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SMALL FUNCTIONS IN DISKS OF lCp

ALAIN ESCASSUT

ABSTRACT. Small functions were defined in complex analysis and next in ultra-
metric analysis. Order of growth and type of growth were also defined in complex
analysis and have a similar definition in ultrametric analysis. Here we compare
these two notions in the same way, on a complete ultrametric algebraically closed
field IK of characteristic 0 such as lCp. Small functions with respect to an entire
function f were studied in several articles. Inside an ”open” disk, small functions
also exist. After a general study, here we examine how two analytic functions in-
side an open disk can share three small functions, ignoring multiplicity and we
give sufficient conditions proving that these two functions are equal.

1. INTRODUCTION AND GENERAL PROPERTIES OF THE GROWTH

In complex analysis, a notion of small functions with respect to a ”big” holomor-
phic function was introduced and particularly applied to the Nevanlinna theory [2],
[5]. On the other hand, as far as entire functions are concerned, a notion of order of
growth was also examined and led to another kind of small function [6], [8], [10].
These studies suggested symmetric studies in ultrametric analysis [1], [2], [3], [4],
[6], [8], [10]. Then, inside an open disk of lCp, it is also possible to define an order
of growth and to make the same kind of work, defining small functions in a classical
way in an open disk E and then defining the order of growth in E and comparing the
order of growth of two analytic functions in E [2]. Here we will first recall result ob-
tained in [2]. Thus, two notions of ”small function” with respect to a ”big function”
appear and we can compare them, as it was done for entire functions [7]. Next,when
3 functions are shared (ignoring multiplicity) by two functions, we can obtain cri-
teria proving that the shared functions are small and hence satisfy the hypothesis of
known theorems.
Notations and definitions. We denote by IK a complete algebraically closed field
of characteristic 0 such as lCp and given a ∈ IK and r > 0, we denote by d(a,r) the
disk {x∈ IK |x−a| ≤ r} and by d(a,r−) the disk {x∈ IK |x−a|< r}. More precisely
throughout the paper, we put E = d(0,R−) where R is a fixed positive radius.
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Given r1, r2 ∈ IR such that 0 < r1 < r2, we denote by Γ(0,r1,r2) the annulus
{x ∈ IK r1 < |x|< r2}. We denote by Log the Naperian logarithm.

Now, we denote by A(E) the IK-algebra of analytic functions in E i.e. the set of
power series ∑

∞
n=0 anxn converging in E and by Aub(E) the set of f ∈ A(E) that are

unbounded in E [4], [7]. According to classical notation [4], given f ∈ A(E) we put
| f |(r) = sup{| f (x)| | |x| ≤ r}, (0 < r < R) [4]. Then | . | is an ultrametric multiplica-
tive norm on A(E), and | f |(r) = lim|x|→r,|x|̸=r | f (x)| [4].

Now, given f ∈ A(E), we define

ρ( f ) = limsup
r→R−

Log(Log(| f |(r)))
(−Log(R− r))

, ρ̃( f ) = liminf
r→R−

Log(Log(| f |r))))
(−Log(R− r))

.

Next, if 0< ρ( f )<+∞, we put σ( f ,r)=Log(| f |(r)(R−r)ρ( f )), σ( f )=limsup
r→R−

σ( f ,r)

and σ̃( f ) = liminf
r→R−

σ( f ,r). Then, ρ( f ) is called the order of growth of f , ρ̃( f ) is

called the lower order of growth of f , σ( f ) is called the type of growth. of f .
On the other hand, for every r ∈]0,R[, we denote by s(r, f ) the number of zeros

of f in d(0,r), taking multiplicity into account. If the set of the y > 0 such that
lim

r→R−
s(r, f )(R− r)y = 0 is empty, we put θ( f ) = +∞. We then denote by θ( f ) the

lower bound of the y> 0 such that lim
r→R−

s(r, f )(R− r)y = 0. Similarly, if the set of the

y > 0 such that lim
r→R−

Log(| f |(r))(R− r)y = 0 is empty, we put λ( f ) = +∞. Also, we

denote by λ( f ) the lower bound of the y > 0 such that lim
r→R−

Log(| f |(r))(R− r)y = 0.

And if 0< ρ( f )<+∞, we put ψ( f ,r)= s(r, f )(R−r)ρ( f ) and ψ( f )= limsup
r→R−

ψ( f ,r).

We call ψ( f ) the cotype of growth of f .
A function f ∈ A(E) is said to be regular if ρ̃( f ) = ρ( f ) and it is said to be clean

if σ̃( f ) = σ( f ).

We can now state some results on the function ρ [2]. Theorem 1.1 is easily proved.

Theorem 1.1. Let f , g ∈ A(E). Then,
i) ρ( f +g)≤ max(ρ( f ),ρ(g)) and if ρ(g)< ρ( f ), then ρ( f +g) = ρ( f ),
ii) ρ( f g) = max(ρ( f ),ρ(g)).

Theorem 1.2. Let f ∈ Aub(E). Then, ∀n ∈ IN∗,ρ( f n) = ρ( f ). Let P ∈ IK[x]. Then
ρ(P◦ f ) = ρ( f ).

