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EXTENDED GENERALIZED FIBONACCI AND TRIBONACCI
POLYNOMIALS WITH SOME PROPERTIES

VAISHALI BILLORE, NARESH PATEL, AND HEMANT MAKWANA

ABSTRACT. In this paper, we introduced the extended generalized Fibonacci poly-
nomial sequence {Y2,n} and extended generalized Tribonacci polynomial {Y3,n}
with arbitrary initial values and established a recursive matrix and then presented
some properties of these. Further, we investigated some well-known identities
like Binet’s formula, Catalan’s identity, Cassini’s identity, d’Ocagne’s identity,
generating function, explicit sum formula, sum of first n terms for the extended
generalized Fibonacci polynomial sequence and extended generalized Tribonacci
polynomial sequence.

1. INTRODUCTION

Many studies of numerical sequences and polynomials have been published re-
cently and they have been applied extensively in a variety of fields of study, includ-
ing physics, engineering, architecture, nature and the arts. The Fibonacci number
sequence Fn is determined by the second-order linear recurrence sequence, as fol-
lowing

Fn = Fn−1 +Fn−2, n ≥ 2, where F0 = 0,F1 = 1.
Fibonacci polynomials are a generalization of the sequence Fn defined by a second-
order linear recurrence sequence

Fn(x) = xFn−1(x)+Fn−2(x), with F0(x) = 0,F1(x) = 1,n ≥ 2.
The process of evaluating the polynomials Fn(x) at x = 1 yields the Fibonacci num-
bers. Numerous intriguing characteristics and applications in practically every dis-
cipline may be found in the Fibonacci numbers, polynomials, and their generalisa-
tions. Regarding particular examples of second-order linear recurrence sequences
of integers and polynomials, see, for example, [8, 9, 13] for books and [1–3, 5–
7, 10, 14, 15] for papers.
In [4],G. Lee and M. Asci introduced a generalization of h(x)- Fibonacci polynomi-
als called (p,q)-Fibonacci polynomials and defined by
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Fp,q,n+1(x) = p(x)Fp,q,n(x)+q(x)Fp,q,n−1(x), n ≥ 1 with Fp,q,0(x) = 0,Fp,q,1(x) = 1,
where p(x) and q(x) be polynomials with real coefficients.
A matrix corresponding to the above polynomial sequence is given by

Qn
p,q(x) =

(
Fp,q,n+1(x) q(x)Fp,q,n(x)
Fp,q,n(x) q(x)Fp,q,n−1(x)

)
.

In [12], Y. Soykan generalized Fibonacci polynomials and provided sum formulas,
generating functions, and Simson’s formulas using a matrix technique for the gen-
eralized Fibonacci polynomials sequence. Additionally, he generalized Tribonacci
polynomials in [11] and provided several identities for them.

In this paper, we have generalized the Fibonacci polynomial sequence and the
Tribonacci polynomial sequence. In addition, some matrix identities, Binet’s formu-
las, explicit sum formulas, etc. for the new generalized Fibonacci and Tribonacci
polynomials were presented.

2. THE {Y2,n} EXTENDED GENERALIZED FIBONACCI POLYNOMIAL

SEQUENCE AND SOME PROPERTIES

Consider the second order linear difference equation given by

Y2,n(x) = u(x)Y2,n−1(x)+ v(x)Y2,n−2(x), n ≥ 2 (2.1)

with Y2,0(x) = g(x)+h(x) andY2,1(x) = 2g(x)+1
where, g(x),h(x),u(x) and v(x) are polynomials with real coefficients with u(x) ̸=
0,v(x) ̸= 0.
Similar to the Fibonacci Polynomial sequence, the sequence Y2,n(x) can also be ex-
tended in the negative direction by arranging equation (2.1) as

Y2,−n(x) =
1

v(x)
Y2,−n+2(x)−

u(x)
v(x)

Y2,−n+1(x)

for n = 1,2,3 . . . , with the same initial value and v(x) ̸= 0.
Thus, the first few terms of the polynomial sequence are as follows:
Y2,0(x) = g(x)+h(x)
Y2,1(x) = 2g(x)+1
Y2,2(x) = u(x)(2g(x)+1)+ v(x)(g(x)+h(x))
Y2,3(x) = u2(x)(2g(x)+1)+u(x)v(x)(g(x)+h(x))+ v(x)(2g(x)+1)
Y2,4(x) = u3(x)(2g(x)+1)+u2(x)v(x)(g(x)+h(x))+2u(x)v(x)(2g(x)+1)

+v2(x)(g(x)+h(x)).

