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SMALL FUNCTIONS IN DISKS OF C,

ALAIN ESCASSUT

ABSTRACT. Small functions were defined in complex analysis and next in ultra-
metric analysis. Order of growth and type of growth were also defined in complex
analysis and have a similar definition in ultrametric analysis. Here we compare
these two notions in the same way, on a complete ultrametric algebraically closed
field IK of characteristic 0 such as C,. Small functions with respect to an entire
function f were studied in several articles. Inside an “open” disk, small functions
also exist. After a general study, here we examine how two analytic functions in-
side an open disk can share three small functions, ignoring multiplicity and we
give sufficient conditions proving that these two functions are equal.

1. INTRODUCTION AND GENERAL PROPERTIES OF THE GROWTH

In complex analysis, a notion of small functions with respect to a ’big” holomor-

phic function was introduced and particularly applied to the Nevanlinna theory [2],
[5]. On the other hand, as far as entire functions are concerned, a notion of order of
growth was also examined and led to another kind of small function [6], [8], [10].
These studies suggested symmetric studies in ultrametric analysis [1], [2], [3], [4],
[6], [8], [10]. Then, inside an open disk of C,, it is also possible to define an order
of growth and to make the same kind of work, defining small functions in a classical
way in an open disk £ and then defining the order of growth in E and comparing the
order of growth of two analytic functions in E [2]. Here we will first recall result ob-
tained in [2]. Thus, two notions of ”small function” with respect to a ”’big function”
appear and we can compare them, as it was done for entire functions [7]. Next,when
3 functions are shared (ignoring multiplicity) by two functions, we can obtain cri-
teria proving that the shared functions are small and hence satisfy the hypothesis of
known theorems.
Notations and definitions. We denote by IK a complete algebraically closed field
of characteristic 0 such as €, and given a € IK and r > 0, we denote by d(a,r) the
disk {x € K |x—a| <r} and by d(a,r") the disk {x € IK |x—a| < r}. More precisely
throughout the paper, we put E = d(0,R™) where R is a fixed positive radius.
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Given ry, r, € IR such that 0 < r; < rp, we denote by I'(0,r;,r;) the annulus
{x €K r| <|x| < ry}. We denote by Log the Naperian logarithm.

Now, we denote by A(E) the IK-algebra of analytic functions in E i.e. the set of
power series Y, a,x" converging in E and by 4,,(E) the set of f € 4A(E) that are
unbounded in E [4], [7]. According to classical notation [4], given f € 4(E) we put
|f1(r) =sup{|f(x)| | |x| <r}, (0 <r<R)[4]. Then |.|is an ultrametric multiplica-
tive norm on A(E), and |f|(r) = limyy . 2 | £ (x)| [4].

Now, given f € A(E), we define

o Log(Log(IfI(7) . . . Log(Log(|fIr))
P =™ Log(r—r) * PV = CLogR 7))
Next,if0<p(f)<—|—°°,Weputc(f,r):Log(]f\(r)(R—r)p(f)),G(f)zlim;l}pc(f,r)

and 6(f) = 1im1ienf0(f, r). Then, p(f) is called the order of growth of f, p(f) is
r—K

called the lower order of growth of f, 6(f) is called the type of growth. of f.
On the other hand, for every r €]0,R[, we denote by s(r, f) the number of zeros
of f in d(0,r), taking multiplicity into account. If the set of the y > 0 such that
lim s(r, f)(R—r)” =0 is empty, we put 8(f) = +oo. We then denote by 6(f) the
r—R~
lower bound of the y > 0 such that lirg s(r, f)(R—r)” = 0. Similarly, if the set of the
r—K
y > 0 such that lim Log(|f](r))(R—r)* = 0 is empty, we put A(f) = +oo. Also, we
r—R~

denote by A(f) the lower bound of the y > 0 such that lirlgl Log(|f](r))(R—r)" =0.
r—n
Andif 0 < p(f) < 4o, we put W(f,r) =s(r, f)(R—r)°?Y) and y(f) = limsupy(f,r).

r—R~

We call y(f) the cotype of growth of f.
A function f € 4(E) is said to be regular if p(f) = p(f) and it is said to be clean

if 5(f) = o(f)-

We can now state some results on the function p [2]. Theorem 1.1 is easily proved.

