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CERTAIN SUBCLASSES OF MULTIVALENT CLOSE-TO-CONVEX
FUNCTIONS ASSOCIATED WITH GENERALIZED JANOWSKI
FUNCTIONS

GAGANDEEP SINGH AND GURCHARANIIT SINGH

ABSTRACT. Close-to-convex functions have a great importance in the field of
Geometric function theory. Many researchers of this field have extensively estab-
lished various subclasses of close-to-convex univalent functions and studied certain
important properties of these subclasses. In this paper, we introduce a generalized
subclass of multivalent close-to-convex functions in the open unit disc. We inves-
tigate several properties such as coefficient estimates, inclusion relation, distortion
theorem,argument theorem and an important result for the defined class. Many
known results follow as consequences of the results derived in this paper.

1. INTRODUCTION

Let us denote by 4,(p € N), the class of functions f, which are analytic in the
open unit disc E = {z: z € C, |z| < 1} and have Taylor-Maclaurin series of the form

fla) =2+ Z axZr.
k=p+1

For p =1, the class A, reduces to A;, which is the class of analytic functions of the
form f(z) = z+ Y5, axz* normalized by the conditions f(0) = f/(0) — 1 = 0. Let
S denote the class of functions in 4; which are univalent in E. A function w is said
to be a Schwarz function if it has an expansion of the form w(z) = ¥ | ¢,z" and
satisfies the conditions w(0) = 0 and |w(z)| < 1. The class of Schwarz functions is
denoted by U.

An analytic function f is said to be subordinate to another analytic function g
in E, if there exists a Schwarz function w € U such that f(z) = g(w(z)). If f is
subordinate to g, then it is denoted by f < g. Moreover , if g is univalent in E, then
f < gisequivalent to f(0) = g(0) and f(E) C g(E).

For 0 < a < p, let S;(a) and K, (o) denote the subclasses of 4, which are re-
spectively the classes of multivalently starlike functions and multivalently convex
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functions of order o defined as

- 5;(a)z{f:f€ﬂp,Re (i;?) >oc,zeE}

Ky(o) = {f . f € 4y, Re ((z}{j((;))’) >a,z€E E} .
The classes S, (a) and K, () were investigated by Goluzina [4]. It is obvious
that f € X, (a) if and only if pr/ € Sy(a). For 0 <a <1, Sf(a) =5 () and

K (o) = K (o), the classes of starlike functions of order o and convex functions of
order 0., respectively. Also S;(0) =S, and %,(0) = X, the classes of multivalent
starlike functions and multivalent convex functions, respectively. Further §;(0) = §*
and X (0) = X, the well known classes of starlike functions and convex functions,
respectively.
Umezawa [13] introduced the class C, (o) of multivalent close-to-convex func-
tions defined as
/
Cp() = {f . f €A, Re <Zf )

8(2)
For p=1, a =0, the class Cp(oc) reduces to C, the class of close-to-convex functions
introduced by Kaplan [6].

For 0 <1y < p, Bulut [2] established the class %(k) (v,p) consisting of the functions
f € A, which satisfy the condition

(k— /
ge [ 0@) >,
8k(2)

)>oc,g65;,zeE}.

where e lvp P
ge(z) =T, e "Pg(e'z)(e" = Lk > 1), (1.1)
and g € S (@)

Further, Vyas and Kant [14] introduced the class ?Q,(k) (o, B) which consists of the
functions f € A, that satisfy the condition

(k—=1)p+1 41 1
NE f(2) - + Bz ’
gk(z) 1 —oPz
where gi(z) is definedin (1) and0 < < 1,0< B < 1.
For -1 <B<A <1and0<a< p, Aouf [1] introduced the class P(A,B; p;a),

the subclass of 4, which consists of the functions of the form p(z) = p+ Yr_ | pid*

B+ (A—B)(p—
_<p—|—[p +(1+B )(p a)]z.Alsoforp:l,oc:O,theclassi’(A,B;
Z

p; o) agrees with P(A, B), which is a subclass of 4, introduced by Janowski [5].

such that p(z)
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Motivated by the above mentioned work, now we define the following generalized
subclass of 4,,.

Definition 1.1. Let %(k) (p;A,B;m) denote the class of functions f € A, which satisfy
the conditions,
@) pt[pB+(A-B)(p-n)k
8k(2) I+Bz

9

where g(z) = 2/ + X, 11 baZ" € 5, (@) 0<nN<1,-1<B<A<I,z€E
and gi(z) is defined in (1).

