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ON THE GROWTH RATES OF THE COMPOSITION OF INTEGER
TRANSLATED ENTIRE AND MEROMORPHIC FUNCTIONS

MANAB BISWAS AND DEBASHIS KUMAR MANDAL

ABSTRACT. The integer translation of a function f(z) is denoted by f (z+n) for
each n € Z. It is possible to obtain a function with certain characteristics for each
n € Z. This study examines the impact of integer translations on the growth and
behavior of a meromorphic function f(z). Specifically, we consider the family of
meromorphic functions generated by integer shifts of f(z), denoted as,

In@)={f(z+n):neZ}.

The primary focus is on understanding how these integer translations affect the
Nevanlinna characteristic function 7 (r, f), which is a key tool for assessing the
growth of meromorphic functions. Our study also includes a comparative growth
analysis between integer-translated versions of both entire and meromorphic func-
tions. By examining a range of conditions, we provide insights into how trans-
lation influences the growth and value distribution of the functions. This investi-
gation contributes to a deeper understanding of translation-invariant properties in
complex analysis and offers new perspectives on the dynamic growth behavior of
meromorphic and entire functions.

1. INTRODUCTION

Let f be a non-constant meromorphic function (i.e., regular except for poles)
defined on the complex plane C and be an entire function in the absence of poles. To
study how the values of f are distributed it is essential to explore the distribution
of the solutions of the equation f(z) = a, where a is a complex number finite or
infinite. This includes an estimate of the number of roots n (r,a; f) , counted with or
without multiplicity in a disc |z| < r for any non-negative real number r, estimates
on the growth and the asymptotics of the number of such solutions in terms of r, the
comparison of the various estimates when the constant a varies, etc.

An oldest such result is the Fundamental Theorem of Algebra, which states that a
polynomial of degree n has n complex roots (counted with proper multiplicity). This
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theorem allows us to write any polynomial f (z) in the form

where z, are the zeros of f (z) other than those at the origin. Precisely, when z — oo
the growth of a polynomial f (z) of degree n > 1 is equal to n. Then

lim

g0 7N

where d is the coefficient of the monomial of highest degree of f. Thus, growth of
the polymonial f can be read on its coefficients. In 1879 Picard [30, 31] obtained
two generalized results:

(i) For any non-constant entire function f, the equation f(z) = a has a solution
for every value of a except possibly for one value. An example of an entire function
with an exceptional value is the exponential map f(z) = €%, with z = 0.

(ii) An arbitrary meromorphic function, in the neighborhood of an essential sin-
gularity, takes any complex value infinitely often, with at most one exception.

Borel [10] (1897) first gave the concept order of growth for an entire function
f by the quantity py = {infu:logM (r, f) = O(r"),0 < u < o}, where the maxi-

mum modulus M (r, f) = r|n|ax |f (2)]- The ps is a measure of how fast the maximum
z|=r

modulus of the function f grows. With such a definition, the order of a polynomial
is zero, the exponential function ¢* has order one and the function e¢ has infinite
order. Later he reformulated the Picard’s theorem using the notion of order and ob-
tained the following sharper result, called the Picard-Borel theorem [11] : An entire
function f of order py (0 < py < o) satisfies

logn(raf) _ o

hrrnjol:p logr
for every finite complex value ‘a’, with equality holding except possibly for one
value a. Here, n(r,a;f) is the number of roots with multiplicity of the equation
f(z) = ain the disc |z| < r. Borel’s definition of order was used later by Nevanlinna
[28, 29] who generalized it to the setting of meromorphic functions that are not
necessarily entire.

For a € CU {0} we denote by n(t,a; f) (n(t,a; f)) the number of a-points (dis-
tinct a -points) of a non-constant meromorphic function f in |z| < ¢, where an co-point
is a pole of f. We put

r

N(rasf) = [

0

n(t,a; f) —n(0,a; f)

t

dt+n(0,a; f)logr
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and

P
N(raf) = /”( 14 f) t 7(0,a f)dt+n(0,a;f)logr.
0
The function N (r,a; f) (N (r,a; f)) is called the counting function for a-points (dis-

tinct a-points) of f . On many occassions N(r,oo; f) and N(r,; f) are denoted by
N(r, f) and N(r, f) respectively . We also put

/ log re’e ‘de

where log™ x = max{logx, 0} for every real x > 0. For a € C, we denote by m(r,a; f)
the function m(r, 7= +) and by m(r,e; ) the function m (r, f) which is called the prox-
imity function of f. The function T(r, ) = m(r, f) +N(r, f) is called the Nevan-
linna’s Characteristic function of f. Further, for entire f(z)

T(r.f) =m(r,f)

and in addition for 0 < r <R,

T(r.f) <log"M(r.f) <

We assume that the reader has a basic understanding of Nevanlinna’s value dis-
tribution theory. For a comprehensive introduction, please refer to [17, 37]. For all
r € R, we define expm r=e"and exp["“] r =exp (exp[”] r) ,p € Z*. We also define
p+1]

R+r

T(R,f) {Hayman [17]}. (L.1)

for all r sufficiently large logm r =logr, log[