Remark 2.1. For a polynomial sequence Y2,n(x) satisfying equation (2.1), we have,

Y2,n(x) = (g(x)+h(x))v(x) fn−1(x)+(2g(x)+1) fn(x)

where fn(x) = u(x) fn−1(x)+ v(x) fn−2(x), n ≥ 2 with f0(x) = 0, f1(x) = 1.
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Note: For the sake of simplicity throughout the rest of the paper, we use Y2,n,u,v,
g,h,Y2,0,Y2,1, fn instead of Y2,n(x),u(x),v(x),g(x),h(x),Y2,0(x),Y2,1(x), fn(x) respec-
tively.

2.1. Matrix Formation

The matrix {Mn
2}n≥0 of the polynomial sequence Y2,n is defined as,

Mn
2 =

(
Y2,n+1 Y2,n
Y2,n Y2,n−1

)
=

(
u v
1 0

)n

M0
2 , (2.2)

where M0
2 =

(
2g+1 g+h

g+h
1
v
[2g+1−u(g+h)]

)
.

In the next theorem and results, we present some interesting recursive and explicit
formulas for the matrix Mn

2 associated with the generalized Fibonacci polynomial
matrix.

Theorem 2.1. The determinant of the matrix Mn
2 is given by,

det(Mn
2) = (−v)n−1[u(2g+1)(h+g)+ v(g+h)2 − (2g+1)2].

Proof. To prove it, we use the following result on Generalized Fibonacci polynomi-
als

fn fm+1 − fm fn+1 = (−v)n fn−m.

Therefore,

Det(Mn
2) = Y2,n+1Y2,n−1 −Y 2

2,n

= [(g+h)v fn +(2g+1) fn+1][(g+h)v fn−2 +(2g+1) fn−1]

− [(g+h)v fn−1 +(2g+1) fn]
2

= (g+h)2 fn fn−2 +(g+h)(2g+1)v fn fn−1 +(g+h)(2g+1) fn+1 fn−2

+(2g+1)2 fn+1 fn−1 − (g+h)2v2 f 2
n−1 − (2g+1)2 f 2

n

−2(g+h)(2g+1)v fn−1 fn

= (g+h)2v2( fn fn−2 − f 2
n−1)+(g+h)(2g+1)v( fn+1 fn−2 − fn−1 fn)

+(2g+1)2( fn+1 fn−1 − f 2
n )

= (g+h)2v2(−1)n−1vn−1v(−1)+(g+h)(2g+1)v(−1)n+1vn−2u

+(2g+1)2(−v)nv−1

= (−v)n−1[(g+h)2v+(g+h)(2g+1)u− (2g+1)2]

as required. □

Remark 2.2. (1) (Fibonacci polynomial matrix). For g = 0,h = 0,u = x and v = 1,
we have det(Mn

2) = (−1)n.
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(2) (Generalized Fibonacci polynomial matrix). For g = 0 and h = 0, we have
det(Mn

2) = (−1)nv.
(3) (Lucas polynomial matrix). For 2g = x−1,2h = 5−x,u = x and v = 1, we have

det(Mn
2) = (−1)n(x2 +4).

Theorem 2.2. Let Mn
2 be the matrix as defined above and Qn

2 the generalized Fi-
bonacci polynomial matrix, then

Mn
2 = Qn

2M0
2 = M0

2Qn
2, ∀n ∈ Z where Qn

2 =

(
fn+1 v fn
fn v fn−1

)
.

Proof. We have,

Qn
2M0

2 =

(
fn+1 v fn
fn v fn−1

)(2g+1 g+h

g+h
1
v
[2g+1−u(g+h)]

)
=

(
(2g+1) fn+1 +(g+h)v fn (2g+1) fn +(g+h) fn+1 −u(g+h) fn
(2g+1) fn +(g+h)v fn−1 (2g+1) fn−1 +(g+h) fn −u(g+h) fn−1

)
using(2.1),

=

(
Y2,n+1 Y2,n
Y2,n Y2,n−1

)
= Mn

2 .
By a similar argument, we have M0

2Qn
2 = Mn

2 . □

Theorem 2.3. Let Mn
2 be the matrix as defined in (2.2), then

Mn
2M−n

2 = (M0
2)

2.

Proof. From the above theorem, we have

Mn
2M−n

2 = Qn
2M0

2Q−n
2 M0

2

= M0
2Qn

2Q−n
2 M0

2

= M0
2IM0

2 = (M0
2)

2.

□

2.2. Binet’s formula, Generating Function and Some identities

The characteristic equation for the equation Y2,n(x)=u(x)Y2,n−1(x)+v(x)Y2,n−2(x),
n≥ 2 with initial condition Y2,0(x) = g(x)+h(x) and Y2,1(x) = 2g(x)+1 is as follows

d2 −ud − v = 0 (2.3)

This equation has the roots µ1(x) =
u(x)+

√
u2(x)+4v(x)
2 and µ2(x) =

u(x)−
√

u2(x)+4v(x)
2 .

Also, we have that µ1(x)+ µ2(x) = u(x), µ1(x)µ2(x) = −v(x) and µ1(x)− µ2(x) =√
u2(x)+4v(x).

