THE GENERALIZED QUANTUM DIFFERENCE OPERATOR IN c AND c_0 AND THEIR DUALS

DOI: 10.5644/SJM.21.01.11

TOSEEF AHMED MALIK

ABSTRACT. In this article, we present a generalization of the k^{th} order of forward difference operator Δ^k using its quantum analog Δ_q^k . We study its domains $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$ in the spaces c and c_0 of convergent and null sequences, respectively. Additionally, we show that the domains $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$ are BK-spaces and linearly isomorphic to c and c_0 , respectively. Furthermore, we construct Schauder bases and examine the Köthe duals of the spaces $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$. The final segment deals with the characterization of certain class of matrix mappings from the spaces $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$ to the space $v \in \{c, c_0, \ell_\infty, \ell_1\}$.

1. q-Analog

A q-analog of a mathematical expression is a generalization of the expression that employs a new parameter q that returns the original expression in the limit as $q \to 1$. Mathematicians are generally interested in q-analogs that arise naturally rather than in arbitrarily constructing q-analogs of known results. The application of q-calculus while establishing the q-analog of the classical derivative and integral operators is given by Jackson [15]. Initially, the q-analog studied in detail is the hyper geometric series introduced in the 19th century. Since then, q-analogs have been studied most frequently in the mathematics fields of combinatorics and special functions. It finds many applications including the study of fractals and expressions for the entropy of a chaotic dynamical system.

The notation below is quite familiar in the q-analog.

Let 0 < q < 1. Then the *q*-integer is defined as

$$[v]_q = \begin{cases} \sum_{t=0}^{v-1} q^t, & (v = 1, 2, \cdots), \\ 0, & (v = 0). \end{cases}$$

²⁰²⁰ Mathematics Subject Classification. Primary 46A45; Secondary 46B45.

Key words and phrases. quantum sequence space, generalized quantum difference operator, Köthe duals, matrix mappings.

It is obvious that if $q \to 1^-$, then $[v]_q = v$.

The q-analog $\binom{p}{v}_q$ of the binomial coefficient $\binom{p}{v}$ is defined as

$$\begin{pmatrix} p \\ v \end{pmatrix}_q = \begin{cases} \frac{[p]_q!}{[p-v]_q![v]_q!}, & 0 \le v \le p, \\ 0, & otherwise, \end{cases}$$

where *q*-factorial of $[v]_q!$ of v is defined as

$$[v]_q! = \begin{cases} \prod_{p=1}^{\nu} [p]_q, & (\nu = 1, 2, \cdots), \\ 1, & (\nu = 0). \end{cases}$$

Also, $\binom{0}{0}_q = \binom{v}{0}_q = \binom{v}{v}_q = 1$. Moreover, $\binom{v}{v-k}_q = \binom{v}{k}_q$, which is the natural q-analog of its ordinary version $\binom{v}{v-k} = \binom{v}{k}$. For more basic terminologies of the q-analogs, readers can refer to [17, 22] and references therein.

Lemma 1.1. The Gauss's q-binomial formula is given by

$$(y+s)_q^n = \sum_{t=0}^n \binom{n}{t}_q q^{\binom{t}{2}} y^{n-t} s^t,$$

where $\binom{t}{2} = 0$ *for t* < 2.

2. *q*-Difference Operator

The forward difference operator Δ is defined by $(\Delta y)_t = y_t - y_{t+1}$. The forward difference operator plays an important role in the field of sequence space, summability theory, approximation theory etc. For instance, in the ordinary sense the sequence $(y_t) = (t)_{t=1}^{\infty}$ is divergent, but the sequence $(\Delta y)_t = -1$ is convergent for all t. In [16], Kızmaz studied and introduced the domains $\ell_{\infty}(\Delta), c(\Delta)$ and $c_0(\Delta)$. The forward operator Δ was later generalized to second-order Δ^2 defined as $(\Delta^2 y)_t = (\Delta y)_t - (\Delta y)_{t+1}$. In the literature, several generalizations of the difference operator Δ and their domains have been contributed and studied by several researchers and can be found in nice papers [7, 9, 10, 12–14]. The reader may also refer to the recent monographs [5] and [20], and references therein, devoted to summability theory and the sequence spaces generated by some triangle matrices with a new approach. In [8], Demiriz and Şahin studied the sequence space by means of a q-analog of the Cesàro matrix C(q), where $C(q) = (c_{nt}^q)$ (see [2]) is defined as

$$c_{nt}^{q} = \begin{cases} \frac{q^{t}}{(n+1)[q]}, & 0 \le t \le n, \\ 0, & t > n. \end{cases}$$

