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SOME SOLITONS ON LORENTZIAN PARA-KENMOTSU MANIFOLDS

ABHIJIT MANDAL AND MEGHLAL MALLIK

ABSTRACT. In this paper we study the nature of the Einstein soliton and η-Einstein
soliton in the framework of Lorentzian para-Kenmotsu manifolds (briefly, LP-
Kenmotsu manifolds). We find an expression for scalar curvature of LP-Kenmotsu
manifolds admitting the Einstein soliton and η-Einstein soliton in various cases.
We prove that if an LP-Kenmotsu manifold contains an η-Einstein soliton with a
parallel Reeb vector field then the manifold is η-Einstein. We study the nature of
the η-Einstein soliton on these manifolds with conformal, collinear and torse form-
ing potential vector fields. We also study the η-Einstein soliton on these manifolds
satisfying the curvature conditions: (ξ.)R .S = 0, (ξ.)W2

.S = 0 and (ξ.)S .W2 = 0,
where R, S and W2 are, respectively, the Riemannian curvature tensor, Ricci curva-
ture tensor and W2-curvature tensor.

1. INTRODUCTION

In 2018, the notion of Lorentzian para-Kenmotsu manifold (LP-Kenmotsu mani-
fold) has been introduced by A. Haseeb and R. Prasad [6]. Later, N. V. C. Shukla and
A. Dixit [17] studied φ-recurrent Lorentzian para-Kenmotsu manifolds and found
that such type of manifolds are η-Einstein. Further, V. Chandra and S. Lal [3] studied
some special results on 3-dimensional Lorentzian para-Kenmotsu manifolds. This
manifold was also studied by many authors, namely, K. L. Sai Prasad, S. Sunitha
Devi [14], T. Mert and M. Atceken ( [9], [10], [11]).

The concept of Ricci flow was first introduced by R. S. Hamilton in the early
1980s. Hamilton [5] observed that the Ricci flow is an excellent tool for simplifying
the structure of a manifold. It is the process which deforms the metric of a Riemann-
ian manifold by smoothing out the irregularities. The Ricci flow equation is given
by

∂g
∂t

=−2S, (1.1)

where g is a Riemannian metric, S is Ricci tensor and t is time. The solitons for the
Ricci flow are the solutions of the above equation, where the metrices at different
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times differ by a diffeomorphism of the manifold. A Ricci soliton is represented
by a triple (g,V,λ), where V is a vector field and λ is a scalar, which satisfies the
equation

LV g+2S+2λg = 0, (1.2)

where S is the Ricci curvature tensor and LV g denotes the Lie derivative of g along the
vector field V . A Ricci soliton is said to be shrinking, steady, expanding accordingly
λ < 0,λ = 0,λ > 0, respectively. The vector field V is called potential vector field
and if it is a gradient of a smooth function, then the Ricci soliton (g,V,λ) is called
a gradient Ricci soliton and the associated function is called the potential function.
The Ricci soliton was further studied by many researchers. For instance, we see
( [7], [13], [16], [18]) and their references.

Catino and Mazzieri [2] in 2016 first introduced the notion of the Einstein soliton
as a generalization of the Ricci soliton. An almost contact manifold M with structure
(φ,ξ,η,g) is said to have an Einstein soliton (g,V,λ) if

LV g+2S+(2λ− r)g = 0, (1.3)

holds, where r is the scalar curvature. The Einstein soliton (g,V,λ) is said to be
shrinking, steady, expanding accordingly λ < 0,λ = 0,λ > 0, respectively. The Ein-
stein soliton creates some self-similar solutions of the Einstein flow given by

∂g
∂t

=−2S+ rg.

Again as a generalization of the Einstein soliton, the η-Einstein soliton on mani-
fold M (φ,ξ,η,g) is introduced by A. M. Blaga [1] and it is given by

LV g+2S+(2λ− r)g+2βη⊗η = 0, (1.4)

where, β is some constant. When β = 0 the notion of η-Einstein soliton simply
reduces to the notion of the Einstein soliton. And when β ̸= 0, the data (g,V,λ,β) is
called a proper η-Einstein soliton on M. The η-Einstein soliton is called shrinking if
λ < 0, steady if λ = 0, and expanding if λ > 0.

In [12], Pokhariyal and Mishra have defined the W2-curvature tensor given by

W2 (X ,Y )Z = R(X ,Y )Z − 1
n−1

[g(Y,Z)QX −g(X ,Z)QY ] , (1.5)

for all X ,Y,Z ∈ χ(M), where R is the Riemannian curvature tensor and χ(M) being
the set of all vector fields on M.