Theorem 1.1. Let f, g € A(E). Then,

i) p(f+g) <max(p(f),p(g)) and if p(g) < p(f), then p(f +g) = p(f),
ii) p(fg) = max(p(f),p(g))-

Theorem 1.2. Let f € A, (E). Then, Vn € IN*,p(f") = p(f). Let P € K[x]. Then
p(Pof)=p(f)

Proof. Let n = deg(P). For r close enough to R, we have

Log(Log(|f(r))) < Log(Log(|Po f|(r))) < Log((n+ 1)Log(|f](r)))

= Log(n+1) 4 Log(Log(|f](r)))-

Consequently, the statement is immediate. U
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Definitions and notations: Given 7 > 0, we denote by ﬁ,(E ) the set of functions
h € A(E) such that p(h) <t. Given f,h € A(E), h is called a small function with

Log([A|(r))
respect to f if rl;r}rel m

h € 4(E) that are small functions with respect to f.
On the other hand we will say that a function h € 4(E) is a very small function

with respect to a function f € A(E) if p(h) < p(f). Givent > 0, we denote by 7, (E)
the set of & € 4A(E) such that p(h) <t

By Theorem 1.1 we have the following corollary.
Corollary 1.1. Foranyt >0, ﬁ,(E ) is a IK-subalgebra of A(E).
Theorem 1.3. Let f(x) € A(E) be such that 6(f) > 0. Then f is regular.

=0 and we denote by A¢(E) the set of functions

Proof. Suppose first that p(f) # 0. Leta = 6(f), and b = g. Then,
a = liminf| f|(r))(R— )PV,
r—R~
hence there exists R’ €]0,R[ such that Log(|f|(r))(R — r)°Y) > b Vr €]R’, R[, hence
Log(|f|(r))(R—r)PY) > b¥r >]R,R[ and hence

Log(Log(|£1(r))) +p(f)Log(R —r) > Log(b) Vr €|R’,R].
Consequently,

Log(Log(|f](r))) > (—p(f)Log(R —r)) +Log(b) Vr €]R,R|,
and hence

Log(Log(|£1(r)) Log(b)
> —_—.
—Log(R—r) — p(f)+ —Log(R—r)
When r tends to R, we can see that p(f) > p(f), hence f is regular. O

Corollary 1.2. Let f(x) € A(E) be clean and such that 6(f) > 0. Then f is regular.

Theorem 1.4. Let f, g € A(E). Then o(fg) < o(f)+o(g). If p(f) > p(g), then
o(f) < o(fe)- If p(f) = p(g), then max(o(f),5(g)) < 6(fg).

Ifp(f) =p(g) and o(f) > 6(g), theno(f+g) = o(f). If p(f +8) =p(f) = p(g),
then o(f +g) < max(c(f),0(g))-

Proof. Let y = p(f), t = p(g) and suppose y > t. When r is close enough to R,

we have max(Log(|f](r)), Log(|g|(r)) < Log(|fg|(r)) = Log(|f](r)) +Log(lg|(r))
and by Theorem 1.1, we have p(fg) = y. Therefore,

o(fg) = limsup (Log(|f-g|(r) (R—1)")

r—R~

< timsup (Log(|](r)) (R~ r)*) + limsup (Log(|g|(r)) (R~ r)') = o(f) + o(g).

r—R~ r—R~
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On the other hand,
o(f) = 1im;upLOg(!f\('”))(R —r)'< 1imsllelp(LOg(|fg|(r))(R —r)".
r—R~ r—+R~
But p(fg) =y, hence 6(f) < o(fg). Particularly, if p(f) = p(g), then

8)-

(f),0(¢)) <o(fe)

Now, suppose again that p(f) = p(g) =y and suppose o(f) > o(g). Let y =
p(f), b=0(f). Then, b > 0. Let (r,)nen be a sequence such that lim,,_, {7, =R
and ngrgw(Log(|f|(rn))( —ry)’) = b. Since 6(g) < o(f), we notice that when 7 is

max (o

big enough we have |g|(r,) < |f|(r»). Consequently, when 7 is big enough, we have
|f+g|(rn) = | f|(rn) and hence

Tim_(Log(1f + &l () (R~ ra)’) = b (L.1)

By definition of ¢ we have o(f +g) > ngrfw(Log(|f+g‘(rn)))(R_ ra)P P(f+8)  and

by Theorem 1.1, we have p(f + g) <y, hence

G(f+g> > nETm(LOg(‘f"i_g’(rn)))(R - rn)P(f+g) > nETm(LOg(‘f"i_g’(rn)))(R - rn)u
= Jlim Log(|f[(rs))(R—ra)" = o(f)

therefore, by (1.1), 6(f + g) > o(f). Finally, suppose now that p(f +g) = p(f) >
p(g)- Lety =p(f) and t = p(g). Then,

o(f +¢) = limsup(Log(|f +&|(r))) (R —r)’

r—R~
< max (timsup(Log(|1(r))) (R =" imsup(Log( I () (R~ 1))
< max (limsup(Log(|1(r))) (R —r)" lim sup(Log([g] (r))) (k1))
r—R~ r—R~
=max(o(f),0(g)),
which ends the proof. 0

Corollary 1.3. Let f, g € A(E) be such that p(f) # p(g). Then,
o(f +¢) < max(o(f),5(g))-
Theorem 1.5. Let f(x) € A(E). Then, Af(E) is a IK-subalgebra of A(E).