Proof. Let n = deg(P). For r close enough to R, we have

Log(Log(| f |(r)))≤ Log(Log(|P◦ f |(r)))≤ Log((n+1)Log(| f |(r)))

= Log(n+1)+Log(Log(| f |(r))).
Consequently, the statement is immediate. □
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Definitions and notations: Given t > 0, we denote by Ât(E) the set of functions
h ∈ A(E) such that ρ(h) < t. Given f ,h ∈ A(E), h is called a small function with

respect to f if lim
r→R−

Log(|h|(r))
Log(| f |(r))

= 0 and we denote by A f (E) the set of functions

h ∈ A(E) that are small functions with respect to f .
On the other hand we will say that a function h ∈ A(E) is a very small function

with respect to a function f ∈ A(E) if ρ(h)< ρ̃( f ). Given t > 0, we denote by Ât(E)
the set of h ∈ A(E) such that ρ(h)< t.

By Theorem 1.1 we have the following corollary.

Corollary 1.1. For any t > 0, Ât(E) is a IK-subalgebra of A(E).

Theorem 1.3. Let f (x) ∈ A(E) be such that σ̃( f )> 0. Then f is regular.

Proof. Suppose first that ρ( f ) ̸= 0. Let a = σ̃( f ), and b =
a
2

. Then,

a = liminf
r→R−

| f |(r))(R− r)ρ( f ),

hence there exists R′ ∈]0,R[ such that Log(| f |(r))(R− r)ρ( f ) ≥ b ∀r ∈]R′,R[, hence
Log(| f |(r))(R− r)ρ( f ) > b∀r >]R′,R[ and hence

Log(Log(| f |(r)))+ρ( f )Log(R− r)≥ Log(b) ∀r ∈]R′,R[.

Consequently,

Log(Log(| f |(r)))≥ (−ρ( f )Log(R− r))+Log(b) ∀r ∈]R′,R[,

and hence
Log(Log(| f |(r))
−Log(R− r)

≥ ρ( f )+
Log(b)

−Log(R− r)
.

When r tends to R, we can see that ρ̃( f )≥ ρ( f ), hence f is regular. □

Corollary 1.2. Let f (x) ∈ A(E) be clean and such that σ( f )> 0. Then f is regular.

Theorem 1.4. Let f , g ∈ A(E). Then σ( f g) ≤ σ( f )+σ(g). If ρ( f ) ≥ ρ(g), then
σ( f )≤ σ( f g). If ρ( f ) = ρ(g), then max(σ( f ),σ(g))≤ σ( f g).

If ρ( f ) = ρ(g) and σ( f )>σ(g), then σ( f +g)≥σ( f ). If ρ( f +g) = ρ( f )≥ ρ(g),
then σ( f +g)≤ max(σ( f ),σ(g)).

Proof. Let y = ρ( f ), t = ρ(g) and suppose y ≥ t. When r is close enough to R,
we have max(Log(| f |(r)),Log(|g|(r))≤ Log(| f .g|(r)) = Log(| f |(r))+Log(|g|(r))
and by Theorem 1.1, we have ρ( f g) = y. Therefore,

σ( f g) = limsup
r→R−

(
Log(| f .g|(r))(R− r)u)

≤ limsup
r→R−

(
Log(| f |(r))(R− r)u)+ limsup

r→R−

(
Log(|g|(r))(R− r)t)= σ( f )+σ(g).
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On the other hand,

σ( f ) = limsup
r→R−

Log(| f |(r))(R− r)u ≤ limsup
r→+R−

(Log(| f g|(r))(R− r)u.

But ρ( f g) = y, hence σ( f )≤ σ( f g). Particularly, if ρ( f ) = ρ(g), then

max(σ( f ),σ(g))≤ σ( f g).

Now, suppose again that ρ( f ) = ρ(g) = y and suppose σ( f ) > σ(g). Let y =
ρ( f ), b = σ( f ). Then, b > 0. Let (rn)n∈IN be a sequence such that limn→+∞ rn = R
and lim

n→+∞
(Log(| f |(rn))(R− rn)

y) = b. Since σ(g)< σ( f ), we notice that when n is

big enough we have |g|(rn)< | f |(rn). Consequently, when n is big enough, we have
| f +g|(rn) = | f |(rn) and hence

lim
n→+∞

(Log(| f +g|(rn)))(R− rn)
y) = b. (1.1)

By definition of σ we have σ( f + g) ≥ lim
n→+∞

(Log(| f +g|(rn)))(R− rn)
ρ( f+g), and

by Theorem 1.1, we have ρ( f +g)≤ y, hence

σ( f +g)≥ lim
n→+∞

(Log(| f +g|(rn)))(R− rn)
ρ( f+g) ≥ lim

n→+∞
(Log(| f +g|(rn)))(R− rn)

u

= lim
n→+∞

Log(| f |(rn))(R− rn)
u = σ( f )

therefore, by (1.1), σ( f + g) ≥ σ( f ). Finally, suppose now that ρ( f + g) = ρ( f ) ≥
ρ(g). Let y = ρ( f ) and t = ρ(g). Then,

σ( f +g) = limsup
r→R−

(Log(| f +g|(r)))(R− r)y

≤ max
(

limsup
r→R−

(Log(| f |(r)))(R− r)y, limsup
r→R−

(Log(|g|(r)))(R− r)y
)

≤ max
(
limsup

r→R−
(Log(| f |(r)))(R−r)y, limsup

r→R−
(Log(|g|(r)))(R−r)t

)
= max(σ( f ),σ(g)),

which ends the proof. □

Corollary 1.3. Let f , g ∈ A(E) be such that ρ( f ) ̸= ρ(g). Then,
σ( f +g)≤ max(σ( f ),σ(g)).

Theorem 1.5. Let f (x) ∈ A(E). Then, A f (E) is a IK-subalgebra of A(E).

