+r2

1+4r2
2+2(41n1+6)n2+2(3n1−3n2−2)r1−4(3n1−3n2+r1−2)r2−12n1+4

}
.

For the remaining eigenvalues, we have to examine G1 and G2 structures.
Due to G1, we have

λi(G1)−2 appearing twice (as G1 is appearing twice in G1▼G2) for i = 2,3, . . . ,n1,
(2.2)

which is obtained from 3A(G1)+2A(G1), as graphs G1 and G2 connected through
the join structure. Due to G2, we have the matrix[

3A(G2)+2A(G2) 3In2 +2A(G2)+A(G2)
3In2 +2A(G2)+A(G2) 3A(G2)+2A(G2)

]
.

From Lemma 2.1, 3A(G2)+2A(G2)+3In2 +2A(G2)+A(G2) and 3A(G2)+
2A(G2)−3In2 −2A(G2)−A(G2) have part of the spectrum as V (G2)’s make partite
sets, which give

2λi(G2) for i = 2,3, . . . ,n2, (2.3)
obtained from 3A(G2)+2A(G2)+3In2 +2A(G2)+A(G2).

−4 for i = 2,3, . . . ,n2, (2.4)

obtained from 3A(G2)+2A(G2)−3In2 −2A(G2)−A(G2).
From equations (2.1), (2.2), (2.3) and (2.4) result follows. □
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Remark 2.1. Concept of dumbbell graph defined by S. Kaliyaperumal et al. [1]
in 2022, is the particular case of Indu-Bala product [4]. Thus, CD-spectrum of
dumbbell graph consists of the following:

i. 2 cos
(2πk

n

)
−2 appearing twice for k = 1,2,3, . . . ,n−1

ii. 0 appearing (m−1) times

iii. −4 appearing (m−1) times

iv. n
2
+

m
2
−2± 1

2

√
n2 +m2 +2mn−8m+8n+16 and 3n

2
+

3m
2

± 1
2

√
9n2 +9m2 +82mn.

Proof. Proof follows from Theorem 2.2 and Lemma 2.2, where G1 = Cn and G2 =
Km. □

3. RECIPROCAL COMPLEMENTARY DISTANCE SPECTRUM FOR INDU-BALA

PRODUCT OF GRAPHS

Theorem 3.1. R CD-spectrum of Indu-Bala product G1▼G2 of two regular graphs
G1 and G2 with orders n1,n2 and regularity r1,r2 respectively, consists of the follow-
ing:

i. −λi(G1)

6
− 1

2
appearing twice for i = 2,3, . . . ,n1

ii. −2λi(G2)

3
− 7

6
for i = 2,3, . . . ,n2

iii.
λi(G2)

3
+

1
6

for i = 2,3, . . . ,n2

iv.
3n1

4
+

3n2

4
− r1

12
− r2

3
− 5

6
±

1
12

√
81n2

1 −2(31n1 +36)n2 +81n2
2 −2(9n1 −9n2 +4)r1 + r2

1 +8(9n1 −9n2 − r1 +4)r2 +16r2
2 +72n1 +16

and

−n1

4
− n2

4
− r1

12
+

r2

6
− 1

6
±

1
12

√
9n2

1 −2(7n1 +12)n2 +9n2
2 +2(3n1 −3n2 +4)r1 + r2

1 +4(3n1 −3n2 + r1 +4)r2 +4r2
2 +24n1 +16.

Proof. With a proper labeling of the vertices forming the product structure, general
R CD matrix is:

R CD(G1▼G2)=



1
3

A(G1)+
1
2

A(G1) Jn1×n1

1
3

Jn1×n2

1
2

Jn1×n2

Jn1×n1

1
3

A(G1)+
1
2

A(G1)
1
2

Jn1×n2

1
3

Jn1×n2

1
3

Jn2×n1

1
2

Jn2×n1

1
3

A(G2)+
1
2

A(G2)
1
3

In2 +
1
2

A(G2)+A(G2)

1
2

Jn2×n1

1
3

Jn2×n1

1
3

In2 +
1
2

A(G2)+A(G2)
1
3

A(G2)+
1
2

A(G2)


.

