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THE GENERALIZED QUANTUM DIFFERENCE OPERATOR IN ¢ AND
co AND THEIR DUALS

TOSEEF AHMED MALIK

ABSTRACT. In this article, we present a generalization of the k' order of forward
difference operator AX using its quantum analog A’;. We study its domains c(A’Lj)
and co(A’;) in the spaces ¢ and ¢ of convergent and null sequences, respectively.
Additionally, we show that the domains c(Ag) and co(Az) are BK-spaces and lin-
early isomorphic to ¢ and cg, respectively. Furthermore, we construct Schauder
bases and examine the Kéthe duals of the spaces C(Az) and cq (Az). The final seg-
ment deals with the characterization of certain class of matrix mappings from the
spaces c(Ag) and co(Az) to the space v € {¢,cg, los, £1}.

1. g-ANALOG

A g-analog of a mathematical expression is a generalization of the expression that
employs a new parameter g that returns the original expression in the limit as ¢ — 1.
Mathematicians are generally interested in g-analogs that arise naturally rather than
in arbitrarily constructing g-analogs of known results. The application of g-calculus
while establishing the g-analog of the classical derivative and integral operators is
given by Jackson [15]. Initially, the g-analog studied in detail is the hyper geometric
series introduced in the 19th century. Since then, g-analogs have been studied most
frequently in the mathematics fields of combinatorics and special functions. It finds
many applications including the study of fractals and expressions for the entropy of
a chaotic dynamical system.

The notation below is quite familiar in the g-analog.

Let 0 < g < 1. Then the g-integer is defined as

Z;;(%qt’ (V:1727"')7

=10, (v="0).
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It is obvious that if g — 17, then [v], = v.
The g-analog (¥) of the binomial coefficient () is defined as
q v

!
() - i 0SVEP
V/g 0, otherwise,

where g-factorial of [v],! of v is defined as

| — ;: [P]q, (V:1727“'>7
Mq-—{L :

Also, (8)q = (S)q = (V)q = 1. Moreover, (VK k)q = (Z)q, which is the natural g-analog

v
of its ordinary version (VX k) = (Z) For more basic terminologies of the g-analogs,

readers can refer to [17, 22] and references therein.

Lemma 1.1. The Gauss’s g- binomial formula is given by

(ts)y= i‘, <IZ> qq(é)y"%’,

=0
where (;) =0fort <2

2. q-DIFFERENCE OPERATOR

The forward difference operator A is defined by (Ay); = y; — yr+1. The for-
ward difference operator plays an important role in the field of sequence space,
summability theory, approximation theory etc. For instance, in the ordinary sense
the sequence (y;) = (¢);>, is divergent, but the sequence (Ay); = —1 is conver-
gent for all 7 . In [16], Kizmaz studied and introduced the domains /e (A),c(A)
and co(A). The forward operator A was later generalized to second-order A de-
fined as (A%y); = (Ay); — (Ay);+1. In the literature, several generalizations of the
difference operator A and their domains have been contributed and studied by sev-
eral researchers and can be found in nice papers [7, 9, 10, 12—-14]. The reader may
also refer to the recent monographs [5] and [20], and references therein, devoted
to summability theory and the sequence spaces generated by some triangle matrices
with a new approach. In [8], Demiriz and Sahin studied the sequence space by means
of a g-analog of the Cesaro matrix C(q), where C(g) = (cl,) (see [2]) is defined as

q
o {(nﬂ)[q]’ O=<r<mn,
nt
0, t>n.