Recently in [25, 26], the authors studied the (p',q)-analog of Euler spaces and the q-analog of Catalan spaces. More recently, the q-difference spaces of the second order have been studied and introduced by Alotaibi et al. [3] and Yaying et al. [27, 28]. For

detailed studies on the q-analog, the reader may strictly refer to [21, 29]. Following [6], the q-difference operator is defined as

$$\Delta_q y = (y_0 - y_1, q(y_1 - y_2), q^2(y_2 - y_3), q^3(y_3 - y_4), \cdots)$$
(2.1)

where $y=(y_0,y_1,y_2,\cdots)$. As a consequence, the operator induces immediately the q-binomial coefficients via iteration, $\Delta_q^k=\Delta_q(\Delta_q^{k-1})$ as follows

$$(\Delta_q^k y)_{nt} = q^{kt} \sum_{n=t}^k (-1)^{n-t} q^{\binom{n-t}{2}} \binom{k}{n-t}_q y_n = q^{kt} \sum_{n=0}^k (-1)^n q^{\binom{n}{2}} \binom{k}{n}_q y_{n+t}.$$

Furthermore, the *q*-difference matrix $\Delta_q^k = ((\delta_q^k)_{nt})$ is defined as

$$(\delta_q^k)_{nt} = (-1)^n q^{\binom{n}{2}} \binom{k}{n}_q,$$

where δ_q being lower triangular with non-zero diagonal entries is invertible. Equivalently,

$$\Delta_q^k = egin{bmatrix} 1 & 0 & 0 & 0 & \cdots \ -[k] & 1 & 0 & 0 & \cdots \ qinom{k}{2} & -[k] & 1 & 0 & \cdots \ -q^3inom{k}{2} & qinom{k}{2} & -[k] & 1 & \cdots \ dots & dots & dots & dots & dots \end{matrix} \ .$$

The inverse of Δ_q^k is written as $(\delta_q^k)_{nt}^{-1}$ given by

$$(\delta_q^k)_{nt}^{-1} = (-1)^n q^{n(n-k)-\binom{n}{2}} \binom{k}{n}_a = \binom{k+t-n-1}{t-n}_a.$$

Quite recently, Ellidokuzoğlu and Demiriz [11] studied and introduced the domain $\ell_p(\Delta_q^k) = \{\ell\}_{\Delta_q^k}$ by using the Δ_q^k operator and exhibited this sequence space. For more interesting literature, we refer to the studies (see [4, 19, 30]).

Motivation: In the literature, several authors can be found associated with the quantum generalization of familiar operators including the difference operator, Hausdorff operators, etc. Recently, Yaying et al. [26], Alotaibi et al. [3] studied the sequence spaces of quantum generalization. However, no research has been carried out on the domain of generalized q-difference sequence spaces in c and c_0 , respectively. Inspired by the above research, we present the generalized q-difference forward operator, and its domain in the spaces c and c_0 of convergent and null sequences, respectively. We also show topological properties and construct the Schauder basis for $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$. Furthermore, we calculate the duals of the newly defined spaces $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$ and finally characterize the classes $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$ and finally characterize the classes $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$, $c_0(\Delta_q^k)$ and finally characterize the classes $c_0(\Delta_q^k)$.

3. SEQUENCE SPACES

Let ω represent the space of all complex-valued sequences. The well-known classical sequence spaces are the set of all bounded sequences ℓ_{∞} , the null sequences c_0 , the convergent sequences c, and the p-absolutely summable sequences ℓ_p , where $1 \leq p < \infty$. We also indicate the spaces of all the convergent and bounded series by cs and bs, respectively. A Banach sequence space with continuous coordinates is a BK-space. For instance, the space ℓ_p is a BK-space furnished by the norm $\|y\|_{\ell_p} = (\sum_k |y_k|^p)^{1/p}$. It is also well known that the sequence spaces c and c_0 are Banach spaces accompanied by the supremum norm. For any sequence space μ and infinite matrix \mathcal{A} , the matrix domain $\mu_{\mathcal{A}}$ of \mathcal{A} in a sequence space μ is defined as

$$\mu_{\mathcal{A}} = \{ y \in \mathbf{\omega} : \mathcal{A}y \in \mu \}. \tag{3.1}$$

Throughout the text, \mathbb{N} is the set of natural numbers that include zero.

