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SOME SOLITONS ON LORENTZIAN PARA-KENMOTSU MANIFOLDS

ABHIJIT MANDAL AND MEGHLAL MALLIK

ABSTRACT. In this paper we study the nature of the Einstein soliton and n-Einstein
soliton in the framework of Lorentzian para-Kenmotsu manifolds (briefly, LP-
Kenmotsu manifolds). We find an expression for scalar curvature of LP-Kenmotsu
manifolds admitting the Einstein soliton and n-Einstein soliton in various cases.
We prove that if an LP-Kenmotsu manifold contains an M-Einstein soliton with a
parallel Reeb vector field then the manifold is n-Einstein. We study the nature of
the n-Einstein soliton on these manifolds with conformal, collinear and torse form-
ing potential vector fields. We also study the n-Einstein soliton on these manifolds
satisfying the curvature conditions: (§.)z.S =0, (§.)y, .S =0and (§.)5.W2 =0,
where R, S and W, are, respectively, the Riemannian curvature tensor, Ricci curva-
ture tensor and W,-curvature tensor.

1. INTRODUCTION

In 2018, the notion of Lorentzian para-Kenmotsu manifold (LP-Kenmotsu mani-
fold) has been introduced by A. Haseeb and R. Prasad [6]. Later, N. V. C. Shukla and
A. Dixit [17] studied ¢-recurrent Lorentzian para-Kenmotsu manifolds and found
that such type of manifolds are n-Einstein. Further, V. Chandra and S. Lal [3] studied
some special results on 3-dimensional Lorentzian para-Kenmotsu manifolds. This
manifold was also studied by many authors, namely, K. L. Sai Prasad, S. Sunitha
Devi [14], T. Mert and M. Atceken ( [9], [10], [11]).

The concept of Ricci flow was first introduced by R. S. Hamilton in the early
1980s. Hamilton [5] observed that the Ricci flow is an excellent tool for simplifying
the structure of a manifold. It is the process which deforms the metric of a Riemann-
ian manifold by smoothing out the irregularities. The Ricci flow equation is given
by

dg

o
where g is a Riemannian metric, S is Ricci tensor and ¢ is time. The solitons for the
Ricci flow are the solutions of the above equation, where the metrices at different

-2, (1.1
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times differ by a diffeomorphism of the manifold. A Ricci soliton is represented
by a triple (g,V,A), where V is a vector field and A is a scalar, which satisfies the
equation

L,g+2S+2Ag =0, (1.2)

where § is the Ricci curvature tensor and L, g denotes the Lie derivative of g along the
vector field V. A Ricci soliton is said to be shrinking, steady, expanding accordingly
A < 0,A=0,A> 0, respectively. The vector field V is called potential vector field
and if it is a gradient of a smooth function, then the Ricci soliton (g,V,A) is called
a gradient Ricci soliton and the associated function is called the potential function.
The Ricci soliton was further studied by many researchers. For instance, we see
([71, [13], [16], [18]) and their references.

Catino and Mazzieri [2] in 2016 first introduced the notion of the Einstein soliton
as a generalization of the Ricci soliton. An almost contact manifold M with structure
(0,€,Mm,¢) is said to have an Einstein soliton (g,V,A) if

L,g+25+(2A—r)g=0, (1.3)

holds, where r is the scalar curvature. The Einstein soliton (g,V,A) is said to be
shrinking, steady, expanding accordingly A < 0,A = 0,A > 0, respectively. The Ein-
stein soliton creates some self-similar solutions of the Einstein flow given by

9g

= =2 .
o S+rg

Again as a generalization of the Einstein soliton, the n-Einstein soliton on mani-
fold M (¢,&,m, g) is introduced by A. M. Blaga [1] and it is given by

L,g+2S+(2h—r)g+2fM®n =0, (1.4)

where, P is some constant. When = 0 the notion of m-Einstein soliton simply
reduces to the notion of the Einstein soliton. And when  # 0, the data (g,V,A,pB) is
called a proper n-Einstein soliton on M. The n-Einstein soliton is called shrinking if
A <0, steady if A = 0, and expanding if A > 0.

