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EXTENDED GENERALIZED FIBONACCI AND TRIBONACCI
POLYNOMIALS WITH SOME PROPERTIES

VAISHALI BILLORE, NARESH PATEL, AND HEMANT MAKWANA

ABSTRACT. In this paper, we introduced the extended generalized Fibonacci poly-
nomial sequence {¥>,} and extended generalized Tribonacci polynomial {3}
with arbitrary initial values and established a recursive matrix and then presented
some properties of these. Further, we investigated some well-known identities
like Binet’s formula, Catalan’s identity, Cassini’s identity, d’Ocagne’s identity,
generating function, explicit sum formula, sum of first n terms for the extended
generalized Fibonacci polynomial sequence and extended generalized Tribonacci
polynomial sequence.

1. INTRODUCTION

Many studies of numerical sequences and polynomials have been published re-
cently and they have been applied extensively in a variety of fields of study, includ-
ing physics, engineering, architecture, nature and the arts. The Fibonacci number
sequence F, is determined by the second-order linear recurrence sequence, as fol-
lowing

FE,=F,_1+F, >, n>2 where Fp =0,F =1.

Fibonacci polynomials are a generalization of the sequence F, defined by a second-
order linear recurrence sequence

Fy(x) =xFy—1(x)+ Fy—2(x), with Fy(x) =0,F (x) =1,n>2.
The process of evaluating the polynomials F,(x) at x = 1 yields the Fibonacci num-
bers. Numerous intriguing characteristics and applications in practically every dis-
cipline may be found in the Fibonacci numbers, polynomials, and their generalisa-
tions. Regarding particular examples of second-order linear recurrence sequences
of integers and polynomials, see, for example, [8, 9, 13] for books and [1-3, 5-
7, 10, 14, 15] for papers.
In [4],G. Lee and M. Asci introduced a generalization of /(x)- Fibonacci polynomi-
als called (p, g)-Fibonacci polynomials and defined by
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Fpgni1(x) = p(x)Fpgn(x) +q(x)Fpgn-1(x), n=1with F, 40(x) =0,F, 4.1 (x) =1,
where p(x) and g(x) be polynomials with real coefficients.
A matrix corresponding to the above polynomial sequence is given by

" (x) = <Fp,q,n+1 (x)  q(x)Fpgn(x) ) ‘
P4 Fp,q,n (X) Q(X)Fp,q.,n—l (X)

n [12], Y. Soykan generalized Fibonacci polynomials and provided sum formulas,
generating functions, and Simson’s formulas using a matrix technique for the gen-
eralized Fibonacci polynomials sequence. Additionally, he generalized Tribonacci
polynomials in [11] and provided several identities for them.

In this paper, we have generalized the Fibonacci polynomial sequence and the
Tribonacci polynomial sequence. In addition, some matrix identities, Binet’s formu-
las, explicit sum formulas, etc. for the new generalized Fibonacci and Tribonacci
polynomials were presented.

2. THE {Y2,} EXTENDED GENERALIZED FIBONACCI POLYNOMIAL
SEQUENCE AND SOME PROPERTIES

Consider the second order linear difference equation given by
Yo (x) = u(x)Yo p—1(x) +v(x)Y2,—2(x), n>2 2.1

with Y27()( ) = g( ) +/’l( ) anle] (x) = 2g(x) +1

where, g(x),h(x),u(x) and v(x) are polynomials with real coefficients with u(x) #
0,v(x) # 0.

Similar to the Fibonacci Polynomial sequence, the sequence Y2 ,(x) can also be ex-
tended in the negative direction by arranging equation (2.1) as

Y _n(x) = v(lx)Yz,nJrz( x) — u(ji;

v
(x) #

forn=1,2,3..., with the same initial value and v
Thus, the first few terms of the polynomial sequence are as follows:

Y2 n+1( )

Y20(x) = g(x) +h(x)

Y271(x) 2 ( )+1

Yoo(x) = M( )(28(x) +1) +v(x)(g(x) +h(x))

Ya3(x) = u?(x)(2g(x) + 1) +u(x)v(x) (g(x) +h(x)) +v(x)(2g(x) + 1)
Ya4(x) = u? (x)(2g(x) + 1) + 1 (x)v(x) (g(x) +h(x)) +2u(x)v(x)(2g(x) +1)

+v2(x)(g(x) +h(x)).
Remark 2.1. For a polynomial sequence Y> ,(x) satisfying equation (2.1), we have,
Ya(x) = (8(x) + 1))y (x) fu1(x) + (28 (x) + 1) fu (%)
where f,,(x) = u(x) fu—1(x) +v(x) fu—2(x), n =2 with fo(x) =0, fi(x) =
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Note: For the sake of simplicity throughout the rest of the paper, we use Y2 ,,,u, v,
8,h,Y20,Y21, f, instead of Y2 ,(x), u(x),v(x),g(x),h(x),Y20(x),Y2.1(x), fu(x) respec-
tively.

