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THE GENERALIZED QUANTUM DIFFERENCE OPERATOR IN c AND
c0 AND THEIR DUALS

TOSEEF AHMED MALIK

ABSTRACT. In this article, we present a generalization of the kth order of forward
difference operator ∆k using its quantum analog ∆k

q. We study its domains c(∆k
q)

and c0(∆
k
q) in the spaces c and c0 of convergent and null sequences, respectively.

Additionally, we show that the domains c(∆k
q) and c0(∆

k
q) are BK-spaces and lin-

early isomorphic to c and c0, respectively. Furthermore, we construct Schauder
bases and examine the Köthe duals of the spaces c(∆k

q) and c0(∆
k
q). The final seg-

ment deals with the characterization of certain class of matrix mappings from the
spaces c(∆k

q) and c0(∆
k
q) to the space ν ∈ {c,c0, ℓ∞, ℓ1}.

1. q-ANALOG

A q-analog of a mathematical expression is a generalization of the expression that
employs a new parameter q that returns the original expression in the limit as q → 1.
Mathematicians are generally interested in q-analogs that arise naturally rather than
in arbitrarily constructing q-analogs of known results. The application of q-calculus
while establishing the q-analog of the classical derivative and integral operators is
given by Jackson [15]. Initially, the q-analog studied in detail is the hyper geometric
series introduced in the 19th century. Since then, q-analogs have been studied most
frequently in the mathematics fields of combinatorics and special functions. It finds
many applications including the study of fractals and expressions for the entropy of
a chaotic dynamical system.
The notation below is quite familiar in the q-analog.

Let 0 < q < 1. Then the q-integer is defined as

[v]q =

{
∑

v−1
t=0 qt , (v = 1,2, · · ·),

0, (v = 0).
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It is obvious that if q → 1−, then [v]q = v.
The q-analog

(p
v

)
q of the binomial coefficient

(p
v

)
is defined as(

p
v

)
q
=

{
[p]q!

[p−v]q![v]q! , 0 ≤ v ≤ p,

0, otherwise,

where q-factorial of [v]q! of v is defined as

[v]q! =

{
∏

v
p=1[p]q, (v = 1,2, · · ·),

1, (v = 0).

Also,
(0

0

)
q =
(v

0

)
q =
(v

v

)
q = 1. Moreover,

( v
v−k

)
q
=
(v

k

)
q, which is the natural q-analog

of its ordinary version
( v

v−k

)
=
(v

k

)
. For more basic terminologies of the q-analogs,

readers can refer to [17, 22] and references therein.

Lemma 1.1. The Gauss’s q- binomial formula is given by

(y+ s)n
q =

n

∑
t=0

(
n
t

)
q
q(

t
2)yn−tst ,

where
(t

2

)
= 0 for t < 2.

2. q-DIFFERENCE OPERATOR

The forward difference operator ∆ is defined by (∆y)t = yt − yt+1. The for-
ward difference operator plays an important role in the field of sequence space,
summability theory, approximation theory etc. For instance, in the ordinary sense
the sequence (yt) = (t)∞

t=1 is divergent, but the sequence (∆y)t = −1 is conver-
gent for all t . In [16], Kızmaz studied and introduced the domains ℓ∞(∆),c(∆)
and c0(∆). The forward operator ∆ was later generalized to second-order ∆2 de-
fined as (∆2y)t = (∆y)t − (∆y)t+1. In the literature, several generalizations of the
difference operator ∆ and their domains have been contributed and studied by sev-
eral researchers and can be found in nice papers [7, 9, 10, 12–14]. The reader may
also refer to the recent monographs [5] and [20], and references therein, devoted
to summability theory and the sequence spaces generated by some triangle matrices
with a new approach. In [8], Demiriz and Şahin studied the sequence space by means
of a q-analog of the Cesàro matrix C(q), where C(q) = (cq

nt) (see [2]) is defined as

cq
nt =

{
qt

(n+1)[q] , 0 ≤ t ≤ n,

0, t > n.