In [12], Pokhariyal and Mishra have defined the W,-curvature tensor given by

Wo(XV)Z=R(XY)Z~ L [g(Y.2)0X~g(X.2)Q],  (15)

for all X,Y,Z € x(M), where R is the Riemannian curvature tensor and y (M) being
the set of all vector fields on M.

As a generalization of concircular, concurrent and parallel vector fields, Yano [20]
introduced the notion of a torse-forming vector field. A non-zero vector field V is
said to be torse forming on a Riemannian manifold M if

ViV = X +n(X)V, (1.6)
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where f is a smooth function defined on M and & is a 1-form. If the 1-form 7«
becomes zero, then the vector field V is concircular [4,19]. If f =1 and © = 0, then
V is concurrent [21], also if f =t = 0, then the vector field V is parallel.

Definition 1.1. A Lorentzian para-Kenmotsu manifold M is called an n-Einstein
manifold if its Ricci tensor is of the form

S(Y,Z) = klg(sz) +kom (Y)n (2)7
forallY,Z € (M), where ky,ky are scalars.

This paper is structured as follows:

The first two sections of the paper have been kept for introduction and preliminar-
ies. In Section 3, we introduce the Einstein soliton on the LP-Kenmotsu manifold.
In Section 4, we study the n-Einstein soliton on the LP-Kenmotsu manifold. Sec-
tion 5 is concerned with the n-Einstein soliton on LP-Kenmotsu manifold satisfying
(€.)g-S = 0. Section 6 deals with the n-Einstein soliton on the LP-Kenmotsu man-
ifolds satisfying (Z:,.)Wz .S = 0. In Section 7, we discuss the n-Einstein soliton on
the LP-Kenmotsu manifolds satisfying (&.);.W> = 0. Finally, Section 8 contains an
example of an LP-Kenmotsu manifold admitting the Einstein and n-Einstein soliton.

2. PRELIMINARIES

Let M be an n-dimensional Lorentzian almost para-contact manifold with struc-
ture (¢,&,Mm, ), where 1 is a 1-form, & is the structure vector field, ¢ is a (1, 1)-tensor
field and g is a Lorentzian metric satisfying

0*(X) = X+nX)EnE) =-1, 2.1)
g(0X,0Y) = g(X,Y)+nX)n(Y), (2.3)

for all vector fields X,Y on M. A Lorentzian almost para-contact manifold is said to
be a Lorentzian para-contact manifold if 1 becomes a contact form. In a Lorentzian
para-contact manifold the following relations also hold [8, 15]:

0E&) = 0mnod=0, 2.4)
g(X,0Y) = g(¢X,Y). (2.5)
The manifold M is called a Lorentzian para-Kenmotsu manifold if

for any smooth vector fields X,Y on M.
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In a Lorentzian para-Kenmotsu manifold the following relations also hold [6]:

Vx€§ = —X-n(X)g, 2.7

(Vxn)Y = —¢(X,Y)—nX)n(Y), (2.8)
NRX,Y)Z) = gV, Zm(X)-gX,Z)n(Y), (2.9)
R(X,Y)& = nY)X—MX)Y, (2.10)
R((th)Y = 8(X7Y)§—TI(Y)X7 (2.11)
REX)E = X+n(X)E, (2.12)
S(X,§) = (n-1)n(X) (2.13)
§(68) = —(—1), (2.14)

Q€ = (n-1)g, (2.15)
S(0X,0Y) = SX,Y)+(r-1)mEX)n(Y), (2.16)

for any smooth vector fields X,Y,Z on M.

3. EINSTEIN SOLITON ON THE LP-KENMOTSU MANIFOLD

In this section we examine the nature of the Einstein soliton on the LP-Kenmotsu
manifold with a structure vector field and a torse forming vector field as a potential
vector field.