If a normed linear space \mathcal{U} contains a sequence (b_n) , then for every $y \in \mathcal{U}$ there is a unique sequence of scalars (α_n) such that

$$||y - (\alpha_1b_1 + \alpha_2b_2 + \cdots + \alpha_nb_n)|| \to 0 \text{ as } n \to \infty,$$

and then (b_n) is known as the Schauder basis for \mathcal{U} . The series $\sum_{n=0}^{\infty} \alpha_n b_n$ has the sum y, known as the expansion of y about the basis (b_n) , and we write $y = \sum_{n=0}^{\infty} \alpha_n b_n$, (see [18]).

Let $\mathcal U$ and $\mathcal V$ be any two sequence spaces. Then, the multiplier space $\mathcal M(\mathcal U,\mathcal V)$ is given as

$$\mathcal{M}(\mathcal{U}, \mathcal{V}) = \{(a_n) \in \omega : ay = (a_n y_n) \in \mathcal{V}, \text{ for every } y \in \mathcal{U}\}.$$

Thus, the α -dual \mathcal{U}^{α} , the β -dual \mathcal{U}^{β} and the γ -dual \mathcal{U}^{γ} of \mathcal{U} are respectively defined as

$$\mathcal{U}^{\alpha} = \mathcal{M}(\mathcal{U}, \ell_1), \ \mathcal{U}^{\beta} = \mathcal{M}(\mathcal{U}, cs), \ \mathcal{U}^{\gamma} = \mathcal{M}(\mathcal{U}, bs).$$

An infinite matrix can be observed as the linear operator from one sequence space to another sequence space. For this, let \mathcal{U} and \mathcal{V} be arbitrary subsets of ω . Let $\mathcal{A} = (a_{nt})$ be an infinite matrix with complex entries a_{nt} . By $\mathcal{A}y = (\mathcal{A}_n(y))$, we generally write the \mathcal{A} -transforms of a sequence $y = (y_t)$ provided the series $\mathcal{A}_n(y) = \sum_{t=0}^{\infty} a_{nt} y_t$ is convergent for each $n \geq 0$.

If $\mathcal{A}y \in \mathcal{V}$ with $y \in \mathcal{U}$, then \mathcal{A} defines a matrix mapping from \mathcal{U} to \mathcal{V} . In addition, $(\mathcal{U}, \mathcal{V})$ indicates the family of all infinite matrices that map \mathcal{U} into \mathcal{V} . Thus, \mathcal{A} is in $(\mathcal{U}, \mathcal{V})$ whenever $\mathcal{A}y = ((\mathcal{A}y)_n) \in \mathcal{V}$, $\forall y \in \mathcal{U}$, that is, $\mathcal{A} \in (\mathcal{U}, \mathcal{V})$ if and only if $\mathcal{A}_n \in \mathcal{U}^{\beta}$, $\forall n$, [20].

4. The Spaces
$$c(\Delta_q^k)$$
 and $c_0(\Delta_q^k)$

In the present section, our aim is to introduce the generalized q-difference sequence spaces using the Δ_q^k operator and to study the domains of the newly defined matrix in the sequence spaces c and c_0 . Now, let us define the sequence spaces

 $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$, as the set of all sequences such that their Δ_q^k -transforms are in the sequence spaces c and c_0 , that is,

$$c(\Delta_q^k) = \left\{ y = (y_t) \in \mathbf{\omega} : \lim_{t \to \infty} \left| q^{kt} \sum_{n=0}^k (-1)^n q^{\binom{n}{2}} \binom{k}{n}_q y_{n+t} \right| \text{ exists} \right\},$$

$$c_0(\Delta_q^k) = \left\{ y = (y_t) \in \mathbf{\omega} : \lim_{t \to \infty} q^{kt} \sum_{n=0}^k (-1)^n q^{\binom{n}{2}} \binom{k}{n}_q y_{n+t} = 0 \right\}.$$

It is evident that spaces $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$ reduce to ordinary difference spaces $c(\Delta^k)$ and $c_0(\Delta^k)$ when $q \to 1^-$ as studied and introduced by [1]. With the definition of the matrix domain (3.1), the spaces $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$ can be redefined as $c(\Delta_q^k) = (c)_{\Delta_q^k}$ and $c_0(\Delta_q^k) = (c_0)_{\Delta_q^k}$.