Theorem 2.4. (Binet’s formula). For n ≥ 0, we have,

Y2,n =−Rµn
1+Sµn

2 =
1√

u2 +4v
[{(g+h)µ2−(2g+1)}µn

1+{(g+h)µ1−(2g+1)}µn
2]

(2.4)
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Proof. The solution of equation (2.1) can be expressed in general form

Y2,n = c1µn
1 + c2µn

2, (2.5)

where c1 and c2 are constant and µ1 =
u+

√
u2 +4v
2

and µ2 =
u−

√
u2 +4v
2

.

For n = 0 and n = 1, we have Y2,0 = c1 + c2 and Y2,1 = c1µ1 + c2µ2, which gives
c1 + c2 = g+h and c1µ1 + c2µ2 = 2g+1.
After solving above equation, we get

c1 =
−(g+h)µ2 +(2g+1)

µ1 −µ2
and c2 =

(g+h)µ1 − (2g+1)
µ1 −µ2

.

Thus, from equation (2.5), we obtain

Y2,n =−Rµn
1 +Sµn

2,

where R =
(g+h)µ2 − (2g+1)

µ1 −µ2
and S =

(g+h)µ1 − (2g+1)
µ1 −µ2

,
or
Y2,n =−Rµn

1+Sµn
2 =

1√
u2 +4v

[{(g+h)µ2−(2g+1)}µn
1+{(g+h)µ1−(2g+1)}µn

2].

□

Corollary 2.1. For n ∈ N, we have, Y2,(−n) = (−1)n(s)(−n)−Rµn
1 +Sµn

2
µ1 −µ2

.

Proof. Replace n by (−n) in equation (2.4) and after solving the equation, we get

Y2,(−n) = (−1)n(s)(−n)−Rµn
1 +Sµn

2
µ1 −µ2

. □

Remark 2.3. −R+S = (g+h),−Rµ1 +Sµ2 = 2g+1, and −Rµ2 +Sµ1 = u(g+h)−
(2g+1).

Theorem 2.5. (Catalan’s identity). For the sequence (2.1), we have

Y2,n−mY2,n+m −Y 2
2,n =

(−1)nvn−m

2m(u2 +4v)
[(2g+1)2 − v(g+h)2 − (2g+1)(g+h)u]L,

where,

L = [2m+1vm − (−u2 −2v+u
√

u2 +4v)m − (−u2 −2v−u
√

u2 +4v)m].

Proof. Using Binet’s formula (2.4), we have

Y2,n−mY2,n+m−Y 2
2,n =

(
−Rµn−m

1 +Sµn−m
2

µ1 −µ2

)(
−Rµn+m

1 +Sµn+m
2

µ1 −µ2

)
−
(
−Rµn

1 +Sµn
2

µ1 −µ2

)2

=
1

(µ1 −µ2)2

[
RS
(
2µn

1µn
2 −µn−m

1 µn+m
2 −µn+m

1 µn−m
2

)]
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=
1

(µ1 −µ2)2 RSµn
1µn

2

[
2−
(

µ1

µ2

)m

−
(

µ2

µ1

)m]
=

1
(µ1 −µ2)2 RSµn

1µn
2

[
2−

(
u2 +2v−u

√
u2 +4v

−2v

)m

−

(
u2 +2v+u

√
u2 +4v

−2v

)m]
=

(−v)nRS

(µ1−µ2)
2 (2v)m

[
2m+1vm−

(
−u2−2v+u

√
u2+4v

)m
−
(
−u2 −2v−u

√
u2+4v

)m]
=

(−1)nvn−m

2m(u2 +4v)

[
(2g+1)2 − v(g+h)2 − (2g+1)(g+h)u

][
2m+1vm

−(−u2 −2v+u
√

u2 +4v)m − (−u2 −2v−u
√

u2 +4v)m
]

as required. □

Corollary 2.2. (Cassini’s identity). For m = 1 in the above theorem, we have,

Y2,n−1Y2,n+1 −Y 2
2,n = (−1)nvn−1[(2g+1)2 − v(g+h)2 − (2g+1)(g+h)u].

Theorem 2.6. (d’Ocagne‘s identity). For m,n ∈ N, we have,

Y2,nY2,m+1 −Y2,n+1Y2,m =
[(2g+1)2 − v(g+h)2 − (2g+1)(g+h)u]√

u2 +4v
(µn

1µm
2 −µm

1 µn
2).