Recently in [25, 26], the authors studied the (p′,q)-analog of Euler spaces and the q-
analog of Catalan spaces. More recently, the q-difference spaces of the second order
have been studied and introduced by Alotaibi et al. [3] and Yaying et al. [27, 28]. For
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detailed studies on the q-analog, the reader may strictly refer to [21, 29]. Following
[6], the q-difference operator is defined as

∆qy = (y0 − y1,q(y1 − y2),q2(y2 − y3),q3(y3 − y4), · · ·) (2.1)

where y = (y0,y1,y2, · · ·). As a consequence, the operator induces immediately the
q-binomial coefficients via iteration, ∆k

q = ∆q(∆
k−1
q ) as follows

(∆k
qy)nt = qkt

k

∑
n=t

(−1)n−tq(
n−t

2 )
(

k
n− t

)
q
yn = qkt

k

∑
n=0

(−1)nq(
n
2)
(

k
n

)
q
yn+t .

Furthermore, the q-difference matrix ∆k
q = ((δk

q)nt) is defined as

(δk
q)nt = (−1)nq(

n
2)
(

k
n

)
q
,

where δq being lower triangular with non-zero diagonal entries is invertible. Equiv-
alently,

∆
k
q =


1 0 0 0 · · ·

−[k] 1 0 0 · · ·
q
(k

2

)
−[k] 1 0 · · ·

−q3
(k

2

)
q
(k

2

)
−[k] 1 · · ·

...
...

...
...

...

 .

The inverse of ∆k
q is written as (δk

q)
−1
nt given by

(δk
q)

−1
nt = (−1)nqn(n−k)−(n

2)
(

k
n

)
q
=

(
k+ t −n−1

t −n

)
q
.

Quite recently, Ellidokuzoğlu and Demiriz [11] studied and introduced the domain
ℓp(∆

k
q) = {ℓ}∆k

q
by using the ∆k

q operator and exhibited this sequence space. For more
interesting literature, we refer to the studies (see [4, 19, 30]).

Motivation: In the literature, several authors can be found associated with the
quantum generalization of familiar operators including the difference operator, Haus-
dorff operators, etc. Recently, Yaying et al. [26], Alotaibi et al. [3] studied the se-
quence spaces of quantum generalization. However, no research has been carried out
on the domain of generalized q-difference sequence spaces in c and c0, respectively.
Inspired by the above research, we present the generalized q-difference forward op-
erator, and its domain in the spaces c and c0 of convergent and null sequences, re-
spectively. We also show topological properties and construct the Schauder basis for
c(∆k

q) and c0(∆
k
q). Furthermore, we calculate the duals of the newly defined spaces

c(∆k
q) and c0(∆

k
q) and finally characterize the classes (c(∆k

q),ν) and (c0(∆
k
q),ν) of

certain matrix mappings, where ν ∈ {ℓ∞,c,c0, ℓ1}.
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3. SEQUENCE SPACES

Let ω represent the space of all complex-valued sequences. The well-known clas-
sical sequence spaces are the set of all bounded sequences ℓ∞, the null sequences
c0, the convergent sequences c, and the p-absolutely summable sequences ℓp, where
1 ≤ p < ∞. We also indicate the spaces of all the convergent and bounded series
by cs and bs, respectively. A Banach sequence space with continuous coordinates
is a BK-space. For instance, the space ℓp is a BK-space furnished by the norm
∥y∥ℓp

= (∑k |yk|p)1/p. It is also well known that the sequence spaces c and c0 are
Banach spaces accompanied by the supremum norm. For any sequence space µ and
infinite matrix A , the matrix domain µA of A in a sequence space µ is defined as

µA = {y ∈ ω : Ay ∈ µ}. (3.1)

Throughout the text, N is the set of natural numbers that include zero.
If a normed linear space U contains a sequence (bn), then for every y ∈ U there is a
unique sequence of scalars (αn) such that

∥y− (α1b1 +α2b2 + · · ·+αnbn)∥→ 0 as n → ∞,

and then (bn) is known as the Schauder basis for U. The series ∑
∞
n=0 αnbn has the

sum y, known as the expansion of y about the basis (bn), and we write y=∑
∞
n=0 αnbn,

(see [18]).
Let U and V be any two sequence spaces. Then, the multiplier space M (U,V )

is given as

M (U,V ) =
{
(an) ∈ ω : ay = (anyn) ∈ V , for every y ∈ U

}
.