Define the sequence $z = (z_t)$ as the Δ_a^k -transforms of a sequence $y = (y_t)$, that is,

$$z_{t} = q^{kt} \sum_{n=0}^{t} (-1)^{n} q^{\binom{n}{2}} \binom{k}{n}_{q} y_{n+t}, \ (t \in \mathbb{N}).$$
 (4.1)

In addition, $y = (y_t)$ is defined as

$$y_t = \sum_{n=0}^t \binom{k+t-n-1}{t-n} z_n, \ (t \in \mathbb{N}).$$

Theorem 4.1. $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$ are BK-spaces accompanied with the norm defined as

$$\|y\|_{c(\Delta_q^k)} = \|y\|_{c_0(\Delta_q^k)} = \|\Delta_q^k y\|_c = \sup_{t \in \mathbb{N}} \left| q^{kt} \sum_{n=0}^k (-1)^n q^{\binom{n}{2}} \binom{k}{n}_q y_{n+t} \right|.$$

Proof. The proof is obvious, so we omit the details.

Theorem 4.2. $c(\Delta_q^k) \cong c$ and $c_0(\Delta_q^k) \cong c_0$.

Proof. Let $\lambda \in \{c, c_0\}$. Define the mapping $\phi : \lambda(\Delta_q^k) \to \lambda$ by $\phi y = \Delta_q^k y$ for all $y \in \lambda(\Delta_q^k)$. It is trivial that ϕ is a linear bijection preserving the norm. Hence, $\lambda(\Delta_q^k) \cong \lambda$.

Theorem 4.3. The space $\lambda(\Delta_a^k)$ for $\lambda \in \{c, c_0\}$ is a non-absolute type.

Proof. Let $z=(z_t)=\{(-1)^t\}$. Then, it is evident from equality (2.1) that $\Delta_q z=\{2,-2q,2q^2,-2q^3,\cdots\}=2\{1,-q,q^2,-q^3,\cdots\},$ $\Delta_q^2 z=2(1+q)\{1,-q^2,q^4,\cdots\},$ $\Delta_q^3 z=2(1+q)(1+q^2)\{1,-q^3,q^6,\cdots\},$

$$\begin{split} \Delta_q^k z &= 2(1+q)(1+q^2)(1+q^3)\cdots(1+q^{k-1})\{1,q^k,q^{2k},\cdots\}. \\ \text{Thus, } (\Delta_q^k z)_t &= 2(1+q)_q^{t-1}(-1)^t q^{kt}. \text{ However, } \Delta_q |z| = \{0,0,0,\cdots\}. \\ \text{This shows that } \|y\|_{\lambda(\Delta_q^k)} \neq \||z|\|_{\lambda(\Delta_q^k)}, \text{ for } z = |z_t|. \end{split}$$

Theorem 4.4. The inclusion $c \subset c(\Delta_q^k)$ strictly holds for $q \in \mathbb{R}^+$.

Proof. Let $z \in c$. Since Δ_q^k is conservative for each $q \in \mathbb{R}^+$, we observe that $\Delta_q^k z \in c$, which gives us that $z \in c(\Delta_q^k)$. Hence $c \subset c(\Delta_q^k)$. To prove strictness, take the sequence $u_t = (-t)$ for all $t \in \mathbb{N}$. Then $u \notin c$. By using the equality (2.1), it is deduced that

$$\begin{split} \Delta_q^k u &= ((1-q)(1-q^2)(1-q^3)\cdots(1-q^{k-1})q^{kt}) \\ &= ((1-q)_q^{k-1}q^{kt}). \end{split}$$

This shows that $\lim_{t\to\infty} \Delta_q^k u$ exists and so $\Delta_q^k u \in c$ which gives us $u \in c(\Delta_q^k)$. Hence, the relation $c \subset c(\Delta_q^k)$ is strict, as claimed.

Theorem 4.5. The inclusion $c_0 \subset c_0(\Delta_q^m)$ strictly holds for $q \geq 1$.

Proof. To establish the proof, one can proceed in a similar fashion using Theorem 4.4.

To end this segment, let us obtain the Schauder basis for the spaces $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$. We know that the matrix domain $\mu_{\mathcal{A}}$ of the triangle \mathcal{A} in a sequence space μ has a basis whenever μ has a basis. Consequently, Theorem 4.2 gives the following result.