As a generalization of concircular, concurrent and parallel vector fields, Yano [20]
introduced the notion of a torse-forming vector field. A non-zero vector field V is
said to be torse forming on a Riemannian manifold M if

∇XV = f X +π(X)V, (1.6)
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where f is a smooth function defined on M and π is a 1-form. If the 1-form π

becomes zero, then the vector field V is concircular [4, 19]. If f = 1 and π = 0, then
V is concurrent [21], also if f = π = 0, then the vector field V is parallel.

Definition 1.1. A Lorentzian para-Kenmotsu manifold M is called an η-Einstein
manifold if its Ricci tensor is of the form

S (Y,Z) = k1g(Y,Z)+ k2η(Y )η(Z) ,

for all Y,Z ∈ χ(M) , where k1,k2 are scalars.

This paper is structured as follows:
The first two sections of the paper have been kept for introduction and preliminar-

ies. In Section 3, we introduce the Einstein soliton on the LP-Kenmotsu manifold.
In Section 4, we study the η-Einstein soliton on the LP-Kenmotsu manifold. Sec-
tion 5 is concerned with the η-Einstein soliton on LP-Kenmotsu manifold satisfying
(ξ.)R .S = 0. Section 6 deals with the η-Einstein soliton on the LP-Kenmotsu man-
ifolds satisfying (ξ.)W2

.S = 0. In Section 7, we discuss the η-Einstein soliton on
the LP-Kenmotsu manifolds satisfying (ξ.)S .W2 = 0. Finally, Section 8 contains an
example of an LP-Kenmotsu manifold admitting the Einstein and η-Einstein soliton.

2. PRELIMINARIES

Let M be an n-dimensional Lorentzian almost para-contact manifold with struc-
ture (φ,ξ,η,g), where η is a 1-form, ξ is the structure vector field, φ is a (1,1)-tensor
field and g is a Lorentzian metric satisfying

φ
2 (X) = X +η(X)ξ,η(ξ) =−1, (2.1)

g(X ,ξ) = η(X) , (2.2)
g(φX ,φY ) = g(X ,Y )+η(X)η(Y ) , (2.3)

for all vector fields X ,Y on M. A Lorentzian almost para-contact manifold is said to
be a Lorentzian para-contact manifold if η becomes a contact form. In a Lorentzian
para-contact manifold the following relations also hold [8, 15]:

φ(ξ) = 0,η◦φ = 0, (2.4)
g(X ,φY ) = g(φX ,Y ) . (2.5)

The manifold M is called a Lorentzian para-Kenmotsu manifold if

(∇X ϕ)Y =−g(φX ,Y )ξ−η(Y )φX , (2.6)

for any smooth vector fields X ,Y on M.
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In a Lorentzian para-Kenmotsu manifold the following relations also hold [6]:

∇X ξ = −X −η(X)ξ, (2.7)
(∇X η)Y = −g(X ,Y )−η(X)η(Y ) , (2.8)

η(R(X ,Y )Z) = g(Y,Z)η(X)−g(X ,Z)η(Y ) , (2.9)
R(X ,Y )ξ = η(Y )X −η(X)Y, (2.10)
R(ξ,X)Y = g(X ,Y )ξ−η(Y )X , (2.11)
R(ξ,X)ξ = X +η(X)ξ, (2.12)
S (X ,ξ) = (n−1)η(X) (2.13)
S (ξ,ξ) = −(n−1) , (2.14)

Qξ = (n−1)ξ, (2.15)
S (φX ,φY ) = S (X ,Y )+(n−1)η(X)η(Y ) , (2.16)

for any smooth vector fields X ,Y,Z on M.

3. EINSTEIN SOLITON ON THE LP-KENMOTSU MANIFOLD

In this section we examine the nature of the Einstein soliton on the LP-Kenmotsu
manifold with a structure vector field and a torse forming vector field as a potential
vector field.

Theorem 3.1. Let M be an LP-Kenmotsu manifold admitting an Einstein soliton
(g,V,λ) . If the non-zero potential vector field V is collinear with the structure vector
field, then the soliton is

1. expanding if r > 2(n−1),
2. steady if r = 2(n−1),
3. shrinking if r < 2(n−1).