Thus, the α-dual Uα, the β-dual Uβ and the γ-dual Uγ of U are respectively defined
as

Uα = M (U, ℓ1), Uβ = M (U,cs), Uγ = M (U,bs).
An infinite matrix can be observed as the linear operator from one sequence space

to another sequence space. For this, let U and V be arbitrary subsets of ω. Let A =
(ant) be an infinite matrix with complex entries ant . By Ay = (An(y)), we generally
write the A−transforms of a sequence y=(yt) provided the series An(y)=∑

∞
t=0 antyt

is convergent for each n ≥ 0.
If Ay∈V with y∈U, then A defines a matrix mapping from U to V . In addition,

(U,V ) indicates the family of all infinite matrices that map U into V . Thus, A is
in (U,V ) whenever Ay = ((Ay)n) ∈ V , ∀ y ∈ U, that is, A ∈ (U,V ) if and only if
An ∈ Uβ, ∀ n, [20].

4. THE SPACES c(∆k
q) AND c0(∆

k
q)

In the present section, our aim is to introduce the generalized q-difference se-
quence spaces using the ∆k

q operator and to study the domains of the newly defined
matrix in the sequence spaces c and c0. Now, let us define the sequence spaces
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c(∆k
q) and c0(∆

k
q), as the set of all sequences such that their ∆k

q-transforms are in the
sequence spaces c and c0, that is,

c(∆k
q) =

{
y = (yt) ∈ ω : lim

t→∞

∣∣∣∣∣qkt
k

∑
n=0

(−1)nq(
n
2)
(

k
n

)
q
yn+t

∣∣∣∣∣ exists

}
,

c0(∆
k
q) =

{
y = (yt) ∈ ω : lim

t→∞
qkt

k

∑
n=0

(−1)nq(
n
2)
(

k
n

)
q
yn+t = 0

}
.

It is evident that spaces c(∆k
q) and c0(∆

k
q) reduce to ordinary difference spaces c(∆k)

and c0(∆
k) when q → 1− as studied and introduced by [1]. With the definition of the

matrix domain (3.1), the spaces c(∆k
q) and c0(∆

k
q) can be redefined as c(∆k

q) = (c)∆k
q

and c0(∆
k
q) = (c0)∆k

q
.

Define the sequence z = (zt) as the ∆k
q-transforms of a sequence y = (yt), that is,

zt = qkt
t

∑
n=0

(−1)nq(
n
2)
(

k
n

)
q
yn+t , (t ∈ N). (4.1)

In addition, y = (yt) is defined as

yt =
t

∑
n=0

(
k+ t −n−1

t −n

)
q
zn, (t ∈ N).

Theorem 4.1. c(∆k
q) and c0(∆

k
q) are BK-spaces accompanied with the norm defined

as

∥y∥c(∆k
q)
= ∥y∥c0(∆k

q)
=
∥∥∆

k
qy
∥∥

c
= sup

t∈N

∣∣∣∣∣qkt
k

∑
n=0

(−1)nq(
n
2)
(

k
n

)
q
yn+t

∣∣∣∣∣ .
Proof. The proof is obvious, so we omit the details. □

Theorem 4.2. c(∆k
q)

∼= c and c0(∆
k
q)

∼= c0.

Proof. Let λ ∈ {c,c0}. Define the mapping φ : λ(∆k
q) → λ by φy = ∆k

qy for all y ∈
λ(∆k

q). It is trivial that φ is a linear bijection preserving the norm. Hence, λ(∆k
q)

∼=
λ. □

Theorem 4.3. The space λ(∆k
q) for λ ∈ {c,c0} is a non-absolute type.