Proof. Suppose first f ∈ A(E) and let g, h ∈ A f (E). Consider

Log(|g+h|(r))≤ Log(|g|(r)+ |h|(r)))≤ Log(|g|(r))+Log(|h|(r)).
But by hypotheses,

lim
r→R−

Log(|g|(r))
Log(| f |(r))

= lim
r→R−

Log(|h|(r))
Log(| f |(r))

= 0,

hence g+h ∈ A f (E).
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Next, Log(|gh|(r))≤ Log(|g|(r)|h|(r)) = Log(|g|(r))+Log(|h|(r)) hence

lim
r→R−

Log(|gh|(r))
Log(| f |(r))

= 0,

which shows that gh ∈ A f (E). Consequently, A f (E) is a subalgebra of A(E). □

Theorem 1.6. Let f ∈ A(E) be such that ρ̃( f ) > 0. Then the IK-algebra Âρ̃( f )(E)
is included in A f (E).

Proof. Let g ∈ A(E) be such that ρ(g) = ρ̃( f )−b, with b > 0. There exists R′ < R

such that
Log(Log(| f |(r)))
−Log(R− r)

≥ ρ̃( f )−b ∀r ∈ [R′,R[. Consequently when r tends to

R, we have
Log(Log(|g|(r)))
−Log(R− r)

≤ Log(Log(| f |(r)))
−Log(R− r)

−b

hence Log(Log(|g|(r)))≤ Log(Log(| f (r)))−b(−Log(R− r)). Therefore,

Log(|g|(r))≤ (Log(| f |(r))(R− r)b,

which leads to
Log(|g|(r))
Log(| f |(r))

≤ (R− r)b.

This proves that g ∈ A f (E). □

Remark 1.1. In other words, very small functions with respect to f are small func-
tions with respect to f . As is shown in Remark 1.2 below, the converse does not hold
in the general case.

Corollary 1.4. Let f (x) ∈ A(E) be regular. Then, the IK-algebra Âρ( f )(E) is in-
cluded in A f (E).

Corollary 1.5. Let f (x) ∈ A(E) be such that σ̃( f ) > 0. Then, Âρ( f )(E) is a IK-
subalgebra of A f (E).

Corollary 1.6. Let f (x) ∈ A(E) be clean and such that σ( f )> 0. Then, Âρ( f )(E) is
a IK-subalgebra of A f (E).

Theorem 1.7. Let f ∈ A(E) be clean, such that σ( f )> 0 and let h ∈ A(E) be such
that ρ( f ) = ρ(h). Then, h ∈ A f (E) if and only if σ(h) = 0.

Proof. Let t = ρ( f ). Since f is clean, we have

σ(h)
σ( f )

=
limsupr→R− Log(|h|(r))(R− r)t

limr→R− Log(| f |(r))(R− r)t = limsup
r→R−

Log(|h|(r))
log(| f |(r))

.

Now, h lies in A f (E) if and only if limsup
r→R−

Log(|h|(r))
log(| f |(r))

= 0, i.e., σ(h) = 0. □
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Thanks to the classical inequality | f ′|(r) ≤ | f |(r)
r

[4], the following theorem is
then immediate.

Theorem 1.8. Suppose IK has characteristic 0. Let f ∈ A(E). Then ρ( f ′)≤ ρ( f ).

Remark 1.2. In a field of characteristic p ̸= 0, certain analytic functions have a null
derivative. This is why we must suppose that IK has characteristic 0 in all statements
involving derivatives.

In complex analysis, many estimates were given concerning the growth order of
solutions of linear differential equations. Here, from Theorems 1.1 and 1.8 we can
immediately obtain the following corollary.

Corollary 1.7. Suppose IK has characteristic 0. Consider the differential equation

(E) f (n)+an−1(x) f (n−1)(x)+ ...+a0(x) f (x) = 0

with a j ∈ A(E), j = 0, ...,n− 1 and ρ(a j) < ρ(a0) ∀ j = 1, ...,n− 1. Then every
non-trivial solution f of (E) satisfies ρ( f )≥ ρ(a0).

In [4], the following theorem is easily shown.

Theorem 1.9. Suppose IK has residue characteristic 0. Then for every f ∈ A(E) we
have ρ( f ′) = ρ( f ), θ( f ′) = θ( f ), σ( f ′) = σ( f ) and ψ( f ′) = ψ( f ).

Remark 1.3. Theorem 1.9 does not hold for residue characteristic p > 0 because
there exist functions f ∈ A(E) such that ρ( f ) > 0 and that f ′ is bounded, as shows

the following example with R= 1: g(x) =
∞

∑
m=0

xpm

pm . We can see that g′(x) =
∞

∑
n=0

xpm−1

hence g′ is bounded and therefore ρ(g′)= 0. However, consider the sequence (rm)m∈IN

defined as rm = 1− 1
pm . We can check that |g|(rm)≥ pm(rm)

pm
, hence

Log(|g|(rm))≥ m+ pmLog(rm) = m+ pmLog
(
1− 1

pm

)
.

When m is big enough, we have Log
(
1− 1

pm

)
≥ −2

pm , hence

Log
(
|g|(rm))≥ m− pm

( 2
pm

)
= m−2.

Therefore, when m is big enough, we have

Log
(
Log(|g|(rm)))

−Log(rm)
≥ Log(m−2)

−Log(1− 1
pm )

>
Log(m−2)

2
pm

=
pm

2
Log(m−2).

Thus, we have ρ(g) = +∞.