Proof. Using Binet’s formula (2.4), we have

Y2,nY2,m+1 −Y2,n+1Y2,m = (
−Rµn

1+Sµn
2

µ1−µ2
)(

−Rµn+1
1 +Sµn+1

2
µ1−µ2

)− (
−Rµn+1

1 +Sµn+1
2

µ1−µ2
)(

−Rµm
1 +Sµm

2
µ1−µ2

)

=
1

(µ1 −µ2)2 (RSµn+1
1 µm

2 +RSµm
1 µn+1

2 −RSµn
1µm+1

2 −RSµm+1
1 µn

2)

=
RS[µn

1µm
2 (µ1 −µ2)−µm

1 µn
2(µ1 −µ2)]

(µ1 −µ2)2

=
[(2g+1)2 − v(g+h)2 − (2g+1)(g+h)u]√

u2 +4v
(µn

1µm
2 −µm

1 µn
2). □

Theorem 2.7. (Generating Function). The Generating function for the sequence
Y2,n is given by

∞

∑
n=0

Y2,ntn =
(g+h)+((2g+1)−u(g+h))t

1−ut − vt2 .

Proof. Let g(t) = ∑
∞
n=0Y2,ntn, then from equation (2.1) by multiplying tn+2 with

summation from 0 to ∞, we get:
∑

∞
n=0 tn+2Y2,n+2 −∑

∞
n=0 tn+2uY2,n+1 −∑

∞
n=0 tn+2vY2,n = 0

⇒ (g(t)−Y2,0 −Y2,1t)−u(g(t)−Y2,0)t − vg(t)t2 = 0
⇒ g(t)(1−ut − vt2)− (Y2,0 +Y2,1t −uY2,0t) = 0

⇒ g(t) =
Y2,0 +(Y2,1 −uY2,0t)

1−ut − vt2 so

g(t) = ∑
∞
n=0Y2,ntn =

(g+h)+((2g+1)−u(g+h))t)
1−ut − vt2 . □
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Proposition 2.1. (Explicit sum Formula) Let Y2,n be the nth Extended Generalized
Fibonacci polynomial, then

Y2,n = (g+h)
⌊ n

2 ⌋

∑
k=0

(
n− k

k

)
un−2kvk +[(2g+1)−u(g+h)]

⌊ n−1
2 ⌋

∑
k=0

(
n− k−1

k

)
un−2k−1vk,

where ⌊n⌋is the greatest integer less than or equal to n.

Proof. Using the generating function, we have
∞

∑
n=0

Y2,ntn =
(g+h)+((2g+1)−u(g+h))t

1−ut − vt2

= [(g+h)+((2g+1)−u(g+h))t][1− (u− vt)t]−1

= [(g+h)+((2g+1)−u(g+h))t]
∞

∑
n=0

(u+ vt)ntn

= [(g+h)+((2g+1)−u(g+h))t]
∞

∑
n=0

tn
n

∑
k=0

(
n
k

)
un−k(vt)k

= [(g+h)+((2g+1)−u(g+h))t]
∞

∑
n=0

n

∑
k=0

n!
k!(n− k)!

un−kvktn+k.

Taking n+ k instead of n, we have

= [(g+h)+((2g+1)−u(g+h))t]
∞

∑
n=0

∞

∑
k=0

(n+ k)!
k!n!

unvktn+2k

= [(g+h)+((2g+1)−u(g+h))t]
∞

∑
n=0

⌊ n
2 ⌋

∑
k=0

(n− k)!
k!(n−2k)!

un−2kvktn

=
∞

∑
n=0

[
(g+h)

⌊ n
2 ⌋

∑
k=0

(n−k)!
k!(n−2k)!

un−2kvk
]

tn+
∞

∑
n=0

[
[(2g+1)−u(g+h)]

⌊ n
2 ⌋

∑
k=0

(n−k)!
k!(n−2k)!

un−2kvk
]

tn+1.

Taking the coefficient of tn, we get

Y2,n = (g+h)
⌊ n

2 ⌋

∑
k=0

(
n− k

k

)
un−2kvk +[(2g+1)−u(g+h)]

⌊ n−1
2 ⌋

∑
k=0

(
n− k−1

k

)
un−2k−1vk.

□

Proposition 2.2. (Sum of first nth terms). The sum of the first nth terms of the ex-
tended generalized Fibonacci polynomials is given as follows

n−1

∑
k=0

Y2,k(x) =
Y2,n(x)+ vY2,n−1(x)− [(2g+1)−u(g+h)]− (g+h)

u+ v−1
.
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Proof. Using Binet’s formula, we have

n−1

∑
k=0

Y2,k(x) =
n−1

∑
k=0

(−Rµk
1(x)+Sµk

2(x)),

where R =
(g+h)µ2 − (2g+1)

µ1 −µ2
and S =

(g+h)µ1 − (2g+1)
µ1 −µ2

.

Thus,

n−1

∑
k=0

Y2,k(x) =−R
n−1

∑
k=0

µk
1(x)+S

n−1

∑
k=0

µk
2(x)

=−R
(µn

1(x)−1)
µ1 −1

+S
(µn

2(x)−1)
µ2 −1

=
−R+S− (−Rµ2(x)+Sµ1(x))− (−Rµn

1(x)+Sµn
2(x))

µ1(x)µ2(x)−µ1(x)−µ2(x)+1
+

µ1(x)µ2(x)(−Rµn−1
1 (x)+Sµn−1

1 (x))
µ1(x)µ2(x)−µ1(x)−µ2(x)+1

.