Theorem 4.6. For each fixed $t \in \mathbb{N}$, define the sequence $g^{(t)}(q) = (g_n^{(t)}(q))$ of the elements of the space $c_0(\Delta_q^k)$ by

$$g^{(t)}(q) = \begin{cases} {k+t-n-1 \choose t-n}_q, & 0 \le t < n, \\ 0, & t \ge n. \end{cases}$$

- (i) The set $\{g^{(0)}(q), g^{(1)}(q), g^{(2)}(q), \dots\}$ forms the basis for $c_0(\Delta_q^k)$, and every $y \in c_0(\Delta_q^k)$ is uniquely expressed as $y = \sum_{t=0}^{\infty} v_t g^{(t)}(q)$.
- (ii) The set $\{e, g^{(0)}(q), g^{(1)}(q), g^{(2)}(q), \cdots\}$ forms the basis for $c(\Delta_q^k)$, and every $y \in c(\Delta_q^k)$ is uniquely expressed as $y = he + \sum_{t=0}^{\infty} (v_t h)g^t(q)$, where $h = \lim_{t \to \infty} v_t = \lim_{t \to \infty} (\Delta_q^k y)_t$ and e is the unit sequence.

5. THE ALPHA-DUAL, THE BETA-DUAL AND THE GAMMA-DUAL

The current segment involves \mathcal{U}^{α} , \mathcal{U}^{β} and \mathcal{U}' for $\mathcal{U} \in \{c(\Delta_q^k), c_0(\Delta_q^k)\}$. Since the calculation of duals is quite similar for both spaces, we skip the proof for the space $c(\Delta_q^k)$. Firstly, we list the well-known lemmas due to Stielglitz and Tietz [23], which

are needed to obtain the alpha-dual, the beta-dual and the gamma-dual. In the remainder of the paper, \mathcal{F} will denote the collection of all finite subsets of \mathbb{N} .

Lemma 5.1. $\mathcal{A} = (a_{nt}) \in (c_0, \ell_1)$ if and only if

$$\sup_{K \in \mathcal{F}} \left(\sum_{t=0}^{\infty} \left| \sum_{n \in K} a_{nt} \right| \right) < \infty. \tag{5.1}$$

Lemma 5.2. $\mathcal{A} = (a_{nt}) \in (c_0, c)$ if and only if

$$\sup_{n\in\mathbb{N}}\sum_{t=0}^{n}|a_{nt}|<\infty,\tag{5.2}$$

$$\lim_{n \to \infty} a_{nt} = \beta_t, \text{ for each } t \in \mathbb{N}.$$
 (5.3)

Lemma 5.3. $\mathcal{A} = (a_{nt}) \in (c_0, \ell_{\infty})$ if and only if (5.2) holds.

Theorem 5.1. Let us define the set $k_1(q)$ as

$$k_1(q) = \left\{ a = (a_n) \in \mathbf{\omega} : \sup_{K \in \mathcal{F}} \sum_{n=0}^{\infty} \left| \sum_{t \in K} {k+t-n-1 \choose t-n} a_t \right| < \infty \right\}.$$

Then, $\{c(\Delta_q^k)\}^{\alpha} = \{c_0(\Delta_q^k)\}^{\alpha} = k_1(q)$.

Proof. Consider the below equality

$$a_t y_t = \sum_{n=0}^t \binom{k+t-n-1}{t-n} a_t z_n = (F(q)z)_t$$
 (5.4)

for all $t \in \mathbb{N}$, and let $z = (z_t)$ be the (Δ_q^k) -transform of $y = (y_t)$ and the matrix $F(q) = (f_{nt}^q)$ be given as

$$f_{nt}^{q} = \begin{cases} {k+t-n-1 \choose t-n}_{q}, & 0 \le t \le n, \\ 0, & t > n. \end{cases}$$

We observe that using the equality (5.4), $ay = (a_n y_n) \in \ell_1$ whenever $y \in c_0(\Delta_q^k)$ if and only if $F(q)z \in \ell_1$ for $z \in c_0$. Thus, we conclude that $a = (a_n) \in \{k_1(q)\}^{\alpha}$ if and only if the matrix $(\Delta_q^k) \in (c_0, \ell_1)$. Thus, we conclude by Lemma 5.1 that $\{c_0(\Delta_q^k)\}^{\alpha} = k_1(q)$.