Theorem 3.1. Let M be an LP-Kenmotsu manifold admitting an Einstein soliton
(g,V,A). If the non-zero potential vector field V is collinear with the structure vector
field, then the soliton is

1. expanding if r > 2(n—1),

2. steady if r=2(n—1),

3. shrinking if r <2(n—1).

Proof. After expanding (1.3), we have

g(VxV,Y)+g(X,VyV) +28(X,Y) + (2h— r)g(X,¥) = 0. 3.1)
Setting V =& in (3.1) we get
0=—-2¢X,Y)-2n(X)n(Y)+2S(X,Y)+ (2A—r)g(X,Y). (3.2)
Putting X = & and using (2.1), (2.13) we get
0==2n—1M¥)—2r—rm(Y). (3.3)
Since N (Y) # 0, we have
A=2—(n-1),

which implies the theorem. U



SOME SOLITONS ON LORENTZIAN PARA-KENMOTSU MANIFOLDS 153

Theorem 3.2. Let M be an LP-Kenmotsu manifold admitting an Einstein soliton
(g,V,A). If the potential vector field is torse-forming, then the soliton is
1. expanding lf%(TC(V) +r)—5+f<0,
2. steady if L(n(V)+r)— 5+ f=0,
3. shrinking if L(n(V)+7r)— 5+ f > 0.
Proof. Using (1.6) in (3.1) we get
0 = (2f+2A—r)g(X,Y)+7n(X)g(V.Y)
+7(Y)g(X,V) +28(X,Y). (3.4)
Contracting (3.4) over X and Y we obtain
) Lawy+n|+L—
= — | — r _
n 2

which implies the theorem. U

4. n-EINSTEIN SOLITON ON LP-KENMOTSU MANIFOLDS

Theorem 4.1. If an n-dimensional LP-Kenmotsu manifold admits an n-Einstein soli-
ton (g,&,\,B), then the soliton scalars are given by the following equations

v r n-3
A -1 E(nfl)_{—l’
B — _ang r tn,

n—1 n-—1
where divE=Divergence of €.
Proof. Applying V =& in (1.4), we get

0= (Leg) (X,Y)+2S(X,Y)+(2A—r)g(X,Y)+2BM (X)n(Y). (4.1
Using (2.7), we get
0 = g(Vx&Y)+g(X,VyE)+25(X,Y)
+(2A—r)g(X,Y)+2pn (X)n (Y),
= (2A—r—2)g(X,Y)+2S(X,Y)+2(B—1)n(X)n(Y). 4.2)

Setting X =Y =& in (4.2), we get
1
B:k—i[r—2(n—1)]. 4.3)
Taking an orthonormal frame field and contracting (4.1) over X and Y, we obtain

B = divE +An — %(n ~2). (4.4)
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Comparing the value of B from (4.3) and (4.4), we get

divE r,n—3
= — 1. 4.
A ) P “.5)
Putting the value of A from (4.3) in (4.5), we get
B:_diVE:, L

n—1 n—1
O

Corollary 4.1. If an n-dimensional LP-Kenmotsu manifold M contains an n-Einstein
soliton (g,§,\,B) , then M is an n-Einstein manifold

Proof. From equation (4.2) we have
r
SOY) = (5=A+1)g(X.¥) = (B=1mX)n(¥), (4.6)
which shows that M is n-Einstein manifold. g

Theorem 4.2. If an LP-Kenmotsu manifold M contains an m-Einstein soliton (g,&,\, B)
with the structure vector field & being parallel i.e., Vx& = 0, then M is an n-Einstein
manifold.

Proof. After expanding the Lie derivative we get from (1.4)

+(2A—r)g(X,Y) +2pn (X)n(Y). 4.7)

Setting V =& and Vx& = 0 in (4.7), we get
S(Y) == (A=3) s(X.¥) =B (X)n(¥), (48)
which shows that M is n-Einstein. U

Corollary 4.2. If an n-dimensional LP-Kenmotsu manifold admits an m-Einstein
soliton (g,§,\,B), then the scalar curvature of M is constant.