Recently in [25, 26], the authors studied the (p’, g)-analog of Euler spaces and the g-
analog of Catalan spaces. More recently, the g-difference spaces of the second order
have been studied and introduced by Alotaibi et al. [3] and Yaying et al. [27, 28]. For
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detailed studies on the g-analog, the reader may strictly refer to [21, 29]. Following
[6], the g-difference operator is defined as

Ay = (o —y1,901 —2),6* (2 = ¥3), 4 (3 —y4), ) (2.1)

where y = (yo,y1,¥2,- -+ ). As a consequence, the operator induces immediately the
g-binomial coefficients via iteration, A’; = Aq(A’;*l) as follows

k k a n-t k k k m [k
Ay =g Y (—1)g(") ( ) w=q"Y (~1)¢®) < ) Y-
frurt n—t), = n),
Furthermore, the g-difference matrix A'; = ((8’;) ) 18 defined as
WA S
=170 (1) |
q

where 8, being lower triangular with non-zero diagonal entries is invertible. Equiv-
alently,

- o O O

The inverse of A'; is written as (8’;) . given by

(51;)’;1 :(_l)nqn(n_k)_(;) <k> _ <k+t—n—1> ‘

n t—n

Quite recently, Ellidokuzoglu and Demiriz [11] studied and introduced the domain
¢, (A’;) ={/} At by using the A’; operator and exhibited this sequence space. For more
interesting literature, we refer to the studies (see [4, 19, 30]).

Motivation: In the literature, several authors can be found associated with the
quantum generalization of familiar operators including the difference operator, Haus-
dorff operators, etc. Recently, Yaying et al. [26], Alotaibi et al. [3] studied the se-
quence spaces of quantum generalization. However, no research has been carried out
on the domain of generalized g-difference sequence spaces in ¢ and cg, respectively.
Inspired by the above research, we present the generalized g-difference forward op-
erator, and its domain in the spaces ¢ and ¢y of convergent and null sequences, re-
spectively. We also show topological properties and construct the Schauder basis for
c(A%) and co(A}). Furthermore, we calculate the duals of the newly defined spaces
c(A’;) and C()(AI;) and finally characterize the classes (c(A’;),V) and (CO(A';),V) of
certain matrix mappings, where v € {lw,c,co, 1 }.
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3. SEQUENCE SPACES

Let o represent the space of all complex-valued sequences. The well-known clas-
sical sequence spaces are the set of all bounded sequences /.., the null sequences
co, the convergent sequences c, and the p-absolutely summable sequences £, where
1 < p < . We also indicate the spaces of all the convergent and bounded series
by cs and bs, respectively. A Banach sequence space with continuous coordinates
is a BK-space. For instance, the space /, is a BK-space furnished by the norm
]| 0, = (X [vx|?)!/P. Tt is also well known that the sequence spaces ¢ and ¢ are
Banach spaces accompanied by the supremum norm. For any sequence space p and
infinite matrix A4, the matrix domain u4 of 4 in a sequence space u is defined as

pua={yco: yecu}. (3.1

Throughout the text, N is the set of natural numbers that include zero.
If a normed linear space U contains a sequence (b, ), then for every y € U there is a
unique sequence of scalars (o) such that

lly — (a1by + a2by + -+ - + 0yby) || — 0 as n — oo,

and then (b,,) is known as the Schauder basis for U. The series )., 0,0, has the
sum y, known as the expansion of y about the basis (b,,), and we write y =Y, 0t by,
(see [18]).

Let U and ¥ be any two sequence spaces. Then, the multiplier space M (U, V)
is given as

M (U, V) = {(an) € ®:ay = (ayy,) € V, forevery y € U}.

Thus, the a-dual 7%, the B-dual 7P and the y-dual UY of €U are respectively defined
as
U= M(U ), UP =M (Ucs), U= M(U,bs).

An infinite matrix can be observed as the linear operator from one sequence space
to another sequence space. For this, let U and V be arbitrary subsets of ®. Let 4 =
(an) be an infinite matrix with complex entries a,,. By Ay = (4,(y)), we generally
write the 4—transforms of a sequence y = (y;) provided the series 4,(y) = Y.i~ o any:
is convergent for each n > 0.