As G1,G2 are regular graphs,
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(a) vertex vi in V (G1) has exactly r1 +n2 neighbors in V (G2), regardless of the
choice of vi (same follows for other copy of G1)

(b) vertex vi in V (G2) has exactly r2 +n1 neighbors in V (G1), regardless of the
choice of vi

(c) vertex vi in V (G2) has exactly r2+1 neighbors in V (G2) (with the other copy
of G2), regardless of the choice of vi (same follows for other copy of G2).

Thus, we can have the equitable partition Π : V (G1)
⋃

V (G1)
⋃

V (G2)
⋃

V (G2). Due
to this equitable partition, R CD(G1▼G2) is reduced to a smaller matrix (order 4×
4), as each entry of the 4×4 block matrix has constant row sums.
Therefore,

QR CD(G1▼G2) =



n1

2
− r1

6
− 1

2
n1

n2

3
n2

2

n1
n1

2
− r1

6
− 1

2
n2

2
n2

3
n1

3
n1

2
n2

2
− r2

6
− 1

2
n2 −

r2

2
− 2

3
n1

2
n1

3
n2 −

r2

2
− 2

3
n2

2
− r2

6
− 1

2


.

Since, QR CD is a reduced matrix, eigenvalues of QR CD are those of R CD(G1▼G2).
Expanding determinant of QR CD , we have:

σQR CD =

{
3n1

4
+

3n2

4
− r1

12
− r2

3
− 5

6
±

1
12

√
81n2

1 +81n2
2 + r2

1 +16r2
2 −2(31n1 +36)n2 −2(9n1 −9n2 +4)r1 +8(9n1 −9n2 − r1 +4)r2 +72n1 +16,

− n1

4
− n2

4
− r1

12
+

r2

6
− 1

6
±

1
12

√
9n2

1 +9n2
2 + r2

1 +4r2
2 −2(7n1 +12)n2 +2(3n1 −3n2 +4)r1 +4(3n1 −3n2 + r1 +4)r2 +24n1 +16

}
. (3.1)

For the remaining eigenvalues, we have to examine G1 and G2 structures.
Due to G1, we have
−λi(G1)

6 − 1
2 appearing twice (as G1 is appearing twice in G1▼G2) for i = 2,3, . . . ,n1,

which is obtained from
1
3

A(G1) +
1
2

A(G1), as graphs G1 and G2 are connected
through the join structure.
Due to G2, we have the matrix

1
3

A(G2)+
1
2

A(G2)
1
3

In2 +
1
2

A(G2)+A(G2)

1
3

In2 +
1
2

A(G2)+A(G2)
1
3

A(G2)+
1
2

A(G2)

.
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From Lemma 2.1,
1
3

A(G2)+
1
2

A(G2)+
1
3

In2 +
1
2

A(G2)+A(G2)

and
1
3

A(G2)+
1
2

A(G2)−
1
3

In2 −
1
2

A(G2)−A(G2)

have part of the spectrum as V (G2)’s make partite sets.
Which give

−2λi(G2)

3
− 7

6
for i = 2,3, . . . ,n2, (3.2)

obtained from
1
3

A(G2)+
1
2

A(G2)+
1
3

In2 +
1
2

A(G2)+A(G2)

λi(G2)

3
+

1
6

for i = 2,3, . . . ,n2, (3.3)

obtained from and
1
3

A(G2)+
1
2

A(G2)−
1
3

In2 −
1
2

A(G2)−A(G2).
From equations (3.1), (3.2) and (3.3) result follows. □

Remark 3.1. As dumbbell graph is a particular case of Indu-Bala product [4]. R CD-
spectrum of dumbbell graph consists of the following:

i. −1
3

cos
(2πk

n

)
− 1

2
appearing twice for k = 1,2,3, . . . ,n−1

ii. −7
6

appearing (m−1) times

iii.
1
6

appearing (m−1) times

iv.
3n
4
+

3m
4

−1± 1
12

√
81n2 +81m2 −62mn−36m+36n+4 and

−n
4
− m

4
− 1

3
± 1

12

√
9n2 +9m2 −14mn−36m+36n+36.

Proof. Proof follows from Theorem 3.1 and Lemma 2.2, where G1 = Cn and G2 =
Km. □
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