Proof. Tracing (4.8), we have
~ 2(nh—B)
T2
which implies
or=0.
g

Theorem 4.3. If M is an LP-Kenmotsu manifold admitting an n-Einstein soliton
(g,V,A,B) such that V € D = kern|, then the scalar curvature of M is given by

r=2n—1+X1)—2B.
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Proof. Consider the distribution D on the LP-Kenmotsu manifold M as D = kern.
IfV € D, then

n()=0.
Taking the covariant derivative with respect to & and using (Vén) V =0, we get
n(VeV) =0. (4.9)

Setting X =Y =& in (4.7) and using (2.14), (4.9), we obtain

0 = 2g(VeV,&)+2S(EE)+(2h—rm () +2Bn (&) (&)
= 27 (VgV) —2(n—=1)—(2r—r)+2B
= 2(n—1+A)+r+2p.
This implies the theorem. O

5. M-EINSTEIN SOLITON ON THE LP-KENMOTSU MANIFOLDS SATISFYING
(£)p-S=0
R

Theorem 5.1. Let M (¢,£,M,g) be an n-dimensional LP-Kenmotsu manifold admit-
ting M-Einstein soliton (g,§,\,B) and satisfying (§.)g .S = 0, then the soliton con-
stants are given by

1
A=3lr—20-2)].p=1.

Proof. The condition that must be satisfied by S is
S(R(E,X)Y,Z2) +S(Y,R(§,X)Z) =0, (5.1)

forall X,Y,Z e x(M).
Using (2.11) and replacing the expression of S from (4.6) in (5.1), we get

B-=DgX.Y)M(2Z)+gX.ZmY)+2nX)n¥)n(2)] =0,  (5.2)
For Z =& in (5.2) we have
(B—1)g(9X,0Y) =0,
for all X,Y € (M), which gives
B=1. (5.3)
From (4.3) and (5.3) we obtain
1
A= 3 [r—2(n—2)].
O

Corollary 5.1. The n-Einstein soliton (g,&,\, ) on an n-dimensional LP-Kenmotsu
manifold M satisfying (&.)g .S = 0 is shrinking, steady and expanding accordingly

r<2n-=2),r=2n-2), r>2(n-2).
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Corollary 5.2. On an LP-Kenmotsu manifold M satisfying (€.), .S = 0, there is no
Einstein soliton with the potential vector field &,

6. M-EINSTEIN SOLITON ON LP-KENMOTSU MANIFOLDS SATISFYING
&)y, S=0

Theorem 6.1. Let M (¢,E,M,g) be an n-dimensional LP-Kenmotsu manifold admit-
ting the M-Einstein soliton (g,&,\,B) and satisfying (.)y, .S = 0, then the soliton
constants are given by

A= g +1,p=n.
Proof. The condition that must be satisfied by S is
O:S(W2(§7X)Yaz)+S(Y7W2(§7X)Z)7 (6.1)

forall X,Y,Z € x(M).
Replacing the expression of S from (4.6) in (6.1), we get

0= =2+1] (1, W2(EX)2) +5(Wa(E.X)Y.2). 6.2)
By the help of (1.5), (2.9), (2.11) and (6.2), we get
0 = [F-n+1][5-A—n+2|[g(x.ZMm() +e(X,¥ ()]
~(B=1) |5 -A+1|nXMEr(2). (6.3)

which gives
r
A==-+1.
> +

Putting the value of A in (4.3), we get

B=n.
g

Corollary 6.1. On an LP-Kenmotsu manifold M satisfying (&.)y, .S = 0, there is no
Einstein soliton with the potential vector field &,.