If Ay € V with y € U, then 4 defines a matrix mapping from U to 4. In addition,
(U, V) indicates the family of all infinite matrices that map U into V. Thus, 4 is
in (U, V) whenever Ay = ((4y),) € V,Vy € U, thatis, 4 € (U, V) if and only if
4, e Ub, v n, [20].

4. THE SPACES c(A}) AND co(AY)

In the present section, our aim is to introduce the generalized g-difference se-
quence spaces using the A’; operator and to study the domains of the newly defined
matrix in the sequence spaces ¢ and cg. Now, let us define the sequence spaces
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c(A’;) and ¢ <AZ)’ as the set of all sequences such that their A’;—transforms are in the
sequence spaces ¢ and co, that is,
exists} ,

k
co(4y) = {y = (v) € o: limg" Y (~1)"g) (i) Vit = 0} .
q

n=0

c(Ay) = {y = (v) € 0 lim

#y vt () oo

n=0

It is evident that spaces c(A’;) and cO(A’j’) reduce to ordinary difference spaces c(AF)
and cO(Ak ) when g — 17 as studied and introduced by [1]. With the definition of the
matrix domain (3.1), the spaces c(A’;) and ¢ (Ag) can be redefined as C(A’;) =(c) A

and cO(Az) = (CO)A";-
Define the sequence z = (z) as the A’;-transforms of a sequence y = (y;), that is,

1
n

a=q" Y (~1)"q0) <z> Ynt, (1 €N). (4.1)
q

n=0

In addition, y = (y,) is defined as
! (k +t—n—

J’t:Z

=0 t—n

1) Zn, (t €N).

Theorem 4.1. C(AZ) and C()(Al(j) are BK-spaces accompanied with the norm defined

as
k by () k
I¥llear) = I¥lleo(aty = [18gY ]|, = sup | Y (=1)"q"2 ( ) Yntt] -
teN n—0 njg
Proof. The proof is obvious, so we omit the details. g

Theorem 4.2. c(A) 2 ¢ and co(A) = co.

Proof. Let A € {c,co}. Define the mapping ¢ : X(A’;) — A by Oy = A’;y forall y €
k(A’,}). It is trivial that ¢ is a linear bijection preserving the norm. Hence, K(A’;) =
O

Theorem 4.3. The space X(A];) for A € {c,co} is a non-absolute type.

Proof. Letz = (z) = {(—1)"}. Then, it is evident from equality (2.1) that
Az =1{2,-29.2¢*, =24’ -} =2{1,~q,4*, —¢*,- -},
Az=2(1+9){1,—¢*,¢",---},
Az=2(1+q)(1+¢){1,—¢’,¢°,...},
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Az=2(1+q)(1+¢)(1+q) - (1+4 {1, ¢, }.
Thus,'(A’;z)t =2(14¢)} ' (—1)'¢q". However, A |z| = {0,0,0,---}.
This shows that [[y[|yaz) 7# [|[2[ll2ag), for z = |z|- O
Theorem 4.4. The inclusion ¢ C C(Az) strictly holds for g € R™.

Proof. Let z € c. Since A’; is conservative for each ¢ € R, we observe that A’;z €
¢, which gives us that z € C(A’;). Hence ¢ C c(A’;). To prove strictness, take the
sequence u, = (—t) for all + € N. Then u ¢ ¢. By using the equality (2.1), it is
deduced that
Agu=((1=q)(1=g*)(1=¢*) - (1=4"1)g")
=((1-q)5"'q").

This shows that lim;_,. A’;u exists and so A’;u € ¢ which gives us u € c(Az). Hence,
the relation ¢ C c(A’;) is strict, as claimed. O

Theorem 4.5. The inclusion co C co(A7') strictly holds for g > 1.

Proof. To establish the proof, one can proceed in a similar fashion using Theorem
4.4, O

To end this segment, let us obtain the Schauder basis for the spaces c(A’;) and

o (A’;). We know that the matrix domain u4 of the triangle A4 in a sequence space u
has a basis whenever u has a basis. Consequently, Theorem 4.2 gives the following
result.