Theorem 5.2. Let us define the sets $k_2(q)$, $k_3(q)$ and $k_4(q)$ by

$$k_2(q) = \left\{ a = (a_n) \in \mathbf{\omega} : \sum_{n=t}^{\infty} {k+n-t-1 \choose n-t} a_n \text{ exists for each } t \in \mathbb{N} \right\},$$

$$k_3(q) = \left\{ a = (a_n) \in \mathbf{\omega} : \sup_{n \in \mathbb{N}} \sum_{t=0}^{n} \left| \sum_{m=t}^{n} {k+n-t-1 \choose n-t} a_m \right| < \infty \right\},$$

$$k_4(q) = \left\{ a = (a_n) \in \omega : \lim_{n \to \infty} \sum_{m=t}^n {k+n-t-1 \choose n-t}_q a_m \text{ exists} \right\}.$$

Then, $\{c_0(\Delta_q^k)\}^{\beta} = k_2(q) \cap k_3(q) \text{ and } \{c(\Delta_q^k)\}^{\beta} = k_2(q) \cap k_3(q) \cap k_4(q).$

Proof. Consider the equality

$$\sum_{t=0}^{n} a_t y_t = \sum_{t=0}^{n} \left[\sum_{m=0}^{t} \binom{k+t-n-1}{t-n}_{q} z_m \right] a_t$$

$$= \sum_{t=0}^{n} \left[\sum_{m=t}^{n} \binom{k+n-t-1}{n-t}_{q} a_m \right] z_t$$

$$= (G(q)z)_n$$

for each $n \in \mathbb{N}$. Then, the sequence $z = (z_t)$ is the Δ_q^k -transform of sequence $y = (y_t)$, where the matrix $G(q) = (g_{nt}^q)$ is given by

$$g_{nt}^{q} = \begin{cases} \sum_{m=t}^{n} {k+n-t-1 \choose n-t}_{q} a_{m}, & 0 \le t \le n \\ 0, & t > n \end{cases}$$

for every $t,n\in\mathbb{N}$. Thus, we see that $ay=(a_tx_t)\in cs$ for $y\in c_0(\Delta_q^k)$ if and only if $G(q)z\in c$ whenever $y\in c_0$. This implies that $a=(a_n)$ is a sequence in the β -dual of $c_0(\Delta_q^k)$ if and only if the matrix $G(q)\in (c_0,c)$. Hence, by Lemma 5.2, it is deduced that $\sup_{n\in\mathbb{N}}\sum_{t=0}^n\left|g_{nt}^q\right|<\infty$ and therefore $\lim_{n\to\infty}g_{nt}^q$ exists for each $t\in\mathbb{N}$. Therefore, $\{c_0(\Delta_q^k)\}^\beta=k_2(q)\cap k_3(q)$.

Theorem 5.3. The gamma dual of $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$ is $k_3(q)$.

Proof. The proof for the γ -dual is similar to Theorem 5.2 using Lemma 5.3.

6. MATRIX MAPPINGS

The present section examines the necessary and sufficient conditions for a matrix mapping from spaces $c(\Delta_q^k)$ and $c_0(\Delta_q^k)$ to space ν , where $\nu \in \{\ell_\infty, \ell_1, c, c_0\}$. The Theorem below is useful in our study.

Theorem 6.1. Let $v \subset \omega$ and T be any one of the spaces c_0 or c. Then $\mathcal{A} = (a_{nt}) \in (T(\Delta_q^k), v)$ if and only if $E^{(n)} = (e_{mt}^{(n)}) \in (T, c)$ for each $n \in \mathbb{N}$ and $E = (e_{nt}) \in (T, v)$, where

$$e_{mt}^{(n)} = \begin{cases} 0, & t > m, \\ \sum_{j=t}^{m} {k+n-t-1 \choose n-t}_{q} a_{nj}, & 0 \le t \le m, \end{cases}$$

and

$$e_{nt} = \sum_{j=t}^{m} {k+n-t-1 \choose n-t}_{q} a_{nj}, \ \forall \ t, n \in \mathbb{N}.$$

Proof. Let $\mathcal{A} \in (T(\Delta_a^k), \mathbf{v})$ and $y \in T(\Delta_a^k)$. Then, we have the following equality

$$\sum_{t=0}^{m} a_{nt} y_t = \sum_{t=0}^{n} \sum_{j=0}^{t} \binom{k+n-t-1}{n-t} z_j a_{nt} = \sum_{t=0}^{m} \sum_{j=t}^{m} \binom{k+n-t-1}{n-t} q a_{nj} z_t = \sum_{t=0}^{m} e_{mt}^{(n)} z_t$$
(6.1)

for every $n, m \in \mathbb{N}$. Also, $\mathcal{A}y$ exists and so $E^{(n)} \in (T, c)$. Again, as $m \to \infty$ in the equality (6.1), it yields that $\mathcal{A}y = Ez$. Since $\mathcal{A}y \in V$ and so $Ez \in V$ which leads to the fact that $E \in (T, V)$.