Since µ1(x)+µ2(x) = u,µ1(x)µ2(x) =−v and by Remark 2.3, we have

n−1

∑
k=0

Y2,k(x) =
Y2,n(x)+ vY2,n−1(x)− [(2g+1)−u(g+h)]− (g+h)

u+ v−1
. □

3. THE {Y3,n} EXTENDED GENERALIZED TRIBONACCI POLYNOMIAL

SEQUENCE AND SOME PROPERTIES

Consider the third order linear difference equation given by

Y3,n(x) = u2(x)Y2,n−1(x)+u(x)v(x)Y2,n−2(x)+w2(x)Y3,n−3, n ≥ 3, (3.1)

with Y3,0(x) = j(x),Y3,1(x) = g(x)+h(x) and Y3,2(x) = 2g(x)+1, where, j(x), g(x),
h(x), u(x) and v(x) are polynomials with real coefficients with u(x) ̸= 0,v(x) ̸=
0,w(x) ̸= 0.
The relation can be extended in negative terms as follows

Y3,−n =
1

w2(x)

(
Y3,−n+3 −u2(x)Y3,−n+2 −u(x)v(x)Y3,−n+1

)
,

for n = 1,2,3 . . ., with the same initial value and w(x) ̸= 0.
In particular j(x) = 0,g(x) = 0,h(x) = 0 and u(x) = 1,v(x) = 1,w(x) = 1, so equa-
tion (3.1) becomes the Tribonacci sequence and for j(x) = 3,g(x) = 1,h(x) = 0 and
u(x) = 1,v(x) = 1,w(x) = 1, so equation (3.1) becomes the Tribonacci Lucas se-
quence.
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Thus, the first few terms of the polynomial sequence Y3,n are as follows

Y3,0(x) = j(x)

Y3,1(x) = g(x)+h(x)

Y3,2(x) = 2g(x)+1

Y3,3(x) = u2(x)(2g+1)+u(x)v(x)(g+h)+ j(x)w2(x)

Y3,4(x) = (u4(x)+u(x)v(x))(2g+1)+(u3(x)v(x)+w2(x))(g(x)+h(x))+ j(x)u2(x)w2(x).

For the sake of simplicity, we use Y3,n,u,v,w, j,g,h,Y3,0,Y3,1, fn instead of Y3,n(x),
u(x), v(x), w(x), j(x), g(x), h(x), Y3,0(x), Y3,1(x), fn(x), respectively.

3.1. Matrix Representation

The matrix {Mn
3}n≥0 of the polynomial sequence Y3,n is defined as follows

Mn
3 =

Y3,n+2 uvY3,n+1 +w2Y3,n w2Y3,n+1
Y3,n+1 uvY3,n +w2Y3,n−1 w2Y3,n
Y3,n uvY3,n−1 +w2Y3,n−2 w2Y3,n−1

=

u2 uv w2

1 0 0
0 1 0

n

M0
3 , (3.2)

where M0
3 =

2g+1 uv(g+h)+w2 j w2(g+h)
g+h (2g+1)−u2(g+h) w2 j

j (g+h)−u2 j (2g+1)−u2(g+h)−uv j

.

Theorem 3.1. Let { f3,n}n≥0 be the Tribonacci polynomial sequence defined as

f3,n+3 = u2 f3,n+2 +uv f3,n+1 +w2 f3,n with f3,0 = 0, f3,1 = 0, f3,2 = 1, (3.3)

then

Y3,n = (g+h)( f3,n+1 −u2 f3,n)+ jw2 f3,n−1 +(2g+1) f3,n,∀n ∈ Z.

Proof. We prove it using mathematical induction on n. For n = 0, the result obvi-
ously holds. For n = 1, we have

Y3,1 = (g+h)( f3,2 −u2 f3,1)+ jw2 f3,0 +(2g+1) f3,1 = g+h.

Y3,2 = (g+h)( f3,3 −u2 f3,2)+ jw2 f3,1 +(2g+1) f3,2 = 2g+1.

Now assume the result is true for n = k. For n = k+1, we write
Y3,k+1 = u2Y2,k+uvY2,k−1(x)+w2Y3,k−2
= u2[(g+h)( f3,k+1−u2 f3,k)+ jw2 f3,k−1+(2g+1) f3,k]+uv[(g+h)( f3,k−u2 f3,k−1)+
jw2 f3,k−2+(2g+1) f3,k−1]+w2[(g+h)( f3,k−1−u2 f3,k−2)+ jw2 f3,k−3+(2g+1) f3,k−2]
=(g+h)[u2 f3,k+1−u4 f3,k+uv f3,k−u3v f3,k−1+w2 f3,k−1−u2w2 f3,k−2]+ jw2[u2 f3,k−1+
uv f3,k−2+w2 f3,k−3]+(2g+1)[u2 f3,k+uv f3,k−1+w2 f3,k−2].