Theorem 4.6. For each fixed t € N, define the sequence g)(q) = (gﬁ,t)(q)) of the
elements of the space c (A’;) by

k+t—n—1
g =] U )y 05t
0, t>n.

(i) The set {8 (), (q).8'?(q),--} forms the basis for cO(A’;), and every y €
Co(Az) is uniquely expressed as y = Y:> o vig® (q).

(ii) The set {e,g'" (q),g" (q),g®(q),---} forms the basis for C(Ag)’ and every y €
c(Ag) is uniquely expressed as 'y = he + Y5> (v, —h)g'(q), where h = lim;_0 v, =
lim;_seo (A’;y)t and e is the unit sequence.

5. THE ALPHA-DUAL, THE BETA-DUAL AND THE GAMMA-DUAL

The current segment involves 7%, TP and U for U € {c(A’;),CO(A’;). Since the
calculation of duals is quite similar for both spaces, we skip the proof for the space
C(A’;). Firstly, we list the well-known lemmas due to Stielglitz and Tietz [23], which
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are needed to obtain the alpha-dual, the beta-dual and the gamma-dual. In the re-
mainder of the paper, & will denote the collection of all finite subsets of N.

) < oo, (5.1)

Lemma 5.1. 4 = (ay) € (co,1) if and only if
sup <Z Z Apt
KeF \1=0

nek
Lemma 5.2. 4 = (a,) € (co,c) if and only if

sup Y lan| < oo, (5.2)
nGNt:()
lgn ane = Py, for eacht € N. (5.3)

Lemma 5.3. 4 = (a,) € (co,l) if and only if (5.2) holds.
Theorem 5.1. Let us define the set ki(q) as

oo

ki(q) = {az (@) €@:sup ) |Y <k+2:2_ 1) ay
q

KeF n=0|rcK

< oo} |
Then, {c(A%)}* = {co(A5)}* = ki ()-
Proof. Consider the below equality
Lo (k+t—n—1
av=Y ) = (Pl 5.4
q

n=0 I—n

forall# € N, and let z = () be the (A} )-transform of y = (y,) and the matrix F(q) =
(fL) be given as

k+t—n—1
q (" )q7 0<r<mn,
nt —

0, t>n.

We observe that using the equality (5.4), ay = (a,y,) € ¢; whenever y € cO(A’;) if
and only if F(q)z € ¢; for z € ¢o. Thus, we conclude that a = (a,) € {ki(q)}*
if and only if the matrix (A’;) € (co,1). Thus, we conclude by Lemma 5.1 that

{co(A))}* =ki(q). 0
Theorem 5.2. Let us define the sets ky(q), k3(q) and k4(q) by

> [k —t—1
kg(q):{a:(an)ewzz< tn ) a, exisz‘sforeachtEN}7
n=t q

n—t

u <k—|—n—t—l)

Z Ay | </,
m=t n—t q

n

kag) = {az (an) €@ :sup Y

neNy—(
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"k —t—1
k4(q):{a:(an)em:r}22mz_“t( +Z—; )qamexists}.

Then, {co(&4)}P = ka(q) Nks(q) and {c(A5)}P = ka(q) Nks(q) Nka(q).
Proof. Consider the equality

Z >Zm a;
1=0 =0 |m=0 t—n q
Lol (k+n—r—1
=2 X an | 7
t=0 | m=t n—t q

for each n € N. Then, the sequence z = (z) is the Ag-transform of sequence y = (y;),
where the matrix G(g) = (g?,) is given by

ktn—t—1
q z’l:l‘( Z—I; )qam’ Ogt Sn
0,

nt —
t>n

for every ¢,n € N. Thus, we see that ay = (a,;x;) € cs fory € co(A’;) if and only if
G(q)z € c whenever y € ¢o. This implies that a = (a,) is a sequence in the 3-dual of
€0 (Az) if and only if the matrix G(g) € (co,c). Hence, by Lemma 5.2, it is deduced
that sup,,cy Yo } gzt{ < oo and therefore lim,, .. g, exists for each ¢ € N. Therefore,