Proof. Suppose first f € A(E) and let g, h € Ay(E). Consider

Log(lg+A|(r)) < Log(|g|(r) + |h[(r))) < Log(|g|(r)) + Log(|a|(r)).
But by hypotheses,

hence g+h € A (E).
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Next, Log(|gh[(r)) < Log(|g|(r)|A|(r)) = Log(|g|(r)) + Log(|A|(r)) hence
. Log(lgh(r)

r—k- Log(|f](r))

which shows that gh € 4¢(E). Consequently, A¢(E) is a subalgebra of 4(E). O

=0,

Theorem 1.6. Let f € A(E) be such that p(f) > 0. Then the IK-algebra ﬁl/ﬁa(E )
is included in Ay (E).

Proof. Let g € 4(E) be such that p(g) = p(f) — b, with b > 0. There exists R' < R
Log(Log(|/f[(r)))

such that > p(f) —b Vr € [R,R[. Consequently when r tends to

—Log(R—r)
R, we have
Log(Log(lg|(r))) _ Log(Log(|f](r))) _
—Log(R—r) —Log(R—r)

hence Log(Log(|g|(r))) < Log(Log(|f(r))) —b(—Log(R—r)). Therefore,

Log(|g|(r)) < (Log(|£1(n)(R~r)",

which leads to
Log(lg|(r))

Log(|/1(r))
This proves that g € 4¢(E). O

<(R-r)’.

Remark 1.1. In other words, very small functions with respect to f are small func-
tions with respect to f. As is shown in Remark 1.2 below, the converse does not hold
in the general case.

Corollary 1.4. Let f(x) € A(E) be regular. Then, the IK-algebra /‘Zl/pa(E ) is in-
cluded in Ay (E).

Corollary 1.5. Ler f(x) € A(E) be such that 6(f) > 0. Then, %(E) is a K-
subalgebra of Ay (E).

Corollary 1.6. Let f(x) € A(E) be clean and such that 6(f) > 0. Then, /‘Zl/pa(E ) is
a IK-subalgebra of A¢(E).
Theorem 1.7. Let f € A(E) be clean, such that 6(f) > 0 and let h € A(E) be such
that p(f) = p(h). Then, h € A¢(E) if and only if 6(h) = 0.
Proof.  Lett =p(f). Since f is clean, we have

o(h) _ timsup, - Log((hl() (R~} _ . Log(J(r))

o(f)  lim, e Log(lf|(r)(R—r) g log(lf(r))

Log(|h
Now, / lies in 4, (E) if and only if timsup “22U" ) _ o 5 ¢ 500y — 0. O
ror- 1og(|f|(r))




64 ALAIN ESCASSUT

Thanks to the classical inequality |f’|(r) < ) [4], the following theorem is
r

then immediate.
Theorem 1.8. Suppose K has characteristic 0. Let f € A(E). Then p(f’) < p(f).

Remark 1.2. In a field of characteristic p # 0, certain analytic functions have a null
derivative. This is why we must suppose that IK has characteristic 0 in all statements
involving derivatives.

In complex analysis, many estimates were given concerning the growth order of
solutions of linear differential equations. Here, from Theorems 1.1 and 1.8 we can
immediately obtain the following corollary.

Corollary 1.7. Suppose IK has characteristic 0. Consider the differential equation
(E) S+ an1 ()" () + o+ a0 ()£ (x) = 0

withaj € A(E), j=0,...,n—1 and p(a;) < p(agp) Vj=1,...n— 1. Then every
non-trivial solution f of (‘E) satisfies p(f) > p(aop).

In [4], the following theorem is easily shown.

Theorem 1.9. Suppose K has residue characteristic 0. Then for every f € A(E) we
have p(f') = p(f), 6(f') = 6(f), o(f') = o(f) and y(f") = w(f).

Remark 1.3. Theorem 1.9 does not hold for residue characteristic p > 0 because
there exist functions f € A(E) such that p(f) > 0 and that f’ is bounded, as shows

(e} p (e} "
the following example with R = 1: g(x) = Z x—m We can see that g’ (x) = Z X7l
m=0 P n=0

hence g’ is bounded and therefore p(g") = 0. However, consider the sequence (7)) meN

defined as r,, = 1 — —-. We can check that |g|(,) > " (rm)?", hence
p

1
Log(|g|(rm)) > m+ p™Log(rm) = m+ p™Log(1 — ﬁ)

When m is big enough, we have Log(l — im) > =2 hence

Therefore, when m is big enough, we have

Log(Log(lg|(rm))) _ Log(m—2) _ Log(m—2) p"
—Log(rm) 2 —Log(1— #) [%m = TLOg(m -2).