Proof. After expanding (1.3), we have

g(∇XV,Y )+g(X ,∇YV )+2S(X ,Y )+(2λ− r)g(X ,Y ) = 0. (3.1)

Setting V = ξ in (3.1) we get

0 =−2g(X ,Y )−2η(X)η(Y )+2S(X ,Y )+(2λ− r)g(X ,Y ). (3.2)

Putting X = ξ and using (2.1), (2.13) we get

0 =−2(n−1)η(Y )− (2λ− r)η(Y ) . (3.3)

Since η(Y ) ̸= 0, we have

λ =
r
2
− (n−1),

which implies the theorem. □
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Theorem 3.2. Let M be an LP-Kenmotsu manifold admitting an Einstein soliton
(g,V,λ) . If the potential vector field is torse-forming, then the soliton is

1. expanding if 1
n(π(V )+ r)− r

2 + f < 0,
2. steady if 1

n(π(V )+ r)− r
2 + f = 0,

3. shrinking if 1
n(π(V )+ r)− r

2 + f > 0.

Proof. Using (1.6) in (3.1) we get

0 = (2 f +2λ− r)g(X ,Y )+π(X)g(V,Y )
+π(Y )g(X ,V )+2S(X ,Y ). (3.4)

Contracting (3.4) over X and Y we obtain

λ =−
[

1
n
(π(V )+ r)

]
+

r
2
− f ,

which implies the theorem. □

4. η-EINSTEIN SOLITON ON LP-KENMOTSU MANIFOLDS

Theorem 4.1. If an n-dimensional LP-Kenmotsu manifold admits an η-Einstein soli-
ton (g,ξ,λ,β), then the soliton scalars are given by the following equations

λ = − divξ

n−1
+

r
2
(
n−3
n−1

)+1,

β = − divξ

n−1
− r

n−1
+n,

where divξ=Divergence of ξ.

Proof. Applying V = ξ in (1.4), we get

0 =
(
Lξg

)
(X ,Y )+2S(X ,Y )+(2λ− r)g(X ,Y )+2βη(X)η(Y ) . (4.1)

Using (2.7), we get

0 = g(∇X ξ,Y )+g(X ,∇Y ξ)+2S(X ,Y )
+(2λ− r)g(X ,Y )+2βη(X)η(Y ) ,

= (2λ− r−2)g(X ,Y )+2S(X ,Y )+2(β−1)η(X)η(Y ) . (4.2)

Setting X = Y = ξ in (4.2), we get

β = λ− 1
2
[r−2(n−1)] . (4.3)

Taking an orthonormal frame field and contracting (4.1) over X and Y , we obtain

β = divξ+λn− r
2
(n−2). (4.4)
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Comparing the value of β from (4.3) and (4.4), we get

λ =− divξ

n−1
+

r
2
(
n−3
n−1

)+1. (4.5)

Putting the value of λ from (4.3) in (4.5), we get

β =− divξ

n−1
− r

n−1
+n.

□

Corollary 4.1. If an n-dimensional LP-Kenmotsu manifold M contains an η-Einstein
soliton (g,ξ,λ,β) , then M is an η-Einstein manifold

Proof. From equation (4.2) we have

S(X ,Y ) =
( r

2
−λ+1

)
g(X ,Y )− (β−1)η(X)η(Y ) , (4.6)

which shows that M is η-Einstein manifold. □

Theorem 4.2. If an LP-Kenmotsu manifold M contains an η-Einstein soliton (g,ξ,λ,β)
with the structure vector field ξ being parallel i.e., ∇X ξ = 0, then M is an η-Einstein
manifold.

Proof. After expanding the Lie derivative we get from (1.4)

0 = g(∇XV,Y )+g(X ,∇YV )+2S(X ,Y )
+(2λ− r)g(X ,Y )+2βη(X)η(Y ) . (4.7)

Setting V = ξ and ∇X ξ = 0 in (4.7), we get

S(X ,Y ) =−
(

λ− r
2

)
g(X ,Y )−βη(X)η(Y ) , (4.8)

which shows that M is η-Einstein. □

Corollary 4.2. If an n-dimensional LP-Kenmotsu manifold admits an η-Einstein
soliton (g,ξ,λ,β), then the scalar curvature of M is constant.

Proof. Tracing (4.8), we have

r =
2(nλ−β)

n−2
,

which implies
δr = 0.