The following observations are obvious.

(i) ?(g(k) (L;B[1 = (14+0a)y],—af;0) = K(y, @, B), the class established by Seker and
Cho [12].

(i) %N (1,1 — 2y, —1;0) = KM (y), the class studied by Seker [11].

(iii) %(2) (1;1,—1;0) = X, the class introduced by Gao and Zhou [3].

(iv) %(2) (1;1=27,—1;0) = K(y), the class established by Kowalczyk and Les Bom-
ba [8].

(v) ?(g(k) (p;B,—0B;0) = ?gf(oc, B), the class established by Vyas and Kant [14].

(vi) %(k) (p;1—=2y,—1;0) = %(k) (Y, p), the class studied by Bulut [2].
By definition of subordination, it follows that f € Ks®)( p;A,B;m) implies

P () pt [pB+(A—B)(p—m)w(z)
8k(2) 14 Bw(z)
We study various properties such as coefficient estimates, inclusion relationship, dis-

we U (1.2)

tortion theorem and argument theorem for the functions in the class ?G(k) (p;A,B;m).
The results proved by various authors follow as special cases.

Throughout this paper, we assume that -1 < B<A<1,0<n< Lk>1,p€
N,z€E.

2. PRELIMINARY RESULTS

For the derivation of our main results, we require the following lemmas:
Lemma 2.1. [2][Lemma I, p. 3] If

o k—1
d)=L+ Y hes: <(k)”> ,
n=p+1
then
gk(Z) . n *
Gk(Z) = Z(kfl)]? :ZP+ Z an S Sp-
n=p+1
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Lemma 2.2. [I][Theorem 3, p. 6] Let,

p+[pB+(A—B)(p—m)lw(z)

T Bw =P()=p+ Y. pad’, 2.1)

n=1

then
Ipu| < (p—M)(A—B),n>1.

Lemma 2.3. [9][Lemma 2.12, p. 10] Let —1 < B, < B} <A| <A <1, then

1+Az . 1+Ayz
1+Biz 1+Byz

Lemma 24. [I][Theorem 1, p. 3] If g € S, then for |z| = r,0 < r < 1, we have
P P

= = BOI= T

Lemma 2.5. [10][Theorem 4.1, p. 13] If ¥(z) is regular in E, §(z) and h(z) are
convex univalent in E such that y(z) < ¢(z), then y(z) *h(z) < ¢(z) *h(z), z € E.

3. MAIN RESULTS

The first theorem of this paper provides the coefficient bounds for the functions
in the defined class.

Theorem 3.1. If f(z) =2/ + ¥, ;142" € % (p:A,B;m), then

p\ _(p+n—1)! (A-B)(p—mn) p+m—1)
1< (2 1
la ‘—(n)(n—p)!(zp—l)!Jr n +m§+1 N2p—1)!
(3.1)
Proof. As f € ?G(k) (p;A,B;M), (2) can be written as
(k=1)p+1 ¢
< e P(z),
8k(2)
which can be further expressed as
z2f'(z2)
= P(z), 3.2
where .
_ &\ p
Gk(z)—z(k By =2 +n%ldnz. (3.3)

By Lemma 2.1, we have Gy € ;.
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Using the expansions of f(z), G¢(z) and P(z) in (3.2), we obtain
p+(p+Dapiz+ (p+2)apiaz® +... +na?" P+ ...

=1 +dpp1z+dp2®+.+dZ P+ p+prz+pr+o+pad+.]. (3.4

As Gi(z) =27 + Xy p 1 dn2" € S5, it is well known [1] that |d,| < %

Comparing the coefficients of 7"~ 7 in (3.4), we have
na, = pdy, +dp—1p1 +dp—2p2+ ... + dp_Hpn_p_] + Pn—p- (3.5)

Applying the triangle inequality, using Lemma 2.2 and the inequality |d,| < %
in (3.5), the result (3.1) can be easily obtained. ]

For p=1,A=B[l — (1+a)y],B= —af},n =0, Theorem 3.1 gives the following
result.

Corollary 3.1. If f € %(k) (v;a; B), then

Bln—1)(A+o)(1—7)

lan| <1+ 5

Putting p=1,A=1—-2y,B=—1, and 1 =0 in Theorem 3.1, the following result
is obvious.

Corollary 3.2. If f € Qg(k) (Y), then
la,| <n—(n—1)y.