Using the Tribonacci polynomial sequence,we have

Y3,k+1 = (g+h)( f3,k+2 −u2 f3,k+1)+ jw2 f3,k +(2g+1) f3,k+1.

□
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Theorem 3.2. Let M0
3 be the initial matrix defined in (3.2) and Qn

3 be the Tribonacci
polynomial matrix of equation (3.3) defined as

Qn
3 =

 f3,n+2 uv f3,n+1 +w2 f3,n w2 f3,n+1
f3,n+1 uv f3,n +w2 f3,n−1 w2 f3,n
f3,n uv f3,n−1 +w2 f3,n−2 w2 f3,n−1

 ,

then, for all integers, we have Mn
3 = Qn

3M0
3 = M0

3Qn
3.

Proof. Using mathematical induction this can be proved easily. □

Theorem 3.3. Let Mn
3 be the matrix as defined in (3.2) , then for all integers

Mn
3M−n

3 = (M0
3)

2.

Proof. From the above theorem, we have

Mn
3M−n

3 = Qn
3M0

3Q−n
3 M0

3

= M0
3Qn

3Q−n
3 M0

3

= M0
3IM0

3 = (M0
3)

2.

□

3.2. Binet’s formula, Generating function and Identities of {Y3,n}

To establish any identity involving the nth term of the sequence, the Binet formula
plays an important role. It can be calculated using it’s characteristic equation which
is as follows

z3 −u2z2 −uvz−w2 = 0. (3.4)
The roots of the characteristic equation (3.4) will be denoted by µ1(x), µ2(x), µ3(x)
and defined by

µ1(x) =
u2

3
+a1 +a2, µ2(x) =

u2

3
+ωa1 +ω2a2, µ3(x) =

u2

3
+ω2a1 +ωa2,

where

ω = −1+
√

3i
2 , a1 =

(
u6

27 +
u3v
6 + w2

2 +
√
△
) 1

3
, a2 =

(
u6

27 +
u3v
6 + w2

2 −
√
△
) 1

3
,

with △= u6w2

27 − u6v2

108 + u3vw2

6 − u3v3

27 + w4

4 , and also satisfy

µ1(x)+µ2(x)+µ3(x) = u2, µ1(x)µ2(x)+µ2(x)µ3(x)+µ3(x)µ1(x) =−uv,
µ1(x)µ2(x)µ3(x) = w2.

Theorem 3.4. (Binet’s formula). For n ≥ 0, we have

Y3,n =
Rµn

1
(µ1 −µ2)(µ1 −µ3)

+
Sµn

2
(µ2 −µ1)(µ2 −µ3)

+
T µn

3
(µ3 −µ1)(µ3 −µ2)

,

where
R = (2g+1)− (µ2 +µ3)(g+h)+ jµ2µ3, S = (2g+1)− (µ1 +µ3)(g+h)+ jµ1µ3,

T = (2g+1)− (µ1 +µ2)(g+h)+ jµ1µ2.
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Proof. If µ1,µ2,µ3 are distinct roots of the equation (3.4), then the general formula
for Y3,n is in the following form

Y3,n = c1µn
1 + c2µn

2 + c3µn
3 (3.5)

To determine the value of c1,c2 and c3, we have

Y3,0 = c1 + c2 + c3 (3.6)

Y3,1 = c1µ1 + c2µ2 + c3µ3 (3.7)

Y3,2 = c1µ2
1 + c2µ2

2 + c3µ2
3. (3.8)

Now, we multiply equation (3.6) with µ1 then subtract equation (3.7) and we multiply
equation (3.7) with µ1 then subtract equation (3.8), we get

(µ1Y3,0 −Y3,1) = c2(µ1 −µ2)+ c3(µ1 −µ3) (3.9)

(µ1Y3,1 −Y3,2) = c2µ2(µ1 −µ2)+ c3µ3(µ1 −µ3) (3.10)
If we multiply equation (3.9) with µ2 then subtract equation (3.10), we get

c3 =
µ1µ2Y3,0 − (µ1 +µ2)Y3,1 +Y3,2

(µ3 −µ1)(µ3 −µ2)
.

Now, from (3.9), we have

c2 =
µ1µ3Y3,0 − (µ1 +µ3)Y3,1 +Y3,2

(µ2 −µ1)(µ2 −µ3)
,

and from (3.6), we have

c1 =
µ2µ3Y3,0 − (µ2 +µ3)Y3,1 +Y3,2

(µ1 −µ2)(µ1 −µ3)
.