Theorem 1.10. Let f ∈ A(E). Then λ( f ) = ρ( f ).
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Proof. First we will prove that ρ( f ) ≤ λ( f ). Obviously, we can assume that
λ( f )<+∞. Let y be such that lim

r→R−
Log(| f |(r))(R− r)y = 0. Let us fix ε > 0. For r

close enough to R, we have Log(| f |(r))(R− r)y ≤ ε, hence Log(| f |(r))≤ ε

(R− r)y ,

therefore Log(Log(| f |(r)))≤ Logε− yLog(R− r) hence

Log(Log(| f |(r)))
(−Log(R− r))

≤ Log(ε)
(−Log(R− r))

+ y,

and hence

limsup
r→R−

Log(Log(| f |(r)))
(−Log(R− r))

≤ y,

i.e., ρ( f ) ≤ y. This is true for every y such that lim
r→R−

Log(| f |(r))(R− r)y = 0 and

hence ρ( f )≤ λ( f ).
On the other hand, we notice that, by definition of λ( f ), either λ( f ) = 0 and then

λ( f )≤ ρ( f ), or

λ( f ) = sup{y ∈]0,+∞[ | limsup
r→R−

Log(| f |(r))(R− r)y > 0}.

Thus, suppose that λ( f )> 0. Let us take y ∈]0,λ( f )[. We have a number b > 0 such
that

limsup
r→R−

(Log(| f |(r)(R− r)y)≥ b > 0.

Let us fix ε ∈]0,b[. There exists a sequence (rn)n∈IN in ]0,R[ such that lim
n→+∞

rn = R

and such that, when n is big enough, we have b− ε ≤ Log(| f |(rn))(R− rn)
y, hence

−yLog(R− rn)+Log(b− ε)< Log(Log(| f |(rn))) therefore

y+
Log(b− ε)

(−Log(R− rn))
≤ Log(Log(| f |(rn))

(−Log(R− rn))
.

Consequently, limsup
n→+∞

Log(Log(| f |(rn))

(−Log(R− rn))
≥ y, therefore ρ( f )≥ y. But this holds for

every y < λ( f ). Thus, ρ( f )≥ λ( f ) and finally, ρ( f ) = λ( f ). □

Remark 1.4. Let f ∈ A(E) and g ∈ A f (E). Can we tell that g ∈ Aρ( f )(E)? Suppose
that ρ( f ) = 1 and consider a function h ∈ A(E) such that Log(|h|(r)) is of the form

ω(r)Log(| f |(r)) with ω(r) ∈ [
a

Log(Log(| f |(r)))
,

b
Log(Log(| f |(,r)))

] and 0 < a <

b. Then,
Log(Log(|h|(r)))
Log(Log((| f |(r)))

=
Log(ω(r))+Log(Log(| f |(r)))

Log(Log(| f |(r)))
=

Log(ω(r))
Log(Log(| f |(r)))

+1

and that belongs to[
Log(a)−Log(Log(Log(| f |(r))))

Log(Log(| f |(r)))
+1 ,

Log(b)−Log(Log(Log(| f |(r))))
Log(Log(| f |(r)))

+1
]
,
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therefore

lim
r→R−

Log(Log(|h|(r)))
Log(Log(| f |(r)))

= 1,

and hence ρ(h) = ρ( f ).
On the other hand, by definition,

Log(|h|(r))
Log(| f |(r))

= ω(r) ∈
[ a

Log(Log(| f |(r)))
,

b
Log(Log(| f |(r)))

]
,

hence lim
r→R−

Log(|h|(r))
Log(| f |(r))

= 0 and hence h belongs to A f (E).

Remark 1.5. When f is not regular, a function h ∈ Âρ( f )(E) does not always lie in
A f (E). Indeed, suppose that ρ( f )− ρ̃( f ) = 2b, with b > 0. We can construct a
function h ∈ A(E) such that ρ(h) ≤ ρ( f )− b and such that there exists a sequence
(rn)n∈IN where limn→+∞ rn = R, satisfying

Log(Log(|( f |(rn)))

−Log(R− rn)
≤ Log(Log(|h|(rn)))

−Log(R− rn)
≤ Log(Log(| f |(rn)))

−Log(R− rn)
−b

So, we have

Log(Log(| f |(rn)))≤ Log(Log(|h|(rn)))≤ Log(Log(| f |(rn)))−bLog(rn)

hence Log(| f |(rn))≤ Log(|h|(rn) and hence 1 ≤ Log(|h|(rn)

Log(| f |(rn)
which proves that h /∈

A f (E), although h ∈ Âρ( f )(E).

Theorem 1.11. Let f ∈A(E). Then ψ( f g)≤ψ( f )+ψ(g). Moreover, if ρ( f ) = ρ(g)
then max(ψ( f ),ψ(g))≤ ψ( f g).

Proof. Set ρ( f ) = y, ρ(g) = t. Without loss of generality we can assume y≥ t. By
Theorem 1.1 we have ρ( f .g) = ρ( f ) = y. Now, for each r > 0, we have s(r, f .g) =
s(r, f )+ s(r,g) hence

ψ( f g)= limsup
r→R−

(s(r, f )+s(r,g))(R−r)y ≤ limsup
r→R−

s(r, f )(R−r)y+limsup
r→R−

s(r,g)(R−r)t

hence ψ( f g)≤ ψ( f )+ψ(g). Now, suppose y = t. Then,

ψ( f g) = limsup
r→R−

(s(r, f )+ s(r,g))(R− r)y ≥ limsup
r→R−

max(s(r, f ),s(r,g))(R− r)y

= max(ψ( f ),ψ(g)).