2.1. Matrix Formation

The matrix {M% },>¢ of the polynomial sequence Y , is defined as,

Mg — (YZ,n+1 Yo > _ (M V>nM(2) 2.2)
20 Yo, 1 0 ’
where M9 = <2g+1 1 g+ >
2\ g+h g+ 1-u(g+h)])

In the next theorem and results, we present some interesting recursive and explicit
formulas for the matrix M7 associated with the generalized Fibonacci polynomial
matrix.

Theorem 2.1. The determinant of the matrix M5 is given by,
det(M5) = (=v)" u(2g + 1) (h+g) +v(g+h)* — (2g +1)*].

Proof. To prove it, we use the following result on Generalized Fibonacci polynomi-
als

fnfm+l _fmfn+l = (_V)nfnfm-

Therefore,
Det(M5) =Yy ps1Yan—1— Y3,

=[(g+hvfu+ (2g+ 1) furr]l(g+h)vfu2+ (28 +1) fu1]
—[(g+mvfa1+ 2+ 1)f)
= (g+h) fufaa+(g+h)(2e+ V)Vfufu 1+ (€ +1)(2g+ 1) fus1fua
+ 28+ 1) fupifor — (@+ W)V — 28+ 1) /7
—2(g+h) 28+ 1)vfu-1fn
= (g+ 1)V (fufa—2— fr1) + (g +R) (28 + Vv(fur1 fuz — fu—1 fu)
+ Qe+ D) (furifu1 = 17)
= (g+ )V (=1)"" W 1) (g +h)(2g + Dv(=1) 2
+(2g+1)*(—v)v!
= (—v)" (g + 1) v+ (g+h)(2g+ 1u—(2g+1)’]

as required. g

Remark 2.2. (1) (Fibonacci polynomial matrix). For g =0,A=0,u =xand v =1,
we have det(M}) = (—1)".
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(2) (Generalized Fibonacci polynomial matrix). For g = 0 and h = 0, we have
det(My) = (—1)"v.

(3) (Lucas polynomial matrix). For 2g =x—1,2h=5—x,u =x and v =1, we have
det(MB) = (—1)"(x> +4).

Theorem 2.2. Let M} be the matrix as defined above and Q7 the generalized Fi-

bonacci polynomial matrix, then

M5 = QMY =MIQ%, Vne€Z  where QF= et v )
fo Vi

Proof. We have,

oo (faer vfa ) (28] g+h

QZMZ_(fn an1><g+h %[2g+1—u(g+h)]

_(@e+ Dt @+ mvfy Qg+ Dfut (M) fasr —ulg+Mf) ooy
(zg+1)fn+<g+h)vfn—l (2g+1)fn—1+(g+h)fn—u(g+h)fn_1 §Le-b),

_(Y2nt1 Yon
2o Yo
=M.
By a similar argument, we have M504 = Mj. g
Theorem 2.3. Let M5 be the matrix as defined in (2.2), then
M5M;" = (M3)°.
Proof. From the above theorem, we have
MIMy" = O5M50," M3
= M3030,"M)
— MM — ().
O
2.2. Binet’s formula, Generating Function and Some identities

The characteristic equation for the equation Y5 ,, (x) =u(x)Y2 p—1 (x) +v(x) Y2 ,—2(x),
n > 2 with initial condition Y5 o(x) = g(x) +A(x) and Y ; (x) = 2g(x) + 1 is as follows
d*>—ud—v=0 (2.3)

u(x)++/u? (x)+4v(x) u(x)—/u? (x)+4v(x) '

This equation has the roots u;(x) = and wu (x) = 5

Also, we have that u; (x) + w2 (x) = u(x), py(x)uz(x) = —v(x) and py (x) — w2 (x) =

Vu? (x) +4v(x).