□

Theorem 4.3. If M is an LP-Kenmotsu manifold admitting an η-Einstein soliton
(g,V,λ,β) such that V ∈ D = kerη, then the scalar curvature of M is given by

r = 2(n−1+λ)−2β.
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Proof. Consider the distribution D on the LP-Kenmotsu manifold M as D = kerη.
If V ∈ D, then

η(V ) = 0.
Taking the covariant derivative with respect to ξ and using

(
∇ξη

)
V = 0, we get

η
(
∇ξV

)
= 0. (4.9)

Setting X = Y = ξ in (4.7) and using (2.14), (4.9), we obtain

0 = 2g(∇ξV,ξ)+2S(ξ,ξ)+(2λ− r)η(ξ)+2βη(ξ)η(ξ)

= 2η
(
∇ξV

)
−2(n−1)− (2λ− r)+2β

= −2(n−1+λ)+ r+2β.

This implies the theorem. □

5. η-EINSTEIN SOLITON ON THE LP-KENMOTSU MANIFOLDS SATISFYING

(ξ.)R .S = 0

Theorem 5.1. Let M (φ,ξ,η,g) be an n-dimensional LP-Kenmotsu manifold admit-
ting η-Einstein soliton (g,ξ,λ,β) and satisfying (ξ.)R .S = 0, then the soliton con-
stants are given by

λ =
1
2
[r−2(n−2)] ,β = 1.

Proof. The condition that must be satisfied by S is

S(R(ξ,X)Y,Z)+S(Y,R(ξ,X)Z) = 0, (5.1)

for all X ,Y,Z ∈ χ(M) .
Using (2.11) and replacing the expression of S from (4.6) in (5.1), we get

(β−1) [g(X ,Y )η(Z)+g(X ,Z)η(Y )+2η(X)η(Y )η(Z)] = 0, (5.2)

For Z = ξ in (5.2) we have

(β−1)g(φX ,φY ) = 0,

for all X ,Y ∈ χ(M) , which gives
β = 1. (5.3)

From (4.3) and (5.3) we obtain

λ =
1
2
[r−2(n−2)] .

□

Corollary 5.1. The η-Einstein soliton (g,ξ,λ,β) on an n-dimensional LP-Kenmotsu
manifold M satisfying (ξ.)R .S = 0 is shrinking, steady and expanding accordingly

r < 2(n−2), r = 2(n−2), r > 2(n−2).
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Corollary 5.2. On an LP-Kenmotsu manifold M satisfying (ξ.)R .S = 0, there is no
Einstein soliton with the potential vector field ξ.

6. η-EINSTEIN SOLITON ON LP-KENMOTSU MANIFOLDS SATISFYING

(ξ.)W2
.S = 0

Theorem 6.1. Let M (φ,ξ,η,g) be an n-dimensional LP-Kenmotsu manifold admit-
ting the η-Einstein soliton (g,ξ,λ,β) and satisfying (ξ.)W2

.S = 0, then the soliton
constants are given by

λ =
r
2
+1,β = n.

Proof. The condition that must be satisfied by S is

0 = S(W2(ξ,X)Y,Z)+S(Y,W2(ξ,X)Z), (6.1)

for all X ,Y,Z ∈ χ(M) .
Replacing the expression of S from (4.6) in (6.1), we get

0 =
[ r

2
−λ+1

]
g(Y,W2(ξ,X)Z)+g(W2(ξ,X)Y,Z). (6.2)

By the help of (1.5), (2.9), (2.11) and (6.2), we get

0 =
[ r

2
−λ+1

][ r
2
−λ−n+2

]
[g(X ,Z)η(Y )+g(X ,Y )η(Z)]

−(β−1)
[ r

2
−λ+1

]
η(X)η(Y )η(Z), (6.3)

which gives

λ =
r
2
+1.

Putting the value of λ in (4.3), we get

β = n.

□

Corollary 6.1. On an LP-Kenmotsu manifold M satisfying (ξ.)W2
.S = 0, there is no

Einstein soliton with the potential vector field ξ.