Put the values of c1,c2,c3,Y3,0,Y3,1 and Y3,2 in the equation (3.5) and we get required
result. □

Theorem 3.5. (Generating Function). The Generating function for the sequence
Y3,n is given by

∞

∑
n=0

Y3,ntn =
j+[(g+h)−u2 j]t +[(2g+1)−uv j−u2(g+h)]t2

1−u2t −uvt2 −w2t3 .

Proof. Let g(t) = ∑
∞
n=0Y3,ntn, then from equation (3.1) by multiplying tn+3 with the

summation from 0 to ∞, we get
[g(t)−Y3,0−Y3,1t−Y3,2t2]−u2[g(t)−Y3,0−Y3,1t]t−uv(g(t)−Y3,0)t2−w2g(t)t3 = 0
g(t)[1−u2t −uvt2 −w2t3]−Y3,0(1−u2t −uvt2)−Y3,1(t −u2t2)−Y3,2t2 = 0

g(t) =
Y3,2t2 +Y3,0(1−u2t −uvt2)+Y3,1(t −u2t2)

1−u2t −uvt2 −w2t3

g(t) =
Y3,0 +(Y3,1 −u2Y3,0)t +(Y3,2 −uvY3,0 −u2Y3,1t2)

1−u2t −uvt2 −w2t3 .

Thus,
∞

∑
n=0

Y3,ntn =
j+[(g+h)−u2 j]t +[(2g+1)−uv j−u2(g+h)]t2

1−u2t −uvt2 −w2t3 . □
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Proposition 3.1. The explicit sum formula for the sequence Y3,n is given below
Y3,n = jA+[(g+h)−u2 j]B+[(2g+1)−u2(g+h)−uv j]C,

where,

A =
⌊ n

2 ⌋

∑
k=0

⌊ n
3 ⌋

∑
q=0

(
n− k−2q

k+q

)(
k+q

q

)
(u2)n−2k−3q(uv)k(w2)q,

B =
⌊ n−1

2 ⌋

∑
k=0

⌊ n−1
3 ⌋

∑
q=0

(
n− k−2q−1

k+q

)(
k+q

q

)
(u2)n−2k−3q−1(uv)k(w2)q,

C =
⌊ n−2

2 ⌋

∑
k=0

⌊ n−2
3 ⌋

∑
q=0

(
n− k−2q−2

k+q

)(
k+q

q

)
(u2)n−2k−3q−2(uv)k(w2)q.

Proof. By the Generating function, we have
∞

∑
n=0

Y3,ntn = [Y3,0 +(Y3,1 −u2Y3,0])t +(Y3,2 −uvY3,0 −u2Y3,1)t2][1− (u2 +uvt +w2t2)t]−1

= [Y3,0 +(Y3,1 −u2Y3,0)t +(Y3,2 −uvY3,0 −u2Y3,1)t2]
∞

∑
n=0

(u2 +uvt +w2t2)ntn

= [Y3,0 +(Y3,1 −u2Y3,0)t +(Y3,2 −uvY3,0 −u2Y3,1)t2]
∞

∑
n=0

tn
n

∑
k=0

(
n
k

)
(u2)n−k(uvt +w2t2)k

= [Y3,0 +(Y3,1 −u2Y3,0t +(Y3,2 −uvY3,0 −u2Y3,1)t2]
∞

∑
n=0

n

∑
k=0

(
n
k

)
(u2)n−k(uv+w2t)ktn+k

= [Y3,0 +(Y3,1 −u2Y3,0)t +(Y3,2 −uvY3,0 −u2Y3,1)t2]
∞

∑
n=0

n

∑
k=0

k

∑
q=0

(
n
k

)(
k
q

)
(u2)n−k(uv)k−q(w2t)qtn+k

= [Y3,0 +(Y3,1 −u2Y3,0)t +(Y3,2 −uvY3,0 −u2Y3,1)t2]
∞

∑
n=0

n

∑
k=0

k

∑
q=0

(
n
k

)(
k
q

)
(u2)n−k(uv)k−q(w2)qtn+k+q.

Now replacing n with n+ k and k with k+q, we get

=[Y3,0+(Y3,1−u2Y3,0)t+(Y3,2−uvY3,0−u2Y3,1)t2]
∞

∑
n=0

∞

∑
k=0

∞

∑
q=0

(
n+k
k+q

)(
k+q

q

)
(u2)n−q(uv)k(w2)qtn+2k+2q

=[Y3,0+(Y3,1−u2Y3,0)t+(Y3,2−uvY3,0−u2Y3,1)t2]
∞

∑
n=0

⌊ n
2 ⌋

∑
k=0

⌊ n
3 ⌋

∑
q=0

(
n−k−2q

k+q

)(
k+q

q

)
(u2)n−2k−3q(uv)k(w2)qtn.