□

Remark 1.6. Let f ∈ A(E). If y > θ( f ), then by definition, lim
r→R−

s(r, f )(R− r)y = 0.

But if y< θ( f ), then limsup
r→R−

s(r, f )(R− r)y =+∞ because if limsup
r→R−

s(r, f )(R−r)y <
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+∞, we can find y′ ∈]y,θ( f )[ and then we can check that lim
r→R−

s(r, f )(R− r)y′ = 0, a

contradiction.

2. COUNTING FUNCTIONS AND APPLICATIONS

We can now examine the deep role of the order of growth. For convenience, we
need to define the counting function of zeros of an analytic function in the disk E:
let f ∈ A(E). We denote by Z(r, f ) the counting function of zeros of f in d(0,r)
defined in the following way.

Let (an), (1≤ n≤ q(r)) be the finite sequence of zeros of f such that 0< |an| ≤ r,

of respective order sn. We set Z(r, f ) =max(ω0( f ),0)Logr+
q(r)

∑
n=1

sn(Logr−Log|an|)

and so, Z(r, f ) is called the counting function of zeros of f in d(0,r), counting mul-
tiplicity.

In order to define the counting function of zeros of f ignoring multiplicity, we put
ω0( f ) = 0 if ω0( f ) = 0 and ω0( f ) = 1 if ω0( f )≥ 1.
Now, we denote by Z( f ,r) the counting function of zeros of f ignoring multiplicity:

Z( f ,r) = ω0( f )Logr +
q(r)

∑
n=1

(Logr−Log|an|) and so, Z( f ,r) is called the counting

function of zeros of f in d(0,r) ignoring multiplicity.
And we denote by Z0( f ′,r) the counting function of the zeros of f ′ that are zeros

of f −an for any n ≤ q(r). Now, by Theorem B 13.24 in [4], we have the folloving
theorem.

Theorem 2.1. Let f ∈ A(E) and let r1,r2 ∈]0,R[ satisfy r1 < r2. If f admits ex-
actly q zeros in d(0,r1) (taking multiplicity into account) and t different zeros α j, of
respective multiplicity order m j (1 ≤ j ≤ t) in Γ(0,r1,r2), then f satisfies

Z(r2, f )−Z(r1, f ) =
t

∑
j=1

m j(Log(r2)−Log(|α j|))+q(Log(r2)−Log(r1)).

Corollary 2.1. Let f (x) ∈ A(d(0,R−)) be such that f (0) ̸= 0, let r ∈]0,R[ and let
a j, 1 ≤ j ≤ q be the zeros of f in d(0,r), of respective multiplicity m j. Then,

Z(r, f ) = Log(| f (0)|)+
q

∑
j=1

m j(Log(r)−Log(|(a j|)).

Corollary 2.2. (Schwarz Lemma) Let D = d(0,s), let f ∈ A(E) have at least (resp.

at most) q zeros in d(0,r) with q > 0 and 0 < r < s. Then, we have
| f |(s)
| f |(s)

≥ (
s
r
)q,

(resp.
| f |(s)
| f |(r)

≤ (
s
r
)q).

Now, we can prove the following two teorems.
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Theorem 2.2. Let f ∈ A(E) be such that, ψ( f )<+∞. Then σ( f ) = 0.

Proof. Without generality, we can assume f (0) ̸= 0. Let us fix ε > 0 and let R′

be such that Log(R)−Log(R′) = ε. Let (an)n∈IN be the sequence of zeros of f , for
each n ∈ IN, let wn be the order of an and let rn = |an|. Now, let u be the biggest
integer n such that rn < R′ and for each r > 0, let m(r) be the biggest integer n such
that rn ≤ r.

Let Au = ∑
u
n=0 wn and let Bu = Log(| f (0)|)+∑

u
n=0 wn(Log(R′)−Log(rn)). Let

us take r ∈]R′,R[. Thanks to Theorem 2.1, we can write

σ( f ,r)
ψ( f ,r)

=
Bu +∑

m(r)
n=u+1 wn(Log(r)−Log(rn))

Au +∑
m(r)
n=u+1 wn

.

But by hypothesis, Log(r)−Log(rn)≤ ε ∀n ≥ u, hence

σ( f ,r)
ψ( f ,r)

≤
Bu + ε∑

m(r)
n=u+1 wn

Au +∑
m(r)
n=u+1 wn

.

Let us put φ(r) = ∑
m(r)
n=u+1 wn. Thus,

σ( f ,r)
ψ( f ,r)

≤ Bu + εφ(r)
Au +φ(r)

.

But since f belongs to A(E), it has infinitely many zeros in E, hence φ(r) is an
increasing unbounded function tending to +∞ when r tends to R. Consequently, it is
obvious that

lim
r→R−

σ( f ,r)
ψ( f ,r)

= 0.

Therefore, if limsupr→R− ψ( f ,r)<+∞, then σ( f ) = 0. □

Theorem 2.3. Let f ∈ A(E) be such that ρ( f )<+∞. Then θ( f )−1 ≤ ρ( f )≤ θ( f ).
Moreover, if ψ( f )<+∞, then θ( f ) = ρ( f ).

Proof. We will denote | . |∞ the Archimedean absolute value of IR. Let us first
show that ρ( f ) ≤ θ( f ). We choose u > θ( f ). Then, lim

r→R−
s(r, f )(R− r)u = 0. Now,

since lim
r→R−

| f |(r) = +∞, we can take ℓ ∈]0,R[ such that | f |(ℓ) > 1. Then, we can

take b > 0 such that
s(r, f )≤ b(R− r)−u ∀r ∈ [ℓ,R[.