7. ﬂ—EINSTEIN SOLITON ON LP-KENMOTSU MANIFOLDS SATISFYING
€)g W =0
Theorem 7.1. Let M (¢,£,M,g) be an n-dimensional LP-Kenmotsu manifold admit-
ting the M-Einstein soliton (g,§,\,B) and satisfying (§.)g.W> = 0, then the soliton
constants are given by

A= <%+1),B:n, or A= (%—n—i—Z),B:l.



SOME SOLITONS ON LORENTZIAN PARA-KENMOTSU MANIFOLDS 157

Proof. The condition that must be satisfied by S is

0 = SX,W(Y,Z)V)E-SEW-(Y,Z)V)X +S(X,Y)W2(§,Z)V
—S(E,Y WL (X, Z)V +S(X,Z)W1(Y,E)V —S(E,Z) W, (Y, X))V
+S(X, V)WL (Y, Z2)E—S(E,V )WL (Y, 2)X, (7.1)
forall X,Y,Z,V € y (M) . Taking the inner product with & the relation (7.1) becomes
0 = —SX,W(Y,Z)V)—-S(EWL(Y,Z)V)n(X)
+5(X,.Y)IM(W2(E,Z)V) = S(&, Y m(W2(X, Z)V)
X, ZMWL (Y, E)V) = S(&, Zn (W2 (Y, X)V)
X, VW2 (Y, Z)E) — S(E, VIn(W2 (Y, Z)X). (7.2)

Replacing the expression of S from (4.6), we get

2
_ (5 ot 1) [g(X,YM(Wa(&,Z)V + g(X,VIM(Wa(Y, Z)E]
—(B=1DmX) M MW, nvmmw,

Z)V)+ ¥,2)]
—(n=1)MEIMW2(X,2)V) +n(Z)nW2(Y,X)V)]
—(B—In@EMEZMW2(Y,E)V) — (n—I)n(V)n(W2(Y,Z)X)
—(g—xﬂ) (X, ZM(Wa(Y,E)V). (7.3)
Setting V = & in (7.3) and using (1.5), (2.1), (2.9), (2.10), (2.13) and (2.14), we get

0=(5-r+1)[F-A—n+2|eX.2m¥) —sx.YM@)]. (74
Setting Z = & and using (2.3) in (7.4), we obtain

r r

(5-1+1) [5—r—n+2]gex.07) =0,

which gives

r r
l:(i—Fl),or (§—n+2>. (7.5)
In view of (4.3) and (7.5), we have

A= (%—1—1),[3:11, orA= (%—n—i—Z),B:l.

n

Corollary 7.1. On an LP-Kenmotsu manifold M satisfying (§.)s.W> = 0 there is no
Einstein soliton with the potential vector field &,



158 ABHIJIT MANDAL AND MEGHLAL MALLIK

8. EXAMPLE OF 5-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLD
ADMITTING M-EINSTEIN SOLITON

We consider a 5-dimensional manifold
M= {(x,y,z,u,v) GRS},

where (x,,z,u,v) are the standard co-ordinates in R.
We choose the linearly independent vector fields

d d d
El=x—E=x—,EF3=x—,E4 =x— ,Es = x—.

Let g be the Riemannian metric defined by g(E;,E;) =0, if i # j for i,j =

1,2,3,4,5,
and g (E1,E1) = —1,8(E2,E2) = 1,8(E3,E3) = 1,8(Es,Ex) = 1,8 (Es,Es5) = 1.
Let 1 be the 1-form defined by 1 (X) = g(X,E)) for any X € x (M°). Let ¢ be
the (1,1) tensor field defined by

OE; =0,0E, = —E3,0E3 = —E»,0E4 = —E5,0E5 = —E4. (8.1)

LetX,Y,Zey (MS) be given by

X =x1E1+xEy +x3E3 +x4E4 + x5E5,
Y =y1E1 + 2B +y3E3 + y4Eq + ysEs,
Z=0E1+2E+3E3+24Es+25Es.

Then, we have

g(X,Y) = x1y1 +x2y2 + X3y3 + X4Y4 + X5)5,
n (X) = —X1,
g (0X,0Y) = x2y2 + X33 + X4Y4 + X5Y5.