Thus, we have p(g) = +oo.
Theorem 1.10. Let f € A(E). Then M(f) = p(f).
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Proof.  First we will prove that p(f) < A(f). Obviously, we can assume that

A(f) < +oo. Let y be such that lirlgl Log(|f](r))(R—r)" =0. Let us fix € > 0. For r
r—K
€
close enough to R, we have Log(|f|(r))(R—r)” <€, hence Log(|f|(r)) < R’
—r
therefore Log(Log(|f|(r))) < Loge — yLog(R — r) hence

Log(Log(|f](r))) _ _ Log(e)
(—Log(R—r)) — (—Log(R—r))

meup LoELoE(UA10) _
k- (—Log(R—r))
i.e.,, p(f) <y. This is true for every y such that lirqul Log(|f|(r))(R—r)’ =0 and
r—r—
hence p(f) < A(f).
On the other hand, we notice that, by definition of A(f), either A(f) = 0 and then
Af) < p(f). or

A(f) = sup{y €]0, 4-o[ | limsupLog(|f|(r))(R—r)" > 0}.

r—R~

Thus, suppose that A(f) > 0. Let us take y €]0,A(f)[. We have a number b > 0 such
that

+,

and hence

limsup(Log(|f|(r)(R—r)*) > b > 0.

r—R~
Let us fix € €]0,b[. There exists a sequence (r,),ew in |0, R[ such that lirf rm=R
n—r+oo

and such that, when n is big enough, we have b —¢& < Log(|f|(r,))(R—r,)’, hence
—yLog(R —r,) +Log(b—¢) < Log(Log(|f|(rs))) therefore

Log(b—¢) _ Log(Log(|/f|(ra))

(~Log(R—ry)) = (~Log(R—ru)) -

o Log(Log(|f[(ra))

Consequently, lizrg _s:ip (—Log(R— 1))
every y < A(f). Thus, p(f) > A(f) and finally, p(f) = A(f). O

Remark 1.4. Let f € A(E) and g € A¢(E). Can we tell that g € 4,4 (E)? Suppose

that p(f) = 1 and consider a function & € A4(E) such that Log(|A|(r)) is of the form
a b

>y, therefore p(f) > y. But this holds for

olr)Log(|f](r)) with &(r) € [Fe e ) * Logog(7G ) 40 <4 <
b. Then,

Loa(Log(#|(r))) _ Log(o(r) + Log(Log(lf|()) _ _ Log(o(r))
Log(Log((1f1(n)) Log(Log (/1)) Log(Log(f1(N))

and that belongs to

Log(a) — Log(Log(Log(|f](r))))
Log(Log(|f](r)))

Log(b) — Log(Log(Log(|/[())) | |

s Log(Log(£1(r))) ’



66 ALAIN ESCASSUT

therefore

i Loz(Log (1) _ |

r—k- Log(Log(f](r)))

and hence p(h) = p(f).
On the other hand, by definition,

Log(|hl(r) _ . a b
e [Log(Log(lf!(r))) ’ Log(Log(\fl(r)))]’

= 0 and hence & belongs to Ay (E).

Log(|f1(r))

— Log(JH()
hence N Log(171(r)

Remark 1.5. When f is not regular, a function h € Jq/pa(E ) does not always lie in
A¢(E). Indeed, suppose that p(f) —p(f) = 2b, with b > 0. We can construct a
function h € A(E) such that p(h) < p(f) — b and such that there exists a sequence
(rn)new where lim,_, 1o r,, = R, satisfying

Log(Log(|(f|(r4))) _ Log(Log(|A|(ra))) _ Log(Log(|f|(ra)))

—Log(R—r,) — —Log(R—r,) — —Log(R—ry)
So, we have
Log(Log(|f[(ra))) < Log(Log(|A|(r))) < Log(Log(|f|(ra))) — bLog(rn)
Log(|A](ra)

hence Log(|f|(r»)) < Log(|h|(r,) and hence 1 < which proves that & ¢

Lo Log(171(r)
Ay (E), although h € Ay (E).

Theorem 1.11. Let f € A(E). Then y(fg) < y(f)+w(g). Moreover, if p(f) = p(g)
then max(y(f),w(g)) < w(fg).

Proof.  Setp(f) =y, p(g) =t. Without loss of generality we can assume y > . By
Theorem 1.1 we have p(f.g) = p(f) =y. Now, for each r > 0, we have s(r, f.g) =
s(r, f)+s(r,g) hence

y(fg) =limsup(s(r, f)+s(r,g))(R—r)’ <limsups(r, f)(R—r)’+limsups(r,g)(R—r)"

r—R~ r—R~ r—R~
hence y(fg) < w(f)+wy(g). Now, suppose y = ¢. Then,
y(fg) = limsup(s(r, f) +s(r,8)) (R—r)” > limsupmax (s(r, f),s(r, 8)) (R —r)’

r—R~ r—R~

= max(y(f), (g))-
O
Remark 1.6. Let f € A(E). If y > 6(f), then by definition, lirg s(r,f)(R—r) =0.
r—K
Butif y < 0(f), then limsups(r, f)(R — r)’ = +oo because if limsups(r, ) (R—r)” <

r—R~ r—R~
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+o0, we can find y' €]y, 0(f)[ and then we can check that lim s(r, f)(R—r)” =0, a

o r—R~
contradiction.