Conversely, suppose that $E^{(n)} = (e_{mt}^{(n)}) \in (T,c)$ for every $n \in \mathbb{N}$ and $E = (e_{nt}) \in (T,v)$. Take $y \in T(\Delta_q^k)$. Then $(a_{nt})_{t \in \mathbb{N}} \in T^\beta$ for each $n \in \mathbb{N}$ which gives us the fact that $(a_{nt})_{t \in \mathbb{N}} \in \{T(\Delta_q^k)\}^\beta$ for each $n \in \mathbb{N}$. Also, from the equality (6.1), Ay = Ez as $m \to \infty$. This gives us $A \in (T(\Delta_q^k), v)$, as claimed.

Following [23], let us define the following conditions:

$$\lim_{m \to \infty} e_{mt}^{(n)} \text{ exists for every } n, t \in \mathbb{N}, \tag{6.2}$$

$$\sup_{m \in \mathbb{N}} \sum_{t=0}^{\infty} \left| e_{mt}^{(n)} \right| < \infty \text{ for each } n \in \mathbb{N}, \tag{6.3}$$

$$\lim_{m \to \infty} \sum_{t=0}^{\infty} e_{mt}^{(n)} \text{ exists for each } n \in \mathbb{N},$$
 (6.4)

$$\lim_{n \to \infty} \sum_{t=0}^{n} |e_{nt}| = \alpha_t \text{ for each } t \in \mathbb{N}.$$
 (6.5)

The following results can be derived using the above conditions together with Theorem 6.1 as follows:

Corollary 6.1. *The following statements hold:*

- (i) $\mathcal{A} = (a_{nt}) \in (c_0(\Delta_q^k), \ell_\infty)$ if and only if (6.2), (6.3) hold, and also (5.2) holds with e_{nt} instead of a_{nt} .
- (ii) $\mathcal{A} = (a_{nt}) \in (c_0(\Delta_q^k), c)$ if and only if (6.2), (6.3) hold, and also (5.2) and (5.3) hold with e_{nt} instead of a_{nt} .
- (iii) $\mathcal{A} = (a_{nt}) \in (c_0(\Delta_q^k), c_0)$ if and only if (6.2), (6.3) hold and also (5.2) and (5.3) hold with $\alpha_t = 0$, with e_{nt} instead of a_{nt} .
- (iv) $\mathcal{A} = (a_{nt}) \in (c_0(\Delta_q^k), \ell_1)$ if and only if (6.2), (6.3) hold, and also (5.1) holds with e_{nt} instead of a_{nt} .

Corollary 6.2. *The following statements hold:*

- (i) $\mathcal{A} = (a_{nt}) \in (c(\Delta_q^k), \ell_\infty)$ if and only if (6.2), (6.3) and (6.4) hold, and also (5.2) holds with e_{nt} instead of a_{nt} .
- (ii) $\mathcal{A} = (a_{nt}) \in (c(\Delta_q^k), c)$ if and only if (6.2), (6.3), (6.4) and (6.5) hold, and also (5.2) and (5.3) hold with e_{nt} instead of a_{nt} .
- (iii) $\mathcal{A} = (a_{nt}) \in (c(\Delta_q^k), c_0)$ if and only if (6.2), (6.3), (6.4) and (6.5) hold with $\alpha_t = 0$,

and (5.2) and (5.3) also hold with e_{nt} instead of a_{nt} . (iv) $\mathcal{A} = (a_{nt}) \in (c(\Delta_q^k), \ell_1)$ if and only if (6.2), (6.3) and (6.4) hold, and also (5.1) holds with e_{nt} instead of a_{nt} .