7. η-EINSTEIN SOLITON ON LP-KENMOTSU MANIFOLDS SATISFYING

(ξ.)S .W2 = 0

Theorem 7.1. Let M (φ,ξ,η,g) be an n-dimensional LP-Kenmotsu manifold admit-
ting the η-Einstein soliton (g,ξ,λ,β) and satisfying (ξ.)S .W2 = 0, then the soliton
constants are given by

λ =
( r

2
+1

)
,β = n, or λ =

( r
2
−n+2

)
,β = 1.
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Proof. The condition that must be satisfied by S is

0 = S(X ,W2(Y,Z)V )ξ−S(ξ,W2(Y,Z)V )X +S(X ,Y )W2(ξ,Z)V
−S(ξ,Y )W2(X ,Z)V +S(X ,Z)W2(Y,ξ)V −S(ξ,Z)W2(Y,X)V
+S(X ,V )W2(Y,Z)ξ−S(ξ,V )W2(Y,Z)X , (7.1)

for all X ,Y,Z,V ∈ χ(M) . Taking the inner product with ξ the relation (7.1) becomes

0 = −S(X ,W2(Y,Z)V )−S(ξ,W2(Y,Z)V )η(X)

+S(X ,Y )η(W2(ξ,Z)V )−S(ξ,Y )η(W2(X ,Z)V )

+S(X ,Z)η(W2(Y,ξ)V )−S(ξ,Z)η(W2(Y,X)V )

+S(X ,V )η(W2(Y,Z)ξ)−S(ξ,V )η(W2(Y,Z)X). (7.2)

Replacing the expression of S from (4.6), we get

0 =
( r

2
−λ+1

)
[g(X ,W2(Y,Z)V )+η(W2(Y,Z)V )]

−
( r

2
−λ+1

)
[g(X ,Y )η(W2(ξ,Z)V +g(X ,V )η(W2(Y,Z)ξ]

−(β−1)η(X) [η(Y )η(W2(ξ,Z)V )+η(V )η(W2(Y,Z)ξ]
−(n−1) [η(Y )η(W2(X ,Z)V )+η(Z)η(W2(Y,X)V )]

−(β−1)η(X)η(Z)η(W2(Y,ξ)V )− (n−1)η(V )η(W2(Y,Z)X)

−
( r

2
−λ+1

)
g(X ,Z)η(W2(Y,ξ)V ). (7.3)

Setting V = ξ in (7.3) and using (1.5), (2.1), (2.9), (2.10), (2.13) and (2.14), we get

0 =
( r

2
−λ+1

)[ r
2
−λ−n+2

]
[g(X ,Z)η(Y )−g(X ,Y )η(Z)] . (7.4)

Setting Z = ξ and using (2.3) in (7.4), we obtain( r
2
−λ+1

)[ r
2
−λ−n+2

]
g(φX ,φY ) = 0,

which gives

λ =
( r

2
+1

)
, or

( r
2
−n+2

)
. (7.5)

In view of (4.3) and (7.5), we have

λ =
( r

2
+1

)
,β = n, or λ =

( r
2
−n+2

)
,β = 1.

□

Corollary 7.1. On an LP-Kenmotsu manifold M satisfying (ξ.)S .W2 = 0 there is no
Einstein soliton with the potential vector field ξ.
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8. EXAMPLE OF 5-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLD

ADMITTING η-EINSTEIN SOLITON

We consider a 5-dimensional manifold

M =
{
(x,y,z,u,v) ∈ R5} ,

where (x,y,z,u,v) are the standard co-ordinates in R5.
We choose the linearly independent vector fields

E1 = x
∂

∂x
,E2 = x

∂

∂y
,E3 = x

∂

∂z
,E4 = x

∂

∂u
,E5 = x

∂

∂v
.

Let g be the Riemannian metric defined by g(Ei,E j) = 0, i f i ̸= j f or i, j =
1,2,3,4,5,

and g(E1,E1) =−1,g(E2,E2) = 1,g(E3,E3) = 1,g(E4,E4) = 1,g(E5,E5) = 1.
Let η be the 1-form defined by η(X) = g(X ,E1) for any X ∈ χ

(
M5

)
. Let φ be

the (1,1) tensor field defined by

φE1 = 0,φE2 =−E3,φE3 =−E2,φE4 =−E5,φE5 =−E4. (8.1)

Let X ,Y,Z ∈ χ
(
M5

)
be given by

X = x1E1 + x2E2 + x3E3 + x4E4 + x5E5,

Y = y1E1 + y2E2 + y3E3 + y4E4 + y5E5,

Z = z1E1 + z2E2 + z3E3 + z4E4 + z5E5.

Then, we have

g(X ,Y ) = x1y1 + x2y2 + x3y3 + x4y4 + x5y5,

η(X) =−x1,

g(φX ,φY ) = x2y2 + x3y3 + x4y4 + x5y5.