Theorem 2.4. (Binet’s formula). For n > 0, we have,

{(g+m)2— (2g+ 1)} +{(g+h)m — (28 + 1) }53]
2.4)

Y2,n = _R.urll -|-S,ng =

1
Vu? +4v
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Proof. The solution of equation (2.1) can be expressed in general form

Yo = 1t +copy, (2.5)
u+\u2 + 4y u—\u2+4y
where c¢; and ¢; are constant and y; = — and tp = ——.

For n =0 and n =1, we have >0 = ¢ + ¢ and Y21 = cju1 + coup, which gives
c1t+c=g+hand ciu +copp =2g+ 1.
After solving above equation, we get
— h 2¢+1 Mu — (2g+1
o = —@tMmt2etl) 4o (ethm— (gt ])
o — 2 =2

Thus, from equation (2.5), we obtain

Y5, = —Rui + Sus,

(g+h)u —(2g+1)

g+ —(28+1)

where R = nd S = s
My — o H— M2
or .
— n n__ _ n _ n
Yon=—Ruli+Sih = \/m[{(g%)uz (2g+1)hui +{(g+h)m — (28 +1) b
0
—Ru"* + Su
Corollary 2.1. Forn € N, we have, Y, (_,) = (—1)”(s)(*”)u.
M1 — M2
Proof. Replace n by (—n) in equation (2.4) and after solving the equation, we get
(—n) —Ru} + Su5
Vo femy = (1)) —=——. =
' Hy— M2

Remark2.3. —R+S=(g+h),—Ruy +Sup =2g+1, and —Ruy + Sp; = u(g+h) —
(2g+1).

Theorem 2.5. (Catalan’s identity). For the sequence (2.1), we have
(7 1 )nvn—m

(28 1)? —v(g+h)>— (2 +1)(g +h)ulL,

2
Y2,n—mY2,n+m - Y2,n =

where,
L=[2""" — (—® = 204 uu 4+ 4v)" — (—u? = 2v — u/u? +4v)").
Proof. Using Binet’s formula (2.4), we have

— — 2
- _R,urlz m —I—S,Ug m _R‘ullﬂrm +Sug+m —R,U’f +S/'lg
Y2,n—mY2,n+m - Y2 n_ -

' H— 2 Hr— 2 M — 2

1
= m [RS (211’]!/13 —‘u’f—m‘ug—i-m . ‘urlz+m‘ug—m)]
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_ (/Jl—lu)RS”luz [ (ﬁ;)m B <ff>m]

1 242 ViZ +4v 2 Vi + 4y
:ﬁRSuﬁlu’%z—“*V_””*V ”+V+Mu+v
(:ul ,UZ) 2v
—v)"RS
N Ry
H1—u2 v)™"
(_l)nvnfm 5 ot ”
= gty (28T 1 V(g + 1) = 2+ (g +hu] [2
—(—1® =22+ uu +4)" — (= —2v —uu? +4v) m}
as required. 0

Corollary 2.2. (Cassini’s identity). For m = 1 in the above theorem, we have,
Yon-1Yomp1 = Yo, = (=1)"V' (28 +1)* = v(g +h)* — (2g+ 1) (g + h)u].
Theorem 2.6. (d’Ocagne ‘s identity). For m,n € N, we have,

[(2g+1)* —v(g+h)?*—(2g+ 1) (g+Mu]  ,
J 3 u2+4vg S ity — aiyadh).

2o w1 —Yopp1Yom=

Proof. Using Binet’s formula (2.4), we have
( — R +Spts )( —Ru st )—( —R st )( —Ru S )

YZ,nYZ,erl - Y2,n+lY2,m =

1 H1—H2 H1—H2 H1—H2 M1 —2
= RS+ RS~ Rl R )
RS[,UpUz ( /12) _:urlnlug(/ll _/12)]
(11 —u2)?
_ [(2g+I)Z—V(g+h2)2;(2g+1)(g+h) i — ). 0
Vuc+4v

Theorem 2.7. (Generating Function). The Generating function for the sequence
Y, is given by

i vy, — 8T+ (2e+1) —ulg+h))