REFERENCES

- [1] B. Altay, On the space of p-summable difference sequences of order m, $(1 \le p < \infty)$, Stud. Sci. Math. Hungar., 43 (2006), 387-402.
- [2] H. Aktuğlu and S. Bekar, *On q-Cesàro matrix and q-statistical convergence*, J. Comput. Appl. Math., 235 (16) (2011), 4717-4723.
- [3] A. Alotaibi, T. Yaying, and S. A. Mohiuddine, Sequence spaces and spectrum of q-difference operator of second order, Symmetry, 14 (2022), 1155.
- [4] A.A. Bakery and K.S. Mohamed, (r_1, r_2) -Cesàro summable space of non-absolute type and the involved pre-quasi ideal, J. Inequal. Appl., 43, 2021.
- [5] F. Başar, Summability Theory and its application, 2nd ed., CRC Press/Taylor & Francis Group, Boca Raton . London . New York, 2022.
- [6] G. Bennett, An inequality for Hausdorff means, Houston J. Math., 25 (1999), 709-744.
- [7] R. Colak and E. Mikail, *On some generalized difference sequence spaces and related matrix transformation*, Hokkaido Math. J., 26 (1997), 483-492.
- [8] S. Demiriz and A. Şahin, *q-Cesàro sequence spaces derived by q-analogues*, Adv. Math., 5 (2016), 97-110.
- [9] S. Dutta and P. Baliarsingh, On the spectrum of 2nd order generalized difference operator Δ^2 over the sequence space c_0 , Bol. Soc. Paran. Mat., 31 (2013), 235-244
- [10] S. Dutta and P. Baliarsingh, On the spectra of the generalized r^{th} difference operator Δ_v^r on the sequence space ℓ_1 , Appl. Math. Comput., 219 (2012), 1776-1784.
- [11] H.B. Ellidokuzoğlu and S. Demiriz, *On some generalized q-difference sequence spaces*, AIMS Mathematics, 8(8) (2023), 18606-18617.
- [12] M. Et, On some difference sequence spaces, Turkish J. Math., 17 (1993), 18-24.
- [13] M. Et and R. Colak, *On some generalized difference sequence spaces*, Soochow J. Math., 21 (1995), 377-386.
- [14] M. Et, On some topological properties of generalized difference sequence spaces, Int. J. Math. Math. Sci., 24 (2000), 716581.
- [15] H.F. Jackson, *On q-functions and a certain difference operator*, Earth and Environmental Sci. Trans. Royal Soc. Ednib., 46 (1908), 253-281.
- [16] H. Kizmaz, *On certain sequence spaces*, Canad. Math. Bull., 24 (2) (1981), 169-176.
- [17] V. Kac and P. Cheung, Quantum Calculus; Springer: New York, NY, USA, 2002.

- [18] I.J. Maddox, Elements of Functional Analysis, 2nd Edition, The University Press, Cambridge, 1998.
- [19] T.A. Malik, *q-sequence space of non-absolute type and Toeplitz duals*, Palestine J. Math. 13(4) (2024), 575-586.
- [20] M. Mursaleen and F. Başar, Sequence spaces: Topics in Modern Summability Theory, Series: Mathematics and its Applications, CRC Press/Taylor & Francis Group, Boca Raton. London. New York, 2020.
- [21] K. Raj, S.A. Mohiuddine, and S. Jasrotia, *Characterization of summing operators in multiplier spaces of deferred Nörlund summability*, Positivity, 27 (9), 2023.
- [22] M.H. Srivastava, *Operators of basic (or q—) calculus and fractional q-calculus and their application in geometric function theory*, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327-344.
- [23] M. Stieglitz and H. Tietz, *Matrixtransformationen von folgenraumen eine ergebnisubersicht*, Math. Z., 154 (1977), 1-16.
- [24] T. Yaying, B. Hazarika, and M. Mursaleen, On sequence space derived by the domain of q-Cesàro matrix in ℓ_p space and the associated operator ideal, J. Math. Anal. Appl., 493 (2021), 124453.
- [25] T. Yaying, B. Hazarika, and M. Mursaleen, *On generalized* (p,q)-Euler matrix and associated sequence spaces, J. Funct. Spaces, 2021, 8899960.
- [26] T. Yaying, M.T. Kara, B. Hazarika, and E.E. Kara, *A study on q-analogue of Catalan sequence spaces*, Filomat, 37 (2023), 839-850.
- [27] T. Yaying, B. Hazarika, and S.A. Mohiuddine, *Domain of Padovan q-difference matrix in sequence spaces* ℓ_p *and* ℓ_{∞} , Filomat, 36 (2022), 905-919.
- [28] T. Yaying, B. Hazarika, B.C. Tripathy, and M. Mursaleen, *The spectrum of second order quantum difference operator*, Symmetry, 14 (2022), 557.
- [29] T. Yaying, B. Hazarika, and S.A. Mohiuddine, *On difference sequence spaces of fractional-order involving Padovan numbers*, Asian-Eur. J. Math., 14 (2021), 2150095.
- [30] M. E. Yildirim, The spectrum and fine spectrum of q-Cesàro matrices with 0 < q < 1 on c_0 , Numer. Funct. Anal. Optim., 41 (2020), 361-377.

(Received: October 15, 2023) (Revised: June 30, 2025) Toseef Ahmed Malik Department of Mathematics Govt. Boys Higher Secondary School, Darhal Jammu and Kashmir-185135 India e-mail: tsfmlk5@gmail.com