2. COUNTING FUNCTIONS AND APPLICATIONS

We can now examine the deep role of the order of growth. For convenience, we
need to define the counting function of zeros of an analytic function in the disk E:
let f € 4A(E). We denote by Z(r, f) the counting function of zeros of f in d(0,r)
defined in the following way.

Let (ay), (1 <n<g(r)) be the finite sequence of zeros of f such that 0 < |a,| <r,

q(r)
of respective order s,. We set Z(r, f) = max(wo(f),0)Logr+ Z su(Logr —Log|ay|)
n=1
and so, Z(r, f) is called the counting function of zeros of f in d(0,r), counting mul-
tiplicity.

In order to define the counting function of zeros of f ignoring multiplicity, we put
®(f) =0if wo(f) =0and @y(f) =1if wo(f) > 1.

Now, we denote by Z(f,r) the counting function of zeros of f ignoring multiplicity:
q(r)

Z(f,r) = @o(f)Logr + Y (Logr — Logl|a,|) and so, Z(f,r) is called the counting
n=1

function of zeros of f in d(0,r) ignoring multiplicity.

And we denote by Z°(f,r) the counting function of the zeros of f’ that are zeros
of f —a, for any n < g(r). Now, by Theorem B 13.24 in [4], we have the folloving
theorem.

Theorem 2.1. Let f € A(E) and let ri,ry €|0,R| satisfy ri < ry. If f admits ex-
actly g zeros in d(0,ry) (taking multiplicity into account) and t different zeros o}, of
respective multiplicity order m; (1 < j <t) inT'(0,r1,r,), then f satisfies

Zranf) — 21, f) = ilmeog(rz) ~ Log(o;])) + q(Log(r2) — Log(r).

Corollary 2.1. Let f(x) € A(d(0,R™)) be such that f(0) # 0, let r €]0,R]| and let
aj, 1 < j < g be the zeros of f in d(0,r), of respective multiplicity mj. Then,

q
Z(r,f) = Log(£(0)]) + }_ m;(Log(r) — Log(|(a,])).
j=1
Corollary 2.2. (Schwarz Lemma) Let D = d(0,s), let f € A(E) have at least (resp.
10) o (5g
= ()%,
[fGs) —r

at most) q zeros in d(0,r) with ¢ > 0 and 0 < r < s. Then, we have

IfIGs) _ (31
(resp. (5 < Q)

Now, we can prove the following two teorems.
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Theorem 2.2. Let f € A(E) be such that, Y(f) < +oo. Then 6(f) = 0.

Proof.  Without generality, we can assume f(0) # 0. Let us fix € > 0 and let R’
be such that Log(R) — Log(R') = €. Let (a,)ne be the sequence of zeros of f, for
each n € IN, let w, be the order of a, and let rn = |a,|. Now, let u be the biggest
integer n such that r,, < R and for each r > 0, let m(r) be the biggest integer n such
that r, <r.

Let A, =Y"_,w, and let B, = Log(|f(0)]) + X%_,wa(Log(R") — Log(r,)). Let
us take r €]R’, R|. Thanks to Theorem 2.1, we can write

S(f,r) Bt X wa(Log(r) — Log(r))

Vifr) At B
But by hypothesis, Log(r) — Log(r,) < € Vn > u, hence

o(f,r)
v(/.r)
Let us put ¢(r) = ZZSM) 1 Wa. Thus,
o(f,r) _ Buteo(r)
v(f,r) = Auto(r)
But since f belongs to A(E), it has infinitely many zeros in E, hence ¢(r) is an

increasing unbounded function tending to 4o when r tends to R. Consequently, it is
obvious that

B, + Eaniru)H Wy
A+ ZTL};)_H Wn

<

r—R~ \If(f, I’)
Therefore, if limsup,_p- W(f,r) < +oo, then 6(f) = 0. O

Theorem 2.3. Let f € A(E) be such that p(f) < +eo. Then 6(f) —1 < p(f) < 0(f).
Moreover, if W(f) < oo, then 0(f) = p(f).

