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GENERALIZED ANALYSIS OF TIME SCALE DYNAMIC
LYAPUNOV’S INEQUALITIES BY USING SPECHT’S
AND KANTOROVICH’S RATIOS

MUHAMMAD JIBRIL SHAHAB SAHIR

ABSTRACT. In this paper, we present extensions of dynamic Lyapunov’s inequal-
ities and their reverse versions on time scales by using Specht’s and Kantorovich’s
ratios. Our approach unifies and extends some continuous inequalities and their
corresponding discrete and quantum analogues.

1. INTRODUCTION

The following reverse Rogers—Holder’s inequality by using Specht’s ratio is proved
in [18].

Theorem 1.1. Let L +1 =1 and p > 1. If f(x) and h(x) are non-negative continuous

i
1 ; 1 5
functions and f7 (x)h4(x) is integrable on [a,b], then

</abfp(x)dx>’l’ </abhq(x)dx>; < /abg <i£:((;‘))> F(x)h(x)dx, (1.1)

where A = fab fP(x)dx, Q= fab h?(x)dx, and S(.) is Specht’s ratio.

The following reverse Rogers—Holder’s inequality on time scales by using Specht’s
ratio is proved in [5].

Theorem 1.2. Leta,b € T’,ﬁ andw, f,heC ([a,b]T,Rg) be such that neither w = 0,
f=0nor h=0and f? and h? are oy-integrable on [a,b]t. If% + % =1 withp>1,
then

([ v ) (f wimeta)cu) 5
< ['s(S5E ) wirwmt e, (12

where A = fabw(x)fp(x) O X, Q= fabw(x)hq (x) oqx, and S(.) is Specht’s ratio.
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We will merge and expand these results on time scales. Stefan Hilger [8] initi-
ated the calculus of time scales in 1988. The three most popular branches of the
theory of time scales are delta calculus, nabla calculus, and diamond-alpha calculus.
Lyapunov’s inequality and its various extensions, generalizations, and refinements
play a vital role in mathematical analysis. Dynamic Lyapunov’s inequality is equiva-
lent to generalized Radon’s inequality, Radon’s inequality, the weighted power mean
inequality, Schlomilch’s inequality, Rogers—Holder’s inequality, and Bernoulli’s in-
equality, see [10]. The theory of time scales is applied to arrange results in hybridiza-
tion form, see [11-14].

In this research article, it is assumed that all noticeable integrals exist and are
finite and T is a time scale, a,b € T with a < b and an interval [a,b]T means the
intersection of real interval with the given time scale.

2. PRELIMINARIES

Here, we need the basic concepts of delta calculus. The results of delta calculus
are adopted from monographs [3, 4].

A time scale is an arbitrary nonempty closed subset of the real numbers. For¢ € T,
the forward jump operator 6 : T — T is defined by

o(t):=inf{s€T:s>1t}.

The mapping u: T — R = [0, +c0) such that u(¢) := o(t) —1 is called the forward
graininess function. The backward jump operator p : T — T is defined by

p(t):=sup{se€T:s <t}

The mapping v : T — R = [0, +c0) such that v(¢) :=t — p(¢) is called the backward
graininess function. If 6(t) > t, we say that ¢ is right-scattered, while if p(¢) < t,
we say that ¢ is left-scattered. Also, if t < supT and o(z) =1, then ¢ is called right-
dense, and if t > inf T and p(r) =1, then is called left-dense. If T has a left-scattered
maximum M, then TX = T — {M}, otherwise T* = T.

For a function f : T — R, the delta derivative f* is defined as follows:

Let ¢ € T*. If there exists f2(¢) € R such that for all € > 0, there is a neighborhood
U of ¢, such that

£ (6(1)) = £(s) = f2(t)(o(t) —s)| < elo(r) s,

for all s € U, then f is said to be delta differentiable at t, and f*(t) is called the delta
derivative of f att.

A function f: T — R is said to be right-dense continuous (rd-continuous), if it is
continuous at each right-dense point and there exists a finite left-sided limit at every
left-dense point. The set of all rd-continuous functions is denoted by C,;(T,R).

The next definition is given in [3, 4].
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Definition 2.1. A function F : T — R is called a delta antiderivative of f : T — R,
provided that F*(t) = f(t) holds for all t € T*. Then the delta integral of f is defined
by

/a " {0 = F(b) - F(a),

The following results of nabla calculus are taken from [2—4].