—yt — vt2
= 1 —ut —vt

Proof. Let g(t) = Yo Yaut", then from equation (2.1) by multiplying "2 with
summation from 0 to oo, we get:
Yoot Yoo — Lot Pula it — Lot v, = 0
= (g(1) =Yoo —Yo11) —u(g(r) = Yao)t —vg(1)r* =0
= g(t)(1 —ut —vt*) — (Yoo + Yo t —uYapt) =0
Y0+ (Y21 —ulapt)
1 —ut —vi?
) =55 gy G2 )t 1)) _

= g(t) =
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Proposition 2.1. (Explicit sum Formula) Let Y> , be the n'" Extended Generalized
Fibonacci polynomial, then

o (n—k 2%k L& k-1 _—
Yz»ﬂ—(gM)Z( k >M"‘ F g+ 1) —u(g+h)] Y ( L )u"- LA

k=0

where |n|is the greatest integer less than or equal to n.

Proof. Using the generating function, we have

- h 2g+1)—u h
M R RA G A RTERED),

n=0
=[(g+h)+(2g+1) —u(g+m)[1 — (u—ve)] ™!

oo

=[(g+h)+(2g+1)—u(g+h)) Z u+vt)"
=0

(g4 m) (g 1) —u(g+m)I Y Y () (ur)f

n=0 k=0

3

=[(g+h)+(2g+1)—u(g+h))t Z Z I ! k) Wkt
n=0k=0

Taking n + k instead of n, we have

(n+k)! 2k

gk
gk

=[(g+h)+((2g+1) —u(g+h))t]

o i)
- L%J 2k k
= h 2¢+1)— h)) u" "
[(g+h)+((2g+1) —u(g+h) ngbk:ok‘"—zk v

[

53 L5

:nf‘b {(ngh Zk'((” _’;)k) n-2k k}t +Z[ 20+1)—u(g-+h) Zk'—kz)k')“n 2% k:|tn+1

k=0
Taking the coefficient of ", we get
L5)

B Lnflj .
Yo =(g+h) (” k)u”_Zkvk-i-[(2g+1)—u(g+h)] Y (" k 1>u"_2k_1vk.
k=0 k k=0 k

Proposition 2.2. (Sum of first n'" terms). The sum of the first n'"* terms of the ex-
tended generalized Fibonacci polynomials is given as follows

Z Yo (x _Dh 2(x) +vY2 ,1(x) —L[t(igv‘i;ll) —u(g+h)]—(g+h) _
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Proof. Using Binet’s formula, we have

n—1 n—1
Y Yax(x) = Y (—Ruf(x) +S15(x)),
k=0 k=0
where R &M= Q2g+1) o (g+hm—(2+1)
M1 — M2 M1 — W2
Thus,
n—1 n—1 n—1
Y () = =R Y ui(x)+S Y ()
k=0 k=0 k=0
__gHi@ -1 B —1)
up—1 u—1
_ RS (“Rup(x) +Sp1 (x)) — (R (x) +Sp3(x)) | pur (0pia () (—Ret) ™" () +Sif " (x)
p (x)p2 (x) =y (x) — 2 (x) + 1 p1 () (x) = (x) = g (x) + 1

Since uy (x) + w2 (x) = u, p1 (x)u2(x) = —v and by Remark 2.3, we have

T () = Lo @ s @)~ [Ge D mule ) (g4l
=0

u+v—1

3. THE {Y3,} EXTENDED GENERALIZED TRIBONACCI POLYNOMIAL
SEQUENCE AND SOME PROPERTIES

Consider the third order linear difference equation given by
YV3.0(x) = u? (%) Yo 1 (x) + u(x)v(x) Y22 (x) + W (x) V3,3, n>3, (3.1)

with Y3 o(x) = j(x),Y3,1(x) = g(x) + h(x) and Y3 5(x) = 2g(x) + 1, where, j(x), g(x),
h(x), u(x) and v(x) are polynomials with real coefficients with u(x) # 0,v(x)
0,w(x) #0.

The relation can be extended in negative terms as follows

1

Vi n=—5—
T W2 (x)

(Ya,—ni3 — 2 (x)Y3 —p2 — u(x)v(x)Y3 —ni1),

forn =1,2,3..., with the same initial value and w(x) # 0.