Proof. Let z = (zt) = {(−1)t}. Then, it is evident from equality (2.1) that

∆qz = {2,−2q,2q2,−2q3, · · ·}= 2{1,−q,q2,−q3, · · ·},
∆

2
qz = 2(1+q){1,−q2,q4, · · ·},

∆
3
qz = 2(1+q)(1+q2){1,−q3,q6, . . .},

...
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∆
k
qz = 2(1+q)(1+q2)(1+q3) · · ·(1+qk−1){1,qk,q2k, · · ·}.

Thus, (∆k
qz)t = 2(1+q)t−1

q (−1)tqkt . However, ∆q |z|= {0,0,0, · · ·}.
This shows that ∥y∥

λ(∆k
q)
̸= ∥|z|∥

λ(∆k
q)

, for z = |zt |. □

Theorem 4.4. The inclusion c ⊂ c(∆k
q) strictly holds for q ∈ R+.

Proof. Let z ∈ c. Since ∆k
q is conservative for each q ∈ R+, we observe that ∆k

qz ∈
c, which gives us that z ∈ c(∆k

q). Hence c ⊂ c(∆k
q). To prove strictness, take the

sequence ut = (−t) for all t ∈ N. Then u /∈ c. By using the equality (2.1), it is
deduced that

∆
k
qu = ((1−q)(1−q2)(1−q3) · · ·(1−qk−1)qkt)

= ((1−q)k−1
q qkt).

This shows that limt→∞ ∆k
qu exists and so ∆k

qu ∈ c which gives us u ∈ c(∆k
q). Hence,

the relation c ⊂ c(∆k
q) is strict, as claimed. □

Theorem 4.5. The inclusion c0 ⊂ c0(∆
m
q ) strictly holds for q ≥ 1.

Proof. To establish the proof, one can proceed in a similar fashion using Theorem
4.4. □

To end this segment, let us obtain the Schauder basis for the spaces c(∆k
q) and

c0(∆
k
q). We know that the matrix domain µA of the triangle A in a sequence space µ

has a basis whenever µ has a basis. Consequently, Theorem 4.2 gives the following
result.

Theorem 4.6. For each fixed t ∈ N, define the sequence g(t)(q) = (g(t)n (q)) of the
elements of the space c0(∆

k
q) by

g(t)(q) =

{(k+t−n−1
t−n

)
q
, 0 ≤ t < n,

0, t ≥ n.

(i) The set {g(0)(q),g(1)(q),g(2)(q), · · ·} forms the basis for c0(∆
k
q), and every y ∈

c0(∆
k
q) is uniquely expressed as y = ∑

∞
t=0 vtg(t)(q).

(ii) The set {e,g(0)(q),g(1)(q),g(2)(q), · · ·} forms the basis for c(∆k
q), and every y ∈

c(∆k
q) is uniquely expressed as y = he+∑

∞
t=0(vt − h)gt(q), where h = limt→∞ vt =

limt→∞(∆
k
qy)t and e is the unit sequence.

5. THE ALPHA-DUAL, THE BETA-DUAL AND THE GAMMA-DUAL

The current segment involves Uα,Uβ and Uγ for U ∈ {c(∆k
q),c0(∆

k
q). Since the

calculation of duals is quite similar for both spaces, we skip the proof for the space
c(∆k

q). Firstly, we list the well-known lemmas due to Stielglitz and Tietz [23], which
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are needed to obtain the alpha-dual, the beta-dual and the gamma-dual. In the re-
mainder of the paper, F will denote the collection of all finite subsets of N.

Lemma 5.1. A = (ant) ∈ (c0, ℓ1) if and only if

sup
K∈F

(
∞

∑
t=0

∣∣∣∣∣∑n∈K
ant

∣∣∣∣∣
)

< ∞. (5.1)

Lemma 5.2. A = (ant) ∈ (c0,c) if and only if

sup
n∈N

n

∑
t=0

|ant |< ∞, (5.2)

lim
n→∞

ant = βt , for each t ∈ N. (5.3)

Lemma 5.3. A = (ant) ∈ (c0, ℓ∞) if and only if (5.2) holds.