Substituting p = 1,k =2,A=1-2y, B= —1, 1 =0 in Theorem 3.1, we can
easily obtain the following result.

Corollary 3.3. Corollary 3 If f € K(Y), then
la,| <n—(n—1)y.

Taking p=1,k=2,A=1, B= —1, N1 =0, Theorem 3.1 yields the following
result.

Corollary 3.4. If f € X, then
la,| < n.

The following theorem gives an inclusion relation of the functions.

Theorem 3.2. If—l <B,=B1 <A <Ay <1and0 ST]Z ST]] < 1, then
%Y (p;A1,Bi;m) C %" (p;A2,B2;M2).
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Proof. As f € %v(k)(p;AlaBlml),
P72 . p+[pBi+ (A —Bi)(p—m)z
8k(2) I+B1z .
As —1<By=B1 <A1 <A;<land0<1ny <1 < 1, we have
(p—m) (A1 —By) (p—"2)(A2—Bo) <
p p B

—1<B1+ 1.

<B)+

Thus, by Lemma 2.3, we have

U)o+ (hs Bl
2 (2) 1+ B>z

which implies f € Kg(k) (p;A2,By;m2).

Y

The following result gives the distortion and growth theorems.
Theorem 3.3. If f € ?G(k) (p;A,B;m), then for |z| = 1,0 < r < 1, we have
—[pB+(A—B)(p— -
(P [P +(lfBr)(p n)]r) ((1}::}”)217) < |f’(Z)|

- <p+[pB+(1A+—B€)<p—n>]r> <(1rirl)2p>

and

f(2Esonon) (L Y g < (o)

0 < / <p+[pB+(1A+—Bf)<p—n)]t> ((1titl)2p> it

0

Proof. From (3.2), we have

|Gi(2)]
2|

1f' @)=

P(2).
Aouf [1] proved that

p—[pB+(A—B)(p—m)ir
1—Br
Since Gy € S, by Lemma 2.4, we have

<|p
1+ Br

r? G rr
— < < — .
(1 +r)2p = | k(Z)’ = (1 _r)zp

()] < p+[pB+(A-B)(p—m)lr

(3.6)

3.7

(3.8)

(3.9)

(3.10)

Using (3.8) together with (3.9) in (3.7), the result (3.10) can be easily obtained. By

integrating (3.10) from O to r, (3.6) follows.

0
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For p=1,A=B[1 — (1+a)y],B= —af},n =0, Theorem 3.3 gives the following
result due to Seker and Cho [12].

Corollary 3.5. I f € K" (v, B), then for |z| = r,0 < r < 1, we have
1-B[1—(1+ r
(™) -t < 17 @)

1+B[1—(14a)yr 1
S( = ofr )'(1—r>2

and

[ (FEEE) e <17

0
§/<1+B[11:$Bjamt>'(1—1z)2‘”'

0

Putting p=1,A =1-2y, B= —1,1n =01in Theorem 3.3, the following result due
to Seker [11] is obvious.

Corollary 3.6. If f € ?(g(k) (Y), then for |z| = r,0 < r < 1, we have

2(1=yr
(1—r)3

2yr
(1+7r)3 —

Substituting k =2,A=1—2y,B=—1,aa=0and p = 1 in Theorem 3.3, we can
easily obtain the following result due to Kowalczyk and Les Bomba [8].

<) <

and

Corollary 3.7. If f € K(y), then for |z| = r,0 < r < 1, we have

1—(1=2y)r 1+ (1=2y)r
(1+r)3 (1—r)3

[ o< [ (5550

0

<[f @) <

and

Taking k =2,A=1,B=—1,00=0and B = 1, Theorem 3.3 yields the following
result due to Gao and Zhou [3].
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Corollary 3.8. If f € X, then for |z| =r,0 < r < 1, we have
1+r

0/, (e ) < lr@)l < 0/ (e )

ForA=1-2y, B=—1, and n =0, Theorem 3.3 agrees with the following result
due to Bulut [2].

and

Corollary 3.9. If f € KX(v,p), then for |z| = r,0 < r < 1, we have

—(p=2v)r|rP! , —29) P!
Pl <l < P

j ( p ((lp+t ;l)ﬂm-l > <1/ / < p+ 1}: IZZZ)JF]IIP—I ) B
0

0

and

Putting A = 3, B= —af, and 11 = 0 in Theorem 3.3, the following result due to
Vyas and Kant [14] is obvious.