If T has a right-scattered minimum m, then Ty = T — {m}, otherwise Ty = T and
Tf = T*NTy. A function f: Ty — R is called nabla differentiable at t € T}, with
nabla derivative fV(¢), if there exists fV(¢) € R such that given any € > 0, there is a
neighborhood V of ¢, such that

[F(p(0)) = f(s) = ¥ (1) (p(t) =) <elp(r) —s],
foralls e V.

A function f: T — R is said to be left-dense continuous (Id-continuous), provided
it is continuous at all left-dense points in T and its right-sided limits exist (finite) at
all right-dense points in T. The set of all 1d-continuous functions is denoted by
Cia (Ta R) :

The next definition is given in [2—4].

Definition 2.2. A function G : T — R is called a nabla antiderivative of g : T — R,
provided that G” (t) = g(t) holds for all t € Ty. Then, the nabla integral of g is
defined by

Now we present a short introduction of the diamond-a derivative as given in [1,
15].

Definition 2.3. Let T be a time scale and f(t) be differentiable on T in the A and V
senses. Fort € T, the diamond-o. dynamic derivative f°(t) is defined by

)=o)+ (1-o)f (1), 0<a <.
Thus f is diamond-o. differentiable if and only if f is A and V differentiable.

The diamond-o derivative reduces to the standard A-derivative for o = 1, or the
standard V-derivative for oo = 0. It represents a weighted dynamic derivative for
ae(0,1).

Definition 2.4 ([15]). Leta,t € T and h: T — R. Then, the diamond-o. integral from
atot of his defined by

/ath(s)oas:oc/alh(s)Aer(l —oc)/ath(s)vs, 0<a<l,

provided that there exist delta and nabla integrals of h on T.
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Specht’s ratio [6, 16] is defined by

1
S = —"" forn>0, h£1.
eloghn—T
We present here some properties of Specht’s ratio. See [6, 16, 17] for the proof
and details:
(i) S(1)=1and S(h) =S(}) > 1forall A > 0.
(ii) S(h) is a monotone increasing function on (1,+ec) and monotone decreasing
function on (0, 1).

We also consider Kantorovich’s ratio defined by
(h+1)?
4h

The function K is decreasing on (0, 1) and increasing on [1,+c), K(h) > 1 for
any i >0 and K (h) = K (+) for any /1 > 0.

The following first inequality is due to Furuichi [7] and provides a refinement for
Young’s inequality, and the second inequality [9] is given by

K(h):=

 h>0.

(@)t gepam(@aint e
P 4
T ; —mind L 1 — 11
fora7b>(),;—|—5_1w1thp>1,y—m1n{p,q}and5—max{p,q}.

The following multiplicative refinement [19] and a multiplicative reverse for Young’s
inequality [17] is given by

KY(Q) avbi <940 gs(f) arbi 2.2)
b P q b
Lol g wi —mind 11
for a,b > 0, » T = 1 with p >1 andy—mln{p, q}.
3. LYAPUNOV’S INEQUALITY

In order to present our main results, first, we give a simple proof of an extension
of dynamic Lyapunov’s inequality and its reverse version on time scales.

Theorem 3.1. Let w, f,g,h € C([a,b]r,R—{0}) be og-integrable functions. As-
sume further that | f|P1(B3=82) | g|B2(B1=Bs) | | Bs(B2=B1) — a1 for By, Ba, B3 € R, where M
is a positive real number.

If B1 < Ba < B3, then the following inequalities hold true:

B3—P2 ¥)[B1 Y P1—Ps
(f P ous) ( ['s ((‘m) ) ()50 )
b
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and

81

Bs—B2 ) [Br Bi—Bs
(/] Wl ous) ( [ (W) () o] )

. ( [ welncor ) Y

3.2)

where A= [? |w(x)[|f(x) [P oo, @ = [7|w(x)||h(x)|P> 00 x, %—i—é =1 with p > 1,

y:min{l,l} andﬁzmax{l,l}.
P4 P4

Proof. Letp = E::E; >landg= Ei:gi > 1 such that %—l—é = 1. Setting

w(x x)|P wix x)|P3
<1>(x)=()|’[\mandlp(x):’()”§’;()’

on [a,b|r. Young’s inequalities from (2.1) become

DL By B3
S((i};:((x))cg*) ) WIS @I @) £ )P w)lh)[P
1 < 4
K3 (L 1) £ (0)| 7 ()|
AP Qi