Theorem 5.1. Let us define the set k1(q) as

k1(q) =

{
a = (an) ∈ ω : sup

K∈F

∞

∑
n=0

∣∣∣∣∣∑t∈K

(
k+ t −n−1

t −n

)
q
at

∣∣∣∣∣< ∞

}
.

Then, {c(∆k
q)}α = {c0(∆

k
q)}α = k1(q).

Proof. Consider the below equality

atyt =
t

∑
n=0

(
k+ t −n−1

t −n

)
q
atzn = (F(q)z)t (5.4)

for all t ∈N, and let z = (zt) be the (∆k
q)-transform of y = (yt) and the matrix F(q) =

( f q
nt) be given as

f q
nt =

{(k+t−n−1
t−n

)
q
, 0 ≤ t ≤ n,

0, t > n.

We observe that using the equality (5.4), ay = (anyn) ∈ ℓ1 whenever y ∈ c0(∆
k
q) if

and only if F(q)z ∈ ℓ1 for z ∈ c0. Thus, we conclude that a = (an) ∈ {k1(q)}α

if and only if the matrix (∆k
q) ∈ (c0, ℓ1). Thus, we conclude by Lemma 5.1 that

{c0(∆
k
q)}α = k1(q). □

Theorem 5.2. Let us define the sets k2(q), k3(q) and k4(q) by

k2(q) =

{
a = (an) ∈ ω :

∞

∑
n=t

(
k+n− t −1

n− t

)
q
an exists for each t ∈ N

}
,

k3(q) =

{
a = (an) ∈ ω : sup

n∈N

n

∑
t=0

∣∣∣∣∣ n

∑
m=t

(
k+n− t −1

n− t

)
q
am

∣∣∣∣∣< ∞

}
,
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k4(q) =

{
a = (an) ∈ ω : lim

n→∞

n

∑
m=t

(
k+n− t −1

n− t

)
q
am exists

}
.

Then, {c0(∆
k
q)}β = k2(q)∩ k3(q) and {c(∆k

q)}β = k2(q)∩ k3(q)∩ k4(q).

Proof. Consider the equality
n

∑
t=0

atyt =
n

∑
t=0

[
t

∑
m=0

(
k+ t −n−1

t −n

)
q
zm

]
at

=
n

∑
t=0

[
n

∑
m=t

(
k+n− t −1

n− t

)
q
am

]
zt

= (G(q)z)n

for each n ∈N. Then, the sequence z = (zt) is the ∆k
q-transform of sequence y = (yt),

where the matrix G(q) = (gq
nt) is given by

gq
nt =

{
∑

n
m=t
(k+n−t−1

n−t

)
q
am, 0 ≤ t ≤ n

0, t > n

for every t,n ∈ N. Thus, we see that ay = (atxt) ∈ cs for y ∈ c0(∆
k
q) if and only if

G(q)z ∈ c whenever y ∈ c0. This implies that a = (an) is a sequence in the β-dual of
c0(∆

k
q) if and only if the matrix G(q) ∈ (c0,c). Hence, by Lemma 5.2, it is deduced

that supn∈N ∑
n
t=0

∣∣gq
nt
∣∣< ∞ and therefore limn→∞ gq

nt exists for each t ∈N. Therefore,
{c0(∆

k
q)}β = k2(q)∩ k3(q). □

Theorem 5.3. The gamma dual of c(∆k
q) and c0(∆

k
q) is k3(q).

Proof. The proof for the γ-dual is similar to Theorem 5.2 using Lemma 5.3. □

6. MATRIX MAPPINGS

The present section examines the necessary and sufficient conditions for a matrix
mapping from spaces c(∆k

q) and c0(∆
k
q) to space ν, where ν ∈ {ℓ∞, ℓ1,c,c0}. The

Theorem below is useful in our study.