In particular j(x) = 0,g(x) = 0,h(x) =0 and u(x) = 1,v(x) = 1,w(x) = 1, so equa-
tion (3.1) becomes the Tribonacci sequence and for j(x) = 3,g(x) = 1,h(x) =0 and
u(x) = 1,v(x) = 1,w(x) = 1, so equation (3.1) becomes the Tribonacci Lucas se-
quence.
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Thus, the first few terms of the polynomial sequence Y3, are as follows
Y30(x) = j(x)
Y31(x) = g(x) +h(x)

Y30(x) =2g(x)+1

Y33(x) = u?(x)(2g + 1) + u(x)v(x) (g +h) + j(x)w* (x)

Y3.4(x) = (u* () + u(x)v(x)) (2g + 1) + (0 (0)v(x) +w?(6)) (8(x) +h(x)) + j(x)u? (x)w? (x).
For the sake of simplicity, we use Y3 ,,u,v,w, j,&,h,Y30,Y3 1, fn instead of Y3 ,(x),
u(x), v(x), w(x), j(x), g(x), h(x), Y30(x), ¥3,1(x), fa(x), respectively.

3.1. Matrix Representation

The matrix {M% },>¢ of the polynomial sequence Y3 , is defined as follows

Yspiz  w¥aui1+w?¥s, w2, w? wv wH\"
Mi= Y351 wVs,+wYs,y W, |=[1 0 0] M, 32
Ysn wYs,1+w¥s, 0 w¥s, 0 1 0
2¢+1  w(g+h)+w?j w?(g+h)
where M= | g+h (2g+1)—u?*(g+h) w?j
J (g+hn) —u?j  (2g+1)—u(g+h)—uvj

Theorem 3.1. Let {f3,},>0 be the Tribonacci polynomial sequence defined as

frnis = fparuvfanir +wis, withfs0=0,f31=0,f30=1, (3.3
then

Ysu=(g+h)(fint1 — U f3n) + W fin1+ (28 +1) f30,Vn € Z.

Proof. We prove it using mathematical induction on n. For n = 0, the result obvi-
ously holds. For n = 1, we have

V1= (g+m)(fip—uwfs1)+jw o+ (2g+1)fs1=g+h.
Yio=(g+h)(faz—ufs2)+ W' fa1+ (2e+1)fs0 =28+ 1.
Now assume the result is true for n = k. For n = k+ 1, we write
Y37k+1 = u2Y27k+MVY27k,1 ()C) +W2Y3’k,2
=12[(g+h)(fen — 2 f31) + W a1+ 28+ 1) i) +uv[(g+h) (fx—u frp1) +
W a2+ (2g+1) fa 1] +wA(g+h) (o1 — WP frp2) + W fra-a+(28+1) f3x2]
= (g+h)[u* s 1 —t* f3 5 uv f3 =P f3 ko1 W2 fr o1 — 2w f3 o]+ jw? [P f o1 +
uv f3 k2 +w? f3 3]+ (28 + 1) [P f3 k+uv f3 1 +w2 f3 k2]
Using the Tribonacci polynomial sequence,we have

Vsir1 = (€ +h) (Far2 — W fsam) + Wi+ e+ 1) frarr-
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Theorem 3.2. Let Mg be the initial matrix defined in (3.2) and Qf be the Tribonacci
polynomial matrix of equation (3.3) defined as

fintz  Whar1 W2 fia WAt
Qrv= | finr1  Wha+wrfini wra |,
Fin wha 1 +wfiaa W fini

then, for all integers, we have M5 = Qg’Mg = MgQg‘.
Proof. Using mathematical induction this can be proved easily. U
Theorem 3.3. Let M5 be the matrix as defined in (3.2) , then for all integers
MiM3" = (M3)°.
Proof. From the above theorem, we have
MM = Q3M30;" M3
= M3Q305" M3
= MM = (M3)>.

3.2. Binet’s formula, Generating function and Identities of {V3 ,}

To establish any identity involving the n’ term of the sequence, the Binet formula
plays an important role. It can be calculated using it’s characteristic equation which

is as follows
3 2.2 2

7 —uz"—uvz—w" =0. 3.4)
The roots of the characteristic equation (3.4) will be denoted by u (x), u2(x), u3(x)
and defined by
2 2 2
u u o) u 9
pi(x) = 5 ta +az, wp(x) = 5 twa+o az, u3(x) = 5 Twatea,
where
1 1
0==5 o= (£+2+5+VD), o= (H+%+5-VD),
with A = ”;Vz — “lﬁovg ”3ng — ”;;3 + W{, and also satisfy

1 () + 2 (x0) + 3 (x) =,y () (x) + pr2 ()3 (x) + a3 (W) (x) = —uv,
i (K)pt (X)) = w2,
Theorem 3.4. (Binet’s formula). For n > 0, we have
Ruf Se Ty
(1 =) —p3) (=) (2 —p3) (s —p) (s — 2)”

Y3,n =

where

R=(2g+1)— (u2+m)(g+h)+ juwus, S= 2g+1) — (u1 +u3)(g+h) + juus,
T=(02g+1)— (u +m)(g+h)+ juu.