Now, taking r ∈ [ℓ,R[, by Theorem 2.2 we have

Log(| f |(r))≤ Log(| f |(ℓ)))+ s(r, f )(Log(
r
ℓ
))

which leads to

Log(| f |(r))≤ Log(| f |(ℓ)))+b(R− r)−u(Log(
r
ℓ
))
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hence

Log(Log(| f |(r)))≤ Log
(

Log(| f |(ℓ))+b(R− r)−u(Log(
r
ℓ
))
)

therefore, we can derive

Log(Log(| f |(r)))≤ Log(Log(| f |(ℓ))+Log
(

b(R− r)−u(Log(
r
ℓ
))
)
.

Now, since u > 0, there obviously exists h ∈ [ℓ,R[ such that b(R− r)−u ≥ 1 ∀r ∈
[h,R[, therefore

Log(Log(| f |(r)))≤ Log
(

Log(| f |(ℓ))+Log(b(R− r)−u)Log(
r
ℓ
)
)
. (2.1)

Consequently, by (2.1), we obtain

Log(Log(| f |(r)))
−Log(R− r)

≤ Log(Log(| f |(ℓ)))
−Log(R− r)

+
Log(b)

−Log(R− r)
+u+

Log(Log( r
ℓ))

−Log(R− r)
.

We can check that

lim
r→R−

Log(Log(| f |(ℓ)))+Log(b)
−Log(R− r)

= lim
r→R−

Log(Log( r
ℓ))

−Log(R− r)
= 0,

and hence limsup
r→R−

Log(Log(| f |(r)))
−Log(R− r)

≤ u. Consequently, choosing ε > 0, there exists

u′ ∈ [ℓ,R[ such that
Log(Log(| f |(r)))
−Log(R− r)

≤ u′+ ε ∀r ∈ [u,R[ and hence ρ( f ) ≤ u′+ ε.

But since that holds for every u > θ( f ) and for every ε > 0, we have ρ( f ) ≤ u and
hence ρ( f ) ≤ θ( f ). Let us now show that ρ( f ) ≥ θ( f )− 1. By Theorem 2.2, we
have

Log(| f |(r))−Log(| f |(r2

R
))≥ s(r, f )(

r2

R
)(Log(r)−Log(

r2

R
))

= s(r, f )(
r2

R
)(Log(R)−Log(r)). (2.2)

Consider now a number t < θ( f ) and a sequence (rn)n∈IN of ]0,R[ such that

lim
n→+∞

rn = R and such that limsup
n→+∞

s(rn, f )(R− r2
n

R
)t ≥ b > 0. Then by (2) we have

Log(| f |(rn))≥
b(Log(R)−Log(rn))(

R− r2
n

R

)t

Consequently,

Log(Log(| f |(rn)))≥ Log(b)+Log(Log(R)−Log(rn)))− t
(
Log(R− rn)+

Log(R+ rn)
)
+2tLog(R),
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and therefore,

Log(Log(| f |(rn)))

−Log(R− rn)
≥ Log(b)

−Log(R− rn)
+

Log(Log(R)−Log(rn))

−Log(R− rn)

+ t
(

1+
Log(R+ rn)+2Log(R)

−Log(R− rn)

)
.

Clearly,

lim
n→+∞

( Log(b)
Log(R− rn)

)
= lim

n→+∞

Log(R+ rn)+2Log(R)
Log(R− rn)

= 0,

and by elementary reasonings, we can check that

lim
x→R−

Log(Log(R)−Log(x))
Log(R− x)

= 1,

therefore

lim
n→+∞

Log(Log(R)−Log(rn))

Log(R− rn)
= 1.

Consequently,

limsup
n→+∞

Log(Log(| f |(rn)))

−Log(R− rn)
≥ t −1,

and therefore

limsup
r→R−

Log(Log(| f |(r)))
−Log(R− r)

≥ t −1.

That holds for every t < θ( f ) and shows that if θ( f ) < +∞, then ρ( f ) ≥ θ( f )− 1.
Next, if θ( f ) = +∞, then we have ρ( f ) = +∞, which is excluded by hypothesis
since f ∈ Aub(E). Consequently, the inequality ρ( f )≥ θ( f )−1 is established.

Let us now show that ρ( f ) ≥ θ( f ) when ψ( f ) < +∞. Suppose θ( f ) > ρ( f ) and
let z ∈]ρ( f ),θ( f )[. Then by Remark 1.2 we have limsup

r→R−
s(r, f )(R− r)z =+∞, but

then limsup
r→R−

s(r, f )(R− r)ρ( f ) =+∞, i.e. ψ( f ) = +∞, a contradiction. Therefore,

θ( f )≤ ρ( f ) and hence whenever ψ( f )<+∞, we have θ( f ) = ρ( f ). □

Theorem 2.3 obviously suggests the following conjecture

Conjecture 2.1. Let f ∈ A(E). Then ρ( f ) = θ( f ).

By Corollary 1 in [3] which is also Theorem C.9.19 in [4] we can state the follow-
ing theorem which is an easy consequence of the Nevanlinna Theorem on 3 small
functions for entire functions.