Proof.  We will denote | . | the Archimedean absolute value of IR. Let us first
show that p(f) < 6(f). We choose u > 6(f). Then, lim s(r,f)(R—r)" =0. Now,
r—R~

since liI;Iel | f|(r) = +oo, we can take ¢ €]0,R[ such that |f|(¢) > 1. Then, we can
r—R-
take b > 0 such that
s(r,f) <b(R—r)""Vre[l,R].
Now, taking r € [¢,R[, by Theorem 2.2 we have
r
Log(|f[(r)) < Log(|£1(£))) +S(hf)(L0g(z))

which leads to
r

Log(If1(r)) < Log(|f1(£))) +b(R —r)~"(Log(;))
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hence
Log(Log(1f(r))) < Log (Log(|1(£)) +b(R—r)~(Log(5)))
therefore, we can derive
Log(Log(1f](r))) < Log(Log(1/1()) +Log (b(R—r) ™ (Log(7)).

Now, since u > 0, there obviously exists & € [¢,R| such that b(R—r)™ > 1Vre
[h,R], therefore

Log(Log(||(r))) < Log(Log(|f|(¢)) + Log(b(R—r) *)Log(7)). (1)

Consequently, by (2.1), we obtain

Log(Log(|f[(r))) _ Log(Log(|f](¢))) Log(b) } Log(Log(7))
—Log(R—r) = —Log(R—r) + —Log(R—r) tut —Log(R—r)’
We can check that
L og(Log(I£1(6)) +Log(b) _ . Log(Log(7)) _o
r—R- —Log(R—r) - =R —Log(R—r)

and hence lim sup Log(Log(|f1(r))
r—R~ —LOg(R - I")
Log(Log(|f](r)))
—Log(R—r)
But since that holds for every u > 6(f) and for every € > 0, we have p(f) < u and
hence p(f) < O(f). Let us now show that p(f) > 6(f) — 1. By Theorem 2.2, we
have

< u. Consequently, choosing € > 0, there exists

u' € [¢,R[ such that <u'+€Vr € [u,R] and hence p(f) <u +e.

r2 1”2 r2
Log(|£](r)) = Log(|£1()) = s(r.f)(5) (Log(r) — Log(+))
r2
= s(r,f) () (Log(R) — Log(r)). 22

Consider now a number 7 < 6(f) and a sequence (r,),ew of |0, R[ such that

e (
)’ > b > 0. Then by (2) we have

] ‘:\m

lim r, = R and such that limsups(r,, f) (R —

n—+oo n—s-oo

b(Log(R) —Log(rx))

}’2 !
(x=%)
Consequently,

Log(Log(|f](ra))) > Log(b) +Log(Log(R) — Log(ra))) —# (Log(R —rx)+
Log(R+ry)) +2rLog(R),

Log(|f1(ra)) =

[~

=
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and therefore,

Log(Log(|f[(r2))) _ _ Log(b) Log(Log(R) — Log(rx))
—Log(R—r,) — —Log(R—ry) —Log(R—ry)
Log(R+r,) +2Log(R)
—H(] —Log(R—ry) )

Clearly,

lim ( Log(b) ) — lim Log(R+ ry) +2Log(R)
n—+eo \Log(R —r,)/  n—rteo Log(R—ry)

=0,

and by elementary reasonings, we can check that
Log(Log(R) — Log(x))

lim =1,
xR~ Log(R —x)
therefore
L Log(Log(R) —Log(r)) _ |
n—-+oo Log(R —ry)
Consequently,
Log(L
limsup og(Log(If|(ra))) -, _ 1)
it —Log(R—1y)
and therefore
Log(L
msap LOELOEUAAOD)

r—R~ _L0g<R - I") N
That holds for every r < 6(f) and shows that if 8(f) < +oo, then p(f) > 0(f) — 1.
Next, if 8(f) = +oo, then we have p(f) = +oo, which is excluded by hypothesis
since f € A,,(E). Consequently, the inequality p(f) > 0(f) — 1 is established.
Let us now show that p(f) > 6(f) when y(f) < +eo. Suppose 8(f) > p(f) and
let z €]p(f),0(f)][. Then by Remark 1.2 we have limsups(r, f)(R — r)* = oo, but

r—R~

then limsups(r, f)(R—r)PY) = oo, i.e. W(f) = oo, a contradiction. Therefore,
r—R~
0(f) < p(f) and hence whenever y(f) < 4o, we have 0(f) = p(f). O

Theorem 2.3 obviously suggests the following conjecture
Conjecture 2.1. Let f € A(E). Then p(f) = 0(f).

By Corollary 1 in [3] which is also Theorem C.9.19 in [4] we can state the follow-
ing theorem which is an easy consequence of the Nevanlinna Theorem on 3 small
functions for entire functions.