EXTENDED GENERALIZED FIBONACCI AND TRIBONACCI ... 53

Proof. If uy, o, u3 are distinct roots of the equation (3.4), then the general formula
for Y3, is in the following form

Y30 = c1td] +copy + 3l (3.5)
To determine the value of ¢y, ¢, and c3, we have
Y30=ci+c2+c3 (3.6)
Y31 = ciur + copp +c3u3 3.7)
Y32 = c1ui + o3 + c313. (3.8)

Now, we multiply equation (3.6) with u; then subtract equation (3.7) and we multiply
equation (3.7) with u; then subtract equation (3.8), we get

(Y30 —=Y31) = c2(pn — p2) +c3 (1 — u3) (3.9)
(Y31 —Y32) = coun (uy — p2) + c3u3 (uy — p3) (3.10)
If we multiply equation (3.9) with u; then subtract equation (3.10), we get
_ mpYs0— (i +m)Ys1+Ya

(i3 — 1) (U3 — 112)
Now, from (3.9), we have

Yz — (ur +u3)Y3 1+ Y30

Cy =
(k2 — 1) (p2 — p13)
and from (3.6), we have
_ Hap3Y30 — (2 +uw3)Y31+ Y32
(11— p2) (p1 — p13) , , .
Put the values of c1,c2,¢3,Y3,0,Y3,1 and Y3 > in the equation (3.5) and we get required
result. O

Theorem 3.5. (Generating Function). The Generating function for the sequence
Y3, is given by

oy o J T8+ h) — e+ [(28+ 1) —wvj—uP(g+h))e

Z Vaul” = 2 2 _ 23 :

) 1 —ust —uvt> — w4t

Proof. Let g(t) = Yo Y3 t", then from equation (3.1) by multiplying #**> with the
summation from 0 to oo, we get

[g(l‘) — Y3_’0 — Y371l — Y372l2] —u? [g(t) — Y37() — Y371l]l‘ — uv(g(t) — Y370)l2 — wzg(t)l3 =0
g1 =t —uvt®> = w23 = Y3 0(1 — Pt —uvt?) — Va1 (t —u?t?) — Y312 =0

_ Y372t2 +Y37()(1 —utt— uvtz) +Y31 (l‘ — Ltztz)

8(t) 1 — 2t —uvt? —w2e3

= Y37() + (Y371 — M2Y37())l‘ + (Y372 — MVY37() — u2Y371t2)
8(t) = 1 — 2t —uvt? — w23 '
Thus,

)3 e (CRdl) — i+ (28 + 1) —uvj— (g + )2
= 1 —u?t —uvt? —w2p3 ’



54 VAISHALI BILLORE, NARESH PATEL, AND HEMANT MAKWANA

Proposition 3.1. The explicit sum formula for the sequence Y3 ,, is given below
Yin = jA+[(g+h) = jIB+[(28+1) — (g +h) —uvjlC,

3113 /o /2
q T4\, 2vn—2k-3q/., k. 2\g
a= X 3 (N (T ey

k=0¢=0 q
.

L)
n—k—=2qg—1\ (k+q\, 2\n—2k—3g-1, \k;..2\q
(e
ZJ J
0

kZ 0 (” kk+2qq 2) (kJ;CI> (12)" 2302 (1 (w24

Proof. By the Generating function, we have

where,

n

)

n—

L2z L
1252 1%

B
C

DL LD

q

Y V3" = [V30+ (Y31 — u?Ya )t + (Y32 —uv¥s o — u?¥3 1 )e2][1 — (u* + uve +w?e )] !
n=0

= [Y370 + (Y3,1 — u2Y3,0)t + (Y32 — uvYs; o — u2Y311)t2] Z (u2 +uvt 4+ Wztz)nl”