B3
q

Integrating inequality (3.3) over x from a to b, we get

NIETOIAY T
Ls ((W) ) W77 ] oax < APQs

Alh()]P

b x)|Pr I B3
< [ (Q'f“') L) 0] ¥ o

Therefore, we obtain

’Y — —
[s ((W) ) ol ) o (55 o 2

Alh(x)[Ps
BBy

= </abIW(x)llf(x)IB‘ Oax)m (/ab]w(x)||h(x)]ﬁ3 <>ax> wh

Alh(x)[P

<& (W) L™ (B ) (55 o

(3.3)

(3.4)

(3.5)
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Taking power (B3 — 1) > 0 of inequality (3.5), we get

b x)|Br ! . bty B3—Bi
(/ S ((%) ) w1 ) ey (55 )
b Bs—B2 b B2—B1
< ([ menswPeas) ([ o)
X Bi 3B >—By Bs—B:
S(/fKS (%) \W(X)Hf(x)BI(M>\h(X)\B3<E3&)<>ax> 6

Using the condition that | f|P1(B3=B2)| g|B2(Bi=Bs) | Bs(B2=B1) — pr for B; < B, < Bs,
where M is a positive real number, inequality (3.6) reduces to

Ba—B1
( ['s ((W)Y> (o) M g0 )
< ([ weotreomens) ([ wlcop o)

' o [ QU oy
< (/a K® (W) lw(x)|MPsBr g (x)|P <>ax> . (37

The first inequality of (3.7) directly yields (3.1), and the second inequality of (3.7)
directly yields (3.2). Thus, the proof of Theorem 3.1 is now complete. U

Theorem 3.2. Let w, f,g,h € C([a,b]r,R—{0}) be oq-integrable functions. As-
sume further that | f|P1(Bs=B2) | g|B2(B1=Bs) | Bs(B2=B1) — a1 for By, B, B3 € R, where M
is a positive real number.

If B1 < B2 < B3, then the following inequalities hold true:

B3—B2 ) (B B1—Bs
(el Pous) ( [x (%) W@l g@IP )

b Ba—B1
><</ |w(x)||h(x)|ﬁ3<>ax> >M,  (38)

Ba—P1

and

B3 —B2 ) [B Bi—Bs
(f P ous) ( ['s (W) ()0 )

b BB
x(/ \w(x)|h(x)\53<>ax> <M, (39



GENERALIZED TIME SCALE DYNAMIC LYAPUNOV’S INEQUALITIES 83

where A= [” |w(x)[|f(x) [P oo x, @ = [ |w(x)||h(x)|P> 0 x, %—l—é =1 with p> 1,
y=min{1 1}

Proof. We apply the inequalities given in (2.2). The rest is similar to the proof of
Theorem 3.1. O

Remark 3.1. Let T =R, w=1, f(x),g(x),h(x) > 0 on the set [a,b], p = BB g

B3—B2

1

and g = EZ E‘ > 1. If we replace f with fﬁl h with kP and g with (fh)[5
inequality (3.9), then we get M = 1 and inequality (3.9) reduces to (1.1).

Remark 3.2. Let w(x), f(x),g(x),h(x) > 0 on the set [a,b]T, p = Ez El >1land g =

Bs=Bi - 1. If we replace £ with fﬁl h with k% and g with (fh) in inequality
(3.9), then we get M = 1 and inequality (3.9) reduces to inequality (1.2).

Next, we give other dynamic Lyapunov’s inequalities on time scales by using
Specht’s and Kantorovich’s ratios.

Theorem 3.3. Let w, f,g,h € C([a,b]r,R—{0}) be og-integrable functions. As-
sume further that | f|P1(B3=82) | g|B2(B1=B3) | | Bs(B2=B1) — a1 for By, Ba, B3 € R, where M
is a positive real number.