Theorem 6.1. Let ν ⊂ ω and T be any one of the spaces c0 or c. Then A = (ant) ∈
(T (∆k

q),ν) if and only if E(n) = (e(n)mt ) ∈ (T,c) for each n ∈N and E = (ent) ∈ (T,ν),
where

e(n)mt =

{
0, t > m,

∑
m
j=t
(k+n−t−1

n−t

)
q
an j, 0 ≤ t ≤ m,

and

ent =
m

∑
j=t

(
k+n− t −1

n− t

)
q
an j, ∀ t,n ∈ N.
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Proof. Let A ∈ (T (∆k
q),ν) and y ∈ T (∆k

q). Then, we have the following equality
m

∑
t=0

antyt =
n

∑
t=0

t

∑
j=0

(
k+n− t −1

n− t

)
z jant =

m

∑
t=0

m

∑
j=t

(
k+n− t −1

n− t

)
q
an jzt =

m

∑
t=0

e(n)mt zt

(6.1)
for every n,m ∈ N. Also, Ay exists and so E(n) ∈ (T,c). Again, as m → ∞ in the
equality (6.1), it yields that Ay = Ez. Since Ay ∈ ν and so Ez ∈ ν which leads to the
fact that E ∈ (T,ν).
Conversely, suppose that E(n) = (e(n)mt )∈ (T,c) for every n∈N and E = (ent)∈ (T,ν).
Take y ∈ T (∆k

q). Then (ant)t∈N ∈ T β for each n ∈ N which gives us the fact that
(ant)t∈N ∈ {T (∆k

q)}β for each n ∈ N. Also, from the equality (6.1), Ay = Ez as
m → ∞. This gives us A ∈ (T (∆k

q),ν), as claimed. □

Following [23], let us define the following conditions:

lim
m→∞

e(n)mt exists for every n, t ∈ N, (6.2)

sup
m∈N

∞

∑
t=0

∣∣∣e(n)mt

∣∣∣< ∞ for each n ∈ N, (6.3)

lim
m→∞

∞

∑
t=0

e(n)mt exists for each n ∈ N, (6.4)

lim
n→∞

n

∑
t=0

|ent |= αt for each t ∈ N. (6.5)

The following results can be derived using the above conditions together with Theo-
rem 6.1 as follows:

Corollary 6.1. The following statements hold:
(i) A = (ant) ∈ (c0(∆

k
q), ℓ∞) if and only if (6.2), (6.3) hold, and also (5.2) holds with

ent instead of ant .
(ii) A = (ant) ∈ (c0(∆

k
q),c) if and only if (6.2), (6.3) hold, and also (5.2) and (5.3)

hold with ent instead of ant .
(iii) A = (ant) ∈ (c0(∆

k
q),c0) if and only if (6.2), (6.3) hold and also (5.2) and (5.3)

hold with αt = 0, with ent instead of ant .
(iv) A = (ant) ∈ (c0(∆

k
q), ℓ1) if and only if (6.2), (6.3) hold, and also (5.1) holds with

ent instead of ant .

Corollary 6.2. The following statements hold:
(i) A = (ant) ∈ (c(∆k

q), ℓ∞) if and only if (6.2), (6.3) and (6.4) hold, and also (5.2)
holds with ent instead of ant .
(ii) A = (ant) ∈ (c(∆k

q),c) if and only if (6.2), (6.3), (6.4) and (6.5) hold, and also
(5.2) and (5.3) hold with ent instead of ant .
(iii) A =(ant)∈ (c(∆k

q),c0) if and only if (6.2), (6.3), (6.4) and (6.5) hold with αt = 0,
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and (5.2) and (5.3) also hold with ent instead of ant .
(iv) A = (ant) ∈ (c(∆k

q), ℓ1) if and only if (6.2), (6.3) and (6.4) hold, and also (5.1)
holds with ent instead of ant .
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