Corollary 3.10. If f € 17(;‘(06,[3), then for |z| = r,0 <r < 1, we have

p(1 =) p(1+Br)!
(1+afr)(147r)2r — (1—afr)(1—r)2r

[(_p(—prer! [ p(tpoe
[ (et #=101= | (g )

The following theorem is the argument theorem which gives the upper bound of
the argument of functions.

<[f @) <

and

Theorem 3.4. If f € ‘](,(k)(p;A,B;n) and F(z) = zf'(z), then for |z| =r,0 <r < 1,
we have

(A=B)(p—m)r ) 3.11)

F(Z) L .
al’gzp‘ < 2p(sin”! (r)) +sin”"! <p— [pB+(A—B)(p—n)]Br?
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Proof. From (3.2), we have
F(z) = Gi(2)P(2),
which implies

F
arg(z)' < |argP(z)| + 'argGk(Z) . (3.12)
zP zP
It was proved by Aouf [1] that
- (A—B)(p—m)r
argP(z)| < sin ! < . (3.13)
rgP )] p—[pB+ (- B)(p B
Also Aouf [1] established that for G, € S,
arg le()z) < 2p(sin~'r). (3.14)

By using (3.12) and (3.13) in (3.11), the result (3.10) can be easily obtained. ]

The following theorem provides the estimates for various coefficients of the func-
tions in the class %" (p;A,Bim).

Theorem 3.5. If f € ‘]G(k) (p;A,B;m), then

lap1] < 2p°+(p+1)(p—m)(A—B)] (3.15)

(p+1)?
and

p2<zp+1>+2p<A—B><p—n>+<p+1><A—B><p—n>].
(3.16)

1
lapio| < ———
PR (p+1)(p+2)

Proof. From Definition 1.1, using the principle of subordination, we have that
2f'(z) _ p+I[pB+(A—B)(p—n)w()

, eu.
Gi(2) 11 Bw(z) w(z)
By expanding and comparing the coefficients, we obtain
p (A—B)(p—n)
=——7d —_— 3.17
Aap+1 p+1 p+1 (p+1) ¢ ( )
and
p 1 (A—B)(p—m) 2
= dyio+ A—B)(p—m)d + = Uy — Bl
ap+2 P22 (P +2) [( )(p=")]dp+1ci (+2) [c2 = Bc]
(3.18)
Also, for G, € S*,
2
| < 2= (3.19)

p+1
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and 2p+1)
p2p+
d < — 3.20
ldpia| < Py (3.20)
Also, it was proved in [7], that for any complex number v,
|2 —yet| < max{1,|y}. (3.21)

Applying the triangle inequality and using (3.19), (3.20) and (3.21) in (3.17) and
(3.18), along with the inequality |c;| < 1, the results (3.15) and (3.16) are obvious.
O

The folloving theorem gives an important result.

Theorem 3.6. If f € ?G(k) (p;A,B;"m), then there exists P(z) € P(A, B; p;m) such that

forall s and t with |s| < 1, [t| <1 (s #1),
f(sP)" (112 2
f(tz)P(sz)sP~1 l—sz) °

Proof. From definition, we have

2f'(z) = P(z)Gi(2).

By differentiating logarithmically, we get

zf"(z) 2P'(2) _ G2
o o P T Ge P
AsGieS;,
z2f"(z)  ZP'(z) 2pz
flo Pe P

For |s| < 1, |f] < 1 (s £1),

hz) :/0Z<1Ssu_ 1tm)d”

is convex univalent in £. Using Lemma 2.5, we have

(Zf"(Z) () —p+ 1> *h(z) < lzﬁ *h(z).

() P(2) —z
For any function ¢(z) analytic in E with ¢(0) = 0, we obtain
52 du
(@xm@) = [ qw .z eE.
1z u

Therefore, we have
2 uf"(u)  uP'(u) ) du 52 du
- —p+1)—<2pz ,
/;Z ( f'(u) P(u) p u P iz 1—u
which implies the result. U
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4. CONCLUSION

This paper is concerned with a new and generalized subclass of multivalent close-
to-convex functions. The class is defined using the concept of subordination. Vari-
ous properties of this class such as coefficient estimates, inclusion relation, distortion
theorem, growth theorem, argument theorem and an important result, have been es-
tablished. By giving particular values to the parameters, some earlier known results
have been derived. This paper will motivate other researchers in this field to study
some more classes of multivalent functions using subordination, associated with the
Janowski function.
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