Using the linearity of g and 0, 1 (E1) = —1,0°X = X +n (X) E; and g (X, Y ) =
gX,Y)+n(X)n(Y) forall X,Y € ¢ (M).
We have
[E1,E>] = Es, [Ey, E3| = E3, [Ey, E4] = E4, [Ey, Es] = Es,
[E,Er] = —E», [E3, E1| = —E3,[E4, E1| = —Eu, [Es, Ey] = —Es,
|E;,E;] = 0 for all others i and j.
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Let the Levi-Civita connection with respect to g be V, then using Koszul formula

we get the following

V. Ei=0,V, E,=0,V, E3=0,V, E4=0,V, Es =0,
Vo,Ei=—E)V, E=—-E,V, E3=0,V, E=0,V, Es=0,
VoEir=—-E3, V. E;=0,V, E3=—E ,V, E4=0,V, Es =0,
Vo Eir=—EyV, E,=0,V, E3=0,V, E4=—E,V, Es=0,
Vi E1—Es5,V, E;=0,V, E3=0,V, E;=0, V,Es = —E,.
From the above results we see that the structure (¢,&,1,g) satisfies
(Vx9)Y = —g(¢X,Y)E —n(Y)0X,VX,Y € x (M) , where 1 (§) =n (E1) = —1.

Hence M’ (¢,&,1,g) is a LP-Kenmotsu manifold.
The non-zero components of Riemannian curvature with respect to the Levi-

Civita connection V are given by

R(El,Ez)E1 EZ,R(El,Eg)Eg =—E,R (E],E3) = E3,
(El,E3) = —El,R(El,E4)E1 =FE4R (El,E4)E4 =—-E,
R(El,E5) —E5,R(E1,E5)E5 =—E,R (Ez,El) =FE,
R(Ez,El) = —EZ,R(EZ,E3)E2 =FE3,R (EQ,E3) =—-E,
R(Ez,E4) Er = E4,R(E2,E4) E4 = —E»,R (E», Es) E; = Es,
R(EZaE5> — _E27R(E3aE1)E3 :El7 (E37E1) _E37
R(E3,E2)Es = E3,R(E3,E2) Ey = —E3,R (E3, E4) E3 = Eq,
R(E3,E4)E4——E3,R(E3,E5)E3=E5, (E3,Es) Es = —Es,
R(E4,E1)Eq = E1,R(E4,E1) Ey = —E4,R (E4,E2)E4—E2,
R(E4,E2) Er = —E4,R(E4,E3) E4 = E3,R (E4, E3) E3 = —Ey,
R(E4,E5)E4—E5, (E4,Es)Es = —E4,R(Es,E1) Es = E,
R(Es,E1)E| = —Es,R(Es,Ez) Es = Ep,R (Es, Ez) Ey = —Es,
R(E5,E3)E5 E3,R(E5,E3)E3 = —E5,R(E5,E4)E5 E4.
Using the above curvature tensors the Ricci curvature tensors with respect to V

are:

S(E1,E\)=—4,S(Ey,Ey) =
S(Es,Es)

S(E4,Eq) =

S(E3,E3) =2,

=2.

Therefore, the scalar curvature tensor with respect to the Levi-Civita connection

isr=4.

If the manifold M contains an n-Einstein soliton (g, E,A, ), then relation (4.3)

becomes

1
B:}.—E[r—Z(n—l)]

1

=A+2.

D]
(8.2)
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Now,
div€ = divE, = g(V, E1,E),i=1,2,3,4,5
= —g(E2, E2) — g(E3,E3) — g(Ea, E4) — g(Es, Es)
— 4.
Setting divE = —4,r =4,n = 5in (4.4) and (4.5), we get

A=3,p=S5.

Obviously, these values of A and [ satisfy equation (8.2) and hence the Theorem 4.1
of Section 4 is verified.

Similarly, we can check all the results for the manifold under consideration.
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