Thus, the sum equals to

∞

∑
n=0

[Y3,0

⌊ n
2 ⌋

∑
k=0

⌊ n
3 ⌋

∑
q=0

(
n− k−2q

k+q

)(
k+q

q

)
(u2)n−2k−3q(uv)k(w2)qtn]

+
∞

∑
n=0

[(Y3,1 −u2Y3,0)
⌊ n

2 ⌋

∑
k=0

⌊ n
3 ⌋

∑
q=0

(
n− k−2q

k+q

)(
k+q

q

)
(u2)n−2k−3q(uv)k(w2)qtn+1]
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+
∞

∑
n=0

[(Y3,2 −u2Y3,1 −uvY3,0)
⌊ n

2 ⌋

∑
k=0

⌊ n
3 ⌋

∑
q=0

(
n− k−2q

k+q

)(
k+q

q

)
(u2)n−2k−3q(uv)k(w2)qtn+2].

Equating the coefficient of tn on both sides, we get

Y3,n = Y3,0

⌊ n
2 ⌋

∑
k=0

⌊ n
3 ⌋

∑
q=0

(
n− k−2q

k+q

)(
k+q

q

)
(u2)n−2k−3q(uv)k(w2)q

+(Y3,1 −u2Y3,0)
⌊ n−1

2 ⌋

∑
k=0

⌊ n−1
3 ⌋

∑
q=0

(
n− k−2q−1

k+q

)(
k+q

q

)
(u2)n−2k−3q−1(uv)k(w2)q

+(Y3,2 −u2Y3,1 −uvY3,0)
⌊ n−2

2 ⌋

∑
k=0

⌊ n−2
3 ⌋

∑
q=0

(
n− k−2q−2

k+q

)(
k+q

q

)
(u2)n−2k−3q−2(uv)k(w2)q.

□

Proposition 3.2. (Sum of the first n terms). The sum of the first nth terms of the
extended generalized Tribonacci polynomials given as follows
n−1

∑
k=0

Y3,k(x) =
Y3,n+1 +(1−u2)Y3,n +w2Y3,n−1 − [Y3,2 − (u2 −1)Y3,1 −uvY3,0]+ (u2 −1)Y3,0

u2 +uv+w2 −1
.

Proof. Using Binet’s formula, we get

n−1

∑
k=0

Y3,k =
n−1

∑
k=0

(Aµk
1 +Bµk

2 +Cµk
3)

where

A =
µ2µ3Y3,0−(µ2+µ3)Y3,1+Y3,2

(µ1−µ2)(µ1−µ3)
, B =

µ1µ3Y3,0−(µ1+µ3)Y3,1+Y3,2
(µ2−µ1)(µ2−µ3)

, C =
µ1µ2Y3,0−(µ1+µ2)Y3,1+Y3,2

(µ3−µ1)(µ3−µ2)
.

It follows that
n−1

∑
k=0

Y3,k = A
n−1

∑
k=0

µk
1(x)+B

n−1

∑
k=0

µk
2(x)+C

n−1

∑
k=0

µk
3(x)

= A
µn

1 −1
µ1 −1

+B
µn

2 −1
µ2 −1

+C
µn

3 −1
µ3 −1

=
A(µn

1 −1)(µ2 −1)(µ3 −1)+B(µn
2 −1)(µ1 −1)(µ3 −1)+C(µn

3 −1)(µ1 −1)(µ2 −1)
(µ1 −1)(µ2 −1)(µ3 −1)

=
(u2 −1)(A+B+C)− (Aµ1 +Bµ2 +µ3)− (Aµ2µ3 +Bµ1µ3 +Cµ1µ2)

µ1µ2µ3 +(µ1 +µ2 +µ3)− (µ1µ2 +µ2µ3 +µ3µ1)−1

+
(1−u2)(Aµn

1 +Bµn
2 +Cµn

3)+(Aµn+1
1 +Bµn+1

2 +Cµn+1
3 )+µ1µ2µ3(Aµn−1

1 +Bµn−1
2 +Cµn−1

3 )

µ1µ2µ3 +(µ1 +µ2 +µ3)− (µ1µ2 +µ2µ3 +µ3µ1)−1
.

After solving, we get

∑
n−1
k=0 Y3,k(x)=

Y3,n+1+(1−u2)Y3,n+w2Y3,n−1−[Y3,2−(u2−1)Y3,1−uvY3,0]+(u2−1)Y3,0

u2+uv+w2−1
. □
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4. CONCLUSION

In this study, we generalized the Fibonacci polynomial sequence to obtain an ex-
tended generalized Fibonacci sequence, then we proved some identities like Binet’s
formula, Generating function, Catalan’s identity, explicit sum formula and matrix
properties. Further, we introduced a generalization of the Tribonacci polynomial
sequence to obtain an extended generalized Tribonacci polynomial sequence, then
investigated some identities like Binet’s formula, generating function, explicit sum
formula and matrix properties.
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