Using the linearity of g and φ, η(E1) =−1,φ2X = X +η(X)E1 and g(φX ,φY ) =
g(X ,Y )+η(X)η(Y ) for all X ,Y ∈ χ(M).

We have

[E1,E2] = E2, [E1,E3] = E3, [E1,E4] = E4, [E1,E5] = E5,

[E2,E1] =−E2, [E3,E1] =−E3, [E4,E1] =−E4, [E5,E1] =−E5,

[Ei,E j] = 0 for all others i and j.
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Let the Levi-Civita connection with respect to g be ∇, then using Koszul formula
we get the following

∇E1
E1 = 0,∇E1

E2 = 0,∇E1
E3 = 0,∇E1

E4 = 0,∇E1
E5 = 0,

∇E2
E1 =−E2,∇E2

E2 =−E1,∇E2
E3 = 0, ∇E2

E4 = 0,∇E2
E5 = 0,

∇E3
E1 =−E3, ∇E3

E2 = 0 ,∇E3
E3 =−E1 ,∇E3

E4 = 0 ,∇E3
E5 = 0,

∇E4
E1 =−E4,∇E4

E2 = 0,∇E4
E3 = 0,∇E4

E4 =−E1,∇E4
E5 = 0,

∇E5
E1 −E5,∇E5

E2 = 0,∇E5
E3 = 0,∇E5

E4 = 0, ∇E5
E5 =−E1.

From the above results we see that the structure (φ,ξ,η,g) satisfies
(∇X φ)Y = −g(φX ,Y )ξ−η(Y )φX ,∀X ,Y ∈ χ

(
M5

)
, where η(ξ) = η(E1) = −1.

Hence M5 (φ,ξ,η,g) is a LP-Kenmotsu manifold.
The non-zero components of Riemannian curvature with respect to the Levi-

Civita connection ∇ are given by
R(E1,E2)E1 = E2,R(E1,E2)E2 =−E1,R(E1,E3)E1 = E3,
R(E1,E3)E3 =−E1,R(E1,E4)E1 = E4,R(E1,E4)E4 =−E1,
R(E1,E5)E1 = E5,R(E1,E5)E5 =−E1,R(E2,E1)E2 = E1,
R(E2,E1)E1 =−E2,R(E2,E3)E2 = E3,R(E2,E3)E3 =−E2,
R(E2,E4)E2 = E4,R(E2,E4)E4 =−E2,R(E2,E5)E2 = E5,
R(E2,E5)E5 =−E2,R(E3,E1)E3 = E1,R(E3,E1)E1 =−E3,
R(E3,E2)E3 = E2,R(E3,E2)E2 =−E3,R(E3,E4)E3 = E4,
R(E3,E4)E4 =−E3,R(E3,E5)E3 = E5,R(E3,E5)E5 =−E3,
R(E4,E1)E4 = E1,R(E4,E1)E1 =−E4,R(E4,E2)E4 = E2,
R(E4,E2)E2 =−E4,R(E4,E3)E4 = E3,R(E4,E3)E3 =−E4,
R(E4,E5)E4 = E5,R(E4,E5)E5 =−E4,R(E5,E1)E5 = E1,
R(E5,E1)E1 =−E5,R(E5,E2)E5 = E2,R(E5,E2)E2 =−E5,
R(E5,E3)E5 = E3,R(E5,E3)E3 =−E5,R(E5,E4)E5 = E4.
Using the above curvature tensors the Ricci curvature tensors with respect to ∇

are:

S (E1,E1) =−4,S (E2,E2) = S (E3,E3) = 2,

S (E4,E4) = S (E5,E5) = 2.

Therefore, the scalar curvature tensor with respect to the Levi-Civita connection
is r = 4.

If the manifold M contains an η-Einstein soliton (g,E1,λ,β), then relation (4.3)
becomes

β = λ− 1
2
[r−2(n−1)]

= λ− 1
2
[4−2(5−1)]

= λ+2. (8.2)
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Now,

divξ = divE1 = g(∇Ei
E1,Ei), i = 1,2,3,4,5

=−g(E2,E2)−g(E3,E3)−g(E4,E4)−g(E5,E5)

=−4.

Setting divξ =−4,r = 4,n = 5 in (4.4) and (4.5), we get

λ = 3,β = 5.

Obviously, these values of λ and β satisfy equation (8.2) and hence the Theorem 4.1
of Section 4 is verified.

Similarly, we can check all the results for the manifold under consideration.
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