Theorem 2.4. Let f € Ay(E) and let wi, wy € Af(E) be distinct. Let S(

r) =
max(Z(r,w1),Z(r,w2)). Then, Z(r, f) < Z(r,f —w1) +Z(r, f —w2) +78(r) + O(1

)
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Theorem 2.5. Let f € A,,((E) and let w; € A¢(E) (j = 1,...,q) be q distinct small
functions with respect to f. Then,

e

qZ(I’,f)SQ. Z(F,f—Wj)+0(Z(F,f)).

j=1

Proof. By Theorem 2.4, for every pair (i, j) such that 1 <i < j < g, we have
Z(r, f) S Z(r, f —wi) + Z(r,. f —wj) + o(Z(r f))-

The number of such inequalities is then Cg. Summing up, we now obtain

CZ(r.f) < Y Z(nf-w)+Z(rf—w)) +o(Z(rf)). (2.3)

(i,j, 1<i<j<q)

In this sum, for each index i, the number of terms Z(r, f —wy) is clearly C ;71 =qg—1.
Consequently, by (2.3) we obtain

MQ

CiZ(r,f) < (q—1) Y. Z(r, f —wi) +0(Z(r. f)),

1

i

and hence

(raf_wi)+0(z(r>f))' U

MQ

12(np) <

I
_

Theorem 2.6. Let f, g € A, (E) be distinct and share q distinct small functions
ignoring multiplicity w; € A¢(E)NAg(E) (j =1,...,q). Then,

2_: (r.f —wj) S Z(r,f —g) +0(Z(r.f)) +0(Z(r,g))-

Proof. Let b be a zero of f —w; for a certain index i. Then, it is also a zero of

q
g —w;. Suppose that b is counted several times in the sum Z Z(r,f —wj), which
j=1
means that it is a zero of another function f —wj, for a certain index % # i. Then,
we have w;(b) = wy(b) and hence b is a zero of the function w; — wy, which belongs
to A¢(E). Now, put Z(r, f —wy) = Z(r, f —w1) and for each j > 1, let Z(r, f — w;)
be the counting function of zeros of f —w; in the disk d(0,r) ignoring multiplicity
and avoiding the zeros already counted as zeros of f — wy, for some h < j. Consider

q

now the sum Z Z(r, f —wj). Since the functions w; — w; belong to A;(E), clearly,
j=1

we have

MQ

rf W] —0( (r7f))

Z(I’7f—W]
J= Jj=1

[ agh



72 ALAIN ESCASSUT

It is clear, from the assumption, that f(x) —w;(x) = 0 implies g(x) —w;(x) =0 and
hence f(x) — g(x) = 0. Since f — g is not the identically zero function, it follows that
q

ZZ(r,f—wj) < Z(F,f—g).
Jj=1
Consequently,

Zq: Z(r,f —wj) <Z(r,f —g) +o(Z(r, f)) +0(Z(r,g)). 0

Theorem 2.7. Let f, g € A, (E) be distinct and share q distinct small functions
ignoring multiplicity w; € A;(E)NAG(E) (j =1,...,q). Then,

Z (rf =wj) SZ(r.f —g)+0(Z(r,.f)) + 0(Z(r,g))-

Proof. Suppose that f and g belong to 4, (E), are distinct and share g distinct small
functions LM. w; € A¢(E)NA,(E) (j=1,...,9).
Lat b be a zero of f —w; for a certain index i. Then it is also a zero of g — w;.

Suppose that b is counted several times in the sum Z Z(r,f —wj), which means
j=1

that it is a zero of another function f — wy, for a certain index 4 # i. Then we have

wi(b) = wp(b) and hence b is a zero of the function w; —wy, which belongs to 4s(E).

Now, put Z(r, f —wy) = Z(r,f —w1) and for each j > 1, let Z(r, f — w;j) be the

counting function of zeros of f —w; in the disk d(0,r~) ignoring multiplicity and

avoiding the zeros already counted as zeros of f —wy, for some & < j. Consider now

q
the sum Z Z(r,f —wj). Since the functions w; — w; belong to A4 (E), clearly, we

j=1
have

Z(r.f —wj) = o(Z(r.f)).

n MQ

Xq:er w;) =

It is clear, from the assumption, that f (x) —wj(x) = 0 implies g(x) —w;(x) =0
and hence f(x) — g(x) = 0. Since f — g is not the identically zero function, it follows
that

Mr&

I"f W] Z(I’,f—g).

J:
Consequently,

Z(rf=wj) SZ(r.f = g) +o(Z(r,f)) +0(Z(r,8)). O

T Mm

By Theorem 2.7, we can now deduce the folloving theorem.
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Theorem 2.8. Let f,g € A (E). share 3 distinct small functions with respect to f
and g, ignoring multiplicity. Then, f = g.

Proof. We put V(r) = max(Z(r, f),Z(r,g)). Suppose that f and g are distinct and
share ¢ small functions LM. w;, (1 < j <g). By Theorem 2.5, we have

G2 1) <2 Y Z(rf —w)) + o(Z(r.f)).
j=1

But thanks to Theorem 2.7, we can derive

qZ(r, f) <2Z(r,f — g) +o(Z(r,[)),
and similarly

qZ(r.g) <2Z(r,f —g) +o(Z(r.g))
hence gV (r) <2Z(r,f —g)+o(V(r)), and hence ¢V (r) < 2V (r) +o(V(r)), which
is obviously absurd whenever ¢ > 3 and proves that f = g when f and g. U

The following theorem now is just a consequence of Theorems 1.6 and 2.8.