Theorem 2.4. Let f ∈ Aub(E) and let w1, w2 ∈ A f (E) be distinct. Let S(r) =
max(Z(r,w1),Z(r,w2)). Then, Z(r, f )≤ Z(r, f −w1)+Z(r, f −w2)+7S(r)+O(1).
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Theorem 2.5. Let f ∈ Aub((E) and let w j ∈ A f (E) ( j = 1, ...,q) be q distinct small
functions with respect to f . Then,

qZ(r, f )≤ 2
q

∑
j=1

Z(r, f −w j)+o(Z(r, f )).

Proof. By Theorem 2.4, for every pair (i, j) such that 1 ≤ i < j ≤ q, we have

Z(r, f )≤ Z(r, f −wi)+Z(r, f −w j)+o(Z(r, f )).

The number of such inequalities is then C2
q . Summing up, we now obtain

C2
qZ(r, f )≤ ∑

(i, j, 1≤i≤ j≤q)
Z(r, f −wi)+Z(r, f −w j)+o(Z(r, f )). (2.3)

In this sum, for each index i, the number of terms Z(r, f −wi) is clearly C1
q−1 = q−1.

Consequently, by (2.3) we obtain

C2
qZ(r, f )≤ (q−1)

q

∑
i=1

Z(r, f −wi)+o(Z(r, f )),

and hence
q
2

Z(r, f )≤
q

∑
i=1

Z(r, f −wi)+o(Z(r, f )). □

Theorem 2.6. Let f , g ∈ Aub(E) be distinct and share q distinct small functions
ignoring multiplicity w j ∈ A f (E)∩Ag(E) ( j = 1, ...,q). Then,

q

∑
j=1

Z(r, f −w j)≤ Z(r, f −g)+o(Z(r, f ))+o(Z(r,g)).

Proof. Let b be a zero of f −wi for a certain index i. Then, it is also a zero of

g−wi. Suppose that b is counted several times in the sum
q

∑
j=1

Z(r, f −w j), which

means that it is a zero of another function f −wh for a certain index h ̸= i. Then,
we have wi(b) = wh(b) and hence b is a zero of the function wi −wh which belongs
to A f (E). Now, put Z̃(r, f −w1) = Z(r, f −w1) and for each j > 1, let Z̃(r, f −w j)
be the counting function of zeros of f −w j in the disk d(0,r−) ignoring multiplicity
and avoiding the zeros already counted as zeros of f −wh for some h < j. Consider

now the sum
q

∑
j=1

Z̃(r, f −w j). Since the functions wi −w j belong to A f (E), clearly,

we have
q

∑
j=1

Z(r, f −w j) =
q

∑
j=1

Z̃(r, f −w j) = o(Z(r, f )).
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It is clear, from the assumption, that f (x)−w j(x)= 0 implies g(x)−w j(x)= 0 and
hence f (x)−g(x) = 0. Since f −g is not the identically zero function, it follows that

q

∑
j=1

Z(r, f −w j)≤ Z(r, f −g).

Consequently,
q

∑
j=1

Z(r, f −w j)≤ Z(r, f −g)+o(Z(r, f ))+o(Z(r,g)). □

Theorem 2.7. Let f , g ∈ Aub(E) be distinct and share q distinct small functions
ignoring multiplicity w j ∈ A f (E)∩Ag(E) ( j = 1, ...,q). Then,

q

∑
j=1

Z(r, f −w j)≤ Z(r, f −g)+o(Z(r, f ))+o(Z(r,g)).

Proof. Suppose that f and g belong to Au(E), are distinct and share q distinct small
functions I.M. w j ∈ A f (E)∩Ag(E) ( j = 1, ...,q).

Lat b be a zero of f −wi for a certain index i. Then it is also a zero of g−wi.

Suppose that b is counted several times in the sum
q

∑
j=1

Z(r, f −w j), which means

that it is a zero of another function f −wh for a certain index h ̸= i. Then we have
wi(b) = wh(b) and hence b is a zero of the function wi−wh which belongs to A f (E).
Now, put Z̃(r, f − w1) = Z(r, f − w1) and for each j > 1, let Z̃(r, f − w j) be the
counting function of zeros of f −w j in the disk d(0,r−) ignoring multiplicity and
avoiding the zeros already counted as zeros of f −wh for some h < j. Consider now

the sum
q

∑
j=1

Z̃(r, f −w j). Since the functions wi −w j belong to A f (E), clearly, we

have
q

∑
j=1

Z(r, f −w j) =
q

∑
j=1

Z̃(r, f −w j) = o(Z(r, f )).

It is clear, from the assumption, that f (x)−w j(x) = 0 implies g(x)−w j(x) = 0
and hence f (x)−g(x) = 0. Since f −g is not the identically zero function, it follows
that

q

∑
j=1

Z(r, f −w j)≤ Z(r, f −g).

Consequently,
q

∑
j=1

Z(r, f −w j)≤ Z(r, f −g)+o(Z(r, f ))+o(Z(r,g)). □

By Theorem 2.7, we can now deduce the folloving theorem.
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Theorem 2.8. Let f ,g ∈ Aub(E). share 3 distinct small functions with respect to f
and g, ignoring multiplicity. Then, f = g.

Proof. We put V (r) = max(Z(r, f ),Z(r,g)). Suppose that f and g are distinct and
share q small functions I.M. w j, (1 ≤ j ≤ q). By Theorem 2.5, we have

qZ(r, f )≤ 2
q

∑
j=1

Z(r, f −w j)+o(Z(r, f )).