If B> < B1 < B3, then the following inequalities hold true:

(['s ((ffﬁﬁ 1 >Y> plwPea) ([ olscobear)

b Bo—Bi
([ melbwtoa) <m0

and

([ = (ffiéjﬁ,’m ) ol wPea) ([ wollscoPrear)

b Ba—B1
([ melbwtoa) 20
where A = [} [w(x)||g(x)|P2 0q.x, @ = [ [w(x)|[h(x)[* 0qx, L+ =1 with p>1,
Y= mm{[]) ;}andﬁ max{[l7 (1]}

Proof. Letp = E3 EZ >1land g = g3 Ez > 1 such that 1 + - = 1. Setting

B2 h(x)|B3
a0 = MBI gy |w<x>r|Q &l
on [a,b]. Young’s inequalities from (2.1) become
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g2\ By
5 ((Raias) ) ool o - @lis@ P @ lnelP
A%Qé o PA qQ
R (S ol o
- AP Qi

Integrating inequality (3.12) over x from a to b, we get

b ( (@l BB 1,1
/" S<<A|h(x)|ﬁ’> ) wl)llg(e)| 7 [A(x)| 7 oqx < ArQu

bos [ Qg &
S/a K® (/\Ih(x)lﬁ’> W) g ()| 7 (0|7 oax.

Therefore, we obtain

’ _Q|g(x)|[32 ! =t B (BLh2
/a S((W) )IW(X)Hg(x)I (5 ﬁz>!/1()c)\ (& B2><>(xx
)

< ([ meollet P our) & ([ e er)

<[ % (w> w@)llge) (B8 ) P (B2 o v,

Alh()[P

Taking power (B3 — B2) > 0 of inequality (3.14), we get

B3 —B2
’ Q| (x)|52 ! By (BabL By (B1b2
(/ S((M) >|w<x>\|g<x>| (55) oy ﬁz><>ax>

< (] eletoeux) . ([ o Oaxflﬁz

B3—P2
s 2l () ()
< (/a K® (A]h(x)ﬁ3) w(x)|lg(x)] (i )]h(x)\ (= . ) ‘

(3.12)

(3.13)

(3.14)

(3.15)

Using the condition that | f|P1(B3=B2)|g|B2(Bi=B3)|p|Bs(B2=B1) — s for By < By < Bs,

where M is a positive real number, inequality (3.15) reduces to

B3 —B2
b ( (s’ . :
(/a S ((W> > [w(x)|M %5 | £ (x)[° OaX)
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< ([ et oar) ([ el o)

Bs—PB2
b Q[g(x)] L 1
g(/ K6<A|h( ),m)Iw(x)Mﬁz B | £ ()P <>ax> . (3.16)

The first inequality of (3.16) directly yields (3.10), and the second inequality of
(3.16) directly yields (3.11). Thus, the proof of Theorem 3.3 is now complete.  [J

B1—B2

Theorem 3.4. Let w, f,g,h € C([a,b]r,R—{0}) be oq-integrable functions. As-
sume further that | f|P1(Bs=B2) | g|B2(B1=Bs)| | Bs(B2=B1) — a1 for By, B, B3 € R, where M
is a positive real number.

If B> < B1 < B3, then the following inequalities hold true:

([« (M) ol wPea) ([ molsobear)

b Bo—Bi
(/ |w<x>||h<x>|53<>qx) M, G

and

(['s (f,',fg;,’& ) plwPea) ([ wollscoPiear)
< ( [ el ) w6

where A = [ [w(x)||g(x)[P2 0q.x, @ = [} w(x)||A(x)[* oqx, L+ 1 =1 with p > 1,

y= mm{;, ;}

Proof. We apply the inequalities given in (2.2). The rest is similar to the proof of
Theorem 3.3. U

Remark 3.3. LetP—E‘ E2<0andQ—B‘ 2. 0e(0,1) with f+5=1w=1

Q2 P
and f(x),g(x),h(x) > 0 on the set [a,b|. If we replace f by hPi, g by gP2 and h by
1

(gh)P® in inequality (3.18), simultaneously, then we get M = 1 and inequality (3.18)
reduces to

/abg(X)h(x) Oa.x < </ahS (W) he(x) <>ocx>é </abgp(x) <>ax> / , (3.19)

where A = ff gl(x)oqx, Q= fabg(x)h(x) og x and S(.) is Specht’s ratio. The in-
equality (3.19) may be found in [5].
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