{co(AE)}YP = ka(q) Nks(q). u
Theorem 5.3. The gamma dual of c(A’;) and ¢y (A’;) is k3(q).
Proof. The proof for the y-dual is similar to Theorem 5.2 using Lemma 5.3. O

6. MATRIX MAPPINGS

The present section examines the necessary and sufficient conditions for a matrix
mapping from spaces c(A’;) and co(Ag) to space v, where v € {lw,/,c,co}. The
Theorem below is useful in our study.

Theorem 6.1. Let v C @ and T be any one of the spaces cq or c¢. Then A = (ay) €
(T(A’;),v) if and only if E") = (e,(;:t)) € (T,c) foreachn e Nand E = (ey;) € (T,V),
where

(n) {0, t>m,

Cmt = m k+n—t—1
{0 )qanj7 0<t<m,

and "
k+n—t—1
ent:Z<

_ > anj, Vt,n€N.
Jj=t n q
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Proof. Let A € (T(A}),v) and y € T(A}). Then, we have the following equality

ICTESD 0 3 (RN DPES ) f (VIR VRS WD

t=0j=0 1=0 j=t
(6.1)

for every n,m € N. Also, Ay exists and so E(™ € (T,c). Again, as m — oo in the
equality (6.1), it yields that 4y = Ez. Since Ay € v and so Ez € v which leads to the
fact that E € (T, V).

Conversely, suppose that E(") = (e%)) € (T,c)foreveryne Nand E = (e,;) € (T,V).
Take y € T(A’;). Then (ay )ien € TP for each n € N which gives us the fact that
(An)ren € {T(A’;)}B for each n € N. Also, from the equality (6.1), 4y = Ez as
m — oo. This gives us 4 € (T(A’;),V), as claimed. O

Following [23], let us define the following conditions:

(n)

lim e, exists for every n,t € N, (6.2)
Mm—yoo

sup Z )e,(,;’,) < oo for eachn € N, (6.3)
meN; 0

lim Z emt exists for eachn € N, 6.4)
m—yoo =

lim Z leq:| = a, for each t € N. (6.5)
e

The following results can be derived using the above conditions together with Theo-
rem 6.1 as follows:

Corollary 6.1. The followmg statements hold:

(i) A= (ay) € (co(A ), le) if and only if (6.2), (6.3) hold, and also (5.2) holds with
ey instead of ay.

(ii) A = (an) € (co(A ) ¢) if and only if (6.2), (6.3) hold, and also (5.2) and (5.3)
hold with e, instead of Q.

(iii) A = (an) € (co(A ) co) if and only if (6.2), (6.3) hold and also (5.2) and (5.3)
hold with o, = 0, with e, instead of ay.

(iv) A= (aw) € (CO(AS),E}) if and only if (6.2), (6.3) hold, and also (5.1) holds with
en instead of ay;.

Corollary 6.2. The following statements hold:

(i) A= (an) € (C(A’;),Em) if and only if (6.2), (6.3) and (6.4) hold, and also (5.2)
holds with e, instead of a;.

(ii) A = (ay) € (c(A’;),c) if and only if (6.2), (6.3), (6.4) and (6.5) hold, and also
(5.2) and (5.3) hold with e, instead of a,;.

(iii) A= (an) € (c(A’;),co) if and only if (6.2), (6.3), (6.4) and (6.5) hold with o, =0,
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and (5.2) and (5.3) also hold with e, instead of a,;.
(iv) A= (an) € (c(A’;),él) if and only if (6.2), (6.3) and (6.4) hold, and also (5.1)
holds with e, instead of ay;.
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