But thanks to Theorem 2.7, we can derive

qZ(r, f )≤ 2Z(r, f −g)+o(Z(r, f )),

and similarly
qZ(r,g)≤ 2Z(r, f −g)+o(Z(r,g))

hence qV (r) ≤ 2Z(r, f − g)+ o(V (r)), and hence qV (r) ≤ 2V (r)+ o(V (r)), which
is obviously absurd whenever q ≥ 3 and proves that f = g when f and g. □

The following theorem now is just a consequence of Theorems 1.6 and 2.8.

Theorem 2.9. Let f , g ∈ Aub(E) be such that 0 < ρ̃( f ) < +∞, 0 < ρ̃(g) < +∞

and share 3 distinct functions, ignoring multiplicity, h j ∈ A(E), j = 1,2,3 such that
ρ(h j) < min(ρ̃( f ), ρ̃(g)). Then, f = g and each h j is a small function with respect
to f .

Corollary 2.3. Let f , g ∈ Aub(E) be such that 0 < ρ̃( f ) < +∞, 0 < ρ̃(g) < +∞

and share 3 distinct functions, ignoring multiplicity, h j ∈ A(E), j = 1,2,3 such that
θ(h j) < min(ρ̃( f ), ρ̃(g)). Then, f = g and each h j is a small function with respect
to f .

Also, by Theorem 1.3, we have the following corollary.

Corollary 2.4. Let f , g ∈ Aub(E) be regular, such that 0 < ρ( f )<+∞, 0 < ρ(g)<
+∞ and share 3 distinct functions, ignoring multiplicity, h j ∈ A(E), j = 1,2,3 and
such that max(ρ(h j)< min(ρ( f ),ρ(g)). Then, f = g and each h j is a small function
with respect to f .

By Theorem 2.3, we have Corollaries 2.5 and 2.6.

Corollary 2.5. Let f , g ∈ Aub(E) be regular, such that 0 < ρ( f )<+∞, 0 < ρ(g)<
+∞ and share 3 distinct functions, ignoring multiplicity, h j ∈ A(E), j = 1,2,3 and
such that max(ρ(h j) < min((θ( f ),θ(g))− 1. Then, f = g and each h j is a small
function with respect to f .

Corollary 2.6. Let f , g ∈ Aub(E) be regular, such that 0 < ρ( f )<+∞, 0 < ρ(g)<
+∞ and share 3 distinct functions, ignoring multiplicity, h j ∈ A(E), j = 1,2,3 and
such that max(θ(h j) < min((θ( f ),θ(g))− 1. Then, f = g and each h j is a small
function with respect to f .
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Corollary 2.7. Let f , g ∈ Au(E) be regular, such that 0 < ρ( f )<+∞, 0 < ρ(g)<
+∞, and share 3 distinct functions, ignoring multiplicity, h j ∈ A(E), j = 1,2,3 and
such that ρ(h1))<min(ρ( f ),ρ(g)) and Log(max(|h|2|(r), |h3|(r))≤O(Log(|h1|(r)))
Then, f = g and each h j is a small function with respects to f .

Theorem 2.10. Let f , g ∈ Aub(E) be clean, such that 0 < ρ( f )<+∞, 0 < ρ(g)<
+∞ and share 3 distinct functions, ignoring multiplicity, h j ∈ A(E), j = 1,2,3 such
that ρ( f ) = ρ(g) = ρ(h j), j = 1,2,3 and such that σ(h j) = 0, j = 1,2,3. Then,
f = g and each h j is a small function with respect to f .

Proof. Indeed by Corollary 1.6, each h j is a small function with respect to f and g.
Consequently by Theorem 2.8, f = g. □

Corollary 2.8. Let f , g ∈ Aub(E) be clean, such that 0 < ρ( f ) < +∞, 0 < ρ(g) <
+∞ and share 3 distinct functions, ignoring multiplicity, h j ∈ A(E), j = 1,2,3 such
that ρ( f )= ρ(g)= ρ(h1), and such that σ(h1)= 0, and Log(max(|h2|(r), |h3|(r)))≤
O(Log(|h1|(r))). Then, f = g and each h j is a small function with respect to f .

Proof. Indeed, since ψ(h1) = 0 and ρ(h1) ̸= 0, by Theorem 2.2 we have σ(h1) = 0.
Next, h2, h3 also are small functions. □

By Theorem 1.7 we have the following corollary.

Corollary 2.9. Let f , g ∈ Aub(E) be clean, such that 0 < ρ( f ) < +∞, 0 < ρ(g) <
+∞ and share 3 distinct functions, ignoring multiplicity, h j ∈ A(E), j = 1,2,3 such
that ρ( f ) = ρ(g) = ρ(h j), j = 1,2,3 and such that ψ(h j) < +∞, j = 1,2,3. Then,
f = g and each h j is a small function with respect to f .

Proof. Indeed, since ψ(h j) = 0 and ρ(h j) ̸= 0, by Theorem 2.2 we have σ(h j) =
0. □

Corollary 2.10. Let f , g ∈ Aub(E) be clean, such that 0 < ρ( f )<+∞, 0 < ρ(g)<
+∞ and share 3 distinct functions, ignoring multiplicity, h j ∈ A(E), j = 1,2,3 such
that ρ( f ) = ρ(g) = ρ(h1), and ψ(h1) < +∞, and that Log(max(|h2|(r), |h3|(r))) ≤
O(Log(|h1|(r))). Then, f = g and each h j is a small function with respect to f .

Proof. Indeed, since ψ(h1) = 0 and ρ(h1) ̸= 0, by Theorem 2.2 we have σ(h1) = 0.
Next, h2, h3 also are small functions. □
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