Theorem 2.9. Ler f, g € Ay(E) be such that 0 < p(f) < 4oo0, 0 < p(g) < +oo
and share 3 distinct functions, ignoring multiplicity, hj € A(E), j=1,2,3 such that

p(h;) < min(p(f),p(g)). Then, f = g and each h; is a small function with respect
to f.

Corollary 2.3. Let f, g € A,(E) be such that 0 < p(f) < +oo, 0 < p(g) < 4o
and share 3 distinct functions, ignoring multiplicity, hj € A(E), j=1,2,3 such that
0(h;) <min(p(f),p(g)). Then, f = g and each h; is a small function with respect
to f.

Also, by Theorem 1.3, we have the following corollary.

Corollary 2.4. Let f, g € A (E) be regular, such that 0 < p(f) < +o0, 0 < p(g) <
+oo and share 3 distinct functions, ignoring multiplicity, hj € A(E), j=1,2,3 and
such that max(p(h;) < min(p(f),p(g)). Then, f = g and each hj is a small function
with respect to f.

By Theorem 2.3, we have Corollaries 2.5 and 2.6.

Corollary 2.5. Let f, g € A (E) be regular, such that 0 < p(f) < +o0, 0 < p(g) <
+oo and share 3 distinct functions, ignoring multiplicity, hj € A(E), j=1,2,3 and
such that max(p(h;) < min((6(f),0(g)) — 1. Then, f = g and each hj is a small
function with respect to f.

Corollary 2.6. Let f, g € A, (E) be regular, such that 0 < p(f) < +o0, 0 < p(g) <
+oo and share 3 distinct functions, ignoring multiplicity, hj € A(E), j=1,2,3 and
such that max(0(h;) < min((8(f),8(g)) — 1. Then, f = g and each h;j is a small
function with respect to f.
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Corollary 2.7. Let f, g € 4,(E) be regular, such that 0 < p(f) < +o0, 0 < p(g) <
+oo, and share 3 distinct functions, ignoring multiplicity, h; € ﬂl(E ,j=1,2.3 and

such that p(hy)) <min(p(f),p(g)) and Log(max(|h|2|(r), Ihsl(r)) < O(Log(|m|(r))
Then, f = g and each hj is a small function with respects to f.

Theorem 2.10. Let f, g € A,,(E) be clean, such that 0 < p(f) < +o0, 0 < p(g) <
+oo and share 3 distinct functions, ignoring multiplicity, hj € A(E), j=1,2,3 such
that p(f) = p(g) = p(hj), j=1,2,3 and such that 6(h;) =0, j=1,2,3. Then,
f=gand each hj is a small function with respect to f.

Proof. Indeed by Corollary 1.6, each h; is a small function with respect to f and g.
Consequently by Theorem 2.8, f = g. U

Corollary 2.8. Let f, g € A (E) be clean, such that 0 < p(f) < 4+, 0 < p(g) <
+oo and share 3 distinct functions, ignoring multiplicity, hj € A(E), j=1,2,3 such
that p(f) =p(g) = p(h1), and such that 5(h;) =0, and Log(max(|hz|(r), |h3|(r))) <
O(Log(|h1|(r))). Then, f = g and each hj is a small function with respect to f.

Proof. Indeed, since y(h;) =0 and p(h;) # 0, by Theorem 2.2 we have 6(h;) = 0.
Next, iy, h3 also are small functions. O

By Theorem 1.7 we have the following corollary.

Corollary 2.9. Let f, g € Au(E) be clean, such that 0 < p(f) < 40, 0 < p(g) <
~+o0 and share 3 distinct functions ignoring multiplicity, h; € A(E), j=1,2,3 such
that p(f) = p(g) = p(hj), j =1,2,3 and such that y(h ) < oo, j=1,2,3. Then,
f=gandeachhjisa small funcnon with respect to f.

Proof. Indeed, since y(h;) =0 and p(h;) # 0, by Theorem 2.2 we have 6(h;) =

0. O
Corollary 2.10. Let f, g € A,,(E) be clean, such that 0 < p(f) < oo, 0<p(g) <
+oo and share 3 distinct functions, ignoring multiplicity, hj € A(E), j=1,2,3 such

that p(f) = p(g) = p(h1), and Y(h1) < +eo, and fhafLOg(maXﬂhzl( ), sl (7)) <
O(Log(|h1|(r))). Then, f = g and each hj is a small function with respect to f.

Proof. Indeed, since y(h;) =0 and p(h;) # 0, by Theorem 2.2 we have 6(h;) = 0.
Next, hy, hj3 also are small functions. O
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