S
e L
N§
1=

n
= Y30+ (V3,1 —u?¥30)t + (Ya2 — uv¥s o — u’¥3 1)) (k) ()" (vt + WPy

>~

= [Y3’0 + (Y371 — u2Y370t + (Y372 — uvY370 — u2Y3‘] )1‘2] (uz)"fk(uv + Wzt)kthrk

(Z) (’;) (12" (a4 (w28

(k> @ ()" K () (w1 R

["181
It-
/|
> I O
N————

3
Il
o

s
=
gy

= [Y37() + (Y3,1 — u2Y370)t + (Y3_2 —uv¥3g— u2Y311)t2]

3
Il
o
=
Il
=
b
=}

= [0+ (V31 —u?¥30)t + (Y32 —uv¥3 o — u?Y3 )i’

13
=
™=

=

Il
=
T
=3

i
=}

Now replacing n with n+ k and k with k4 g, we get

= e o N et )
=30+ (Y31 —u?V30)t+ (V3o —w¥3o—u?¥3 )21 Y Y Z( ) ( qq) ()4 (uv)F (w?)4H2K24

=[Y3 0+ (Y31 —u?V30)t+ (Y3 o —uv¥so—u?¥3 )*] Y

Thus, the sum equals to

q +q n—2k—3 k(. 2\g.n
Yo ( )( )() ) (w20
Yok y ()

- B118) /0 oo fk
+ Z Ys1—u Y30 Z Z (" CI) < +‘1> (uz)n72k73q(uv)k(Wz)qtnﬂ}
n=0

i—0g=0 \ k+a q
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o L1zl /7
+ Z (V32— ”2Y3,1 —wYsg) Z Z (n kk 26]> <k+CI> (u2)" =234 (YK (w242
n=0 k=04=0 +q q

Equating the coefficient of #" on both sides, we get

Y3OZ Z ( —k/:_q2q> k+q> (uZ)n72k73q(uV)k(W2)q

k=0g=0 q
P IS kg — 1\ [k+
+(Y3717M2Y3’()) Z Z ( 3 q )< q)(u2)n—2k—3q—1(uv)k(w2)q
k=0 ¢=0 +4q q
2] )k —2a— 2\ [k
+ k3
+(Y372—u2Y371—uvY370) Z Z ( 3 q— )( q) (u2) 2k—3q Z(MV)k(WZ)q.
k=0 ¢=0 +q q

0

Proposition 3.2. (Sum of the first n terms). The sum of the first n'" terms of the
extended generalized Tribonacci polynomials given as follows

"*IY Vs (1) + w31 — [Yap — (u> — 1)Y3 1 —uwvY3 o] + (u> — 1)Y3
L V() = u? +uv+w?—1 '

Proof. Using Binet’s formula, we get

n—1 n—1

Y Vap= Y (A + B+ Cutb)
— k=0

where

A= wwY30—(w+u3)Y3,1+Y32 B= Yz o—(u+u3)Y3 143 C= Y3 0—(u1+m) Y3143
(1 —12) (1 —p13) (=) (2 —p13) (3 —p1) (13 —p12)

It follows that
n—1 n—1 n—1 n—1
Y V=AY ii(0)+BY ihx)+CY hx)
=0 =0 =0 =0
SV S/ Sk k.
m—1 m-1 -1
AW =D =D =D +Bs — D — D — 1)+ Cs — D) (un — (i — 1)
a (1= D2 = 1)z = 1)
(= 1)(A+B+C) — (Auy + Buy +p13) — (Auoz + Buypz + Cu )
a mpop3 + (uy +p +u3) — (i + pops + pa) — 1
L= 1) (At + Buty + Cut) + (A + By ™ + Cuy ™) + s (Al + By i)
M3 + (1 +p2 +p3) — (g + pops +pzun) — 1 ‘

After solving, we get
Y3n+1—|—(1 u )Y3n—|—w Y3, 1—[Y32 (uz—l)Y371—uvY370]—|—(u2—1)Y370

O
w4 uv+w?—1

Yo Yak(x) =
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4. CONCLUSION

In this study, we generalized the Fibonacci polynomial sequence to obtain an ex-
tended generalized Fibonacci sequence, then we proved some identities like Binet’s
formula, Generating function, Catalan’s identity, explicit sum formula and matrix
properties. Further, we introduced a generalization of the Tribonacci polynomial
sequence to obtain an extended generalized Tribonacci polynomial sequence, then
investigated some identities like Binet’s formula, generating function, explicit sum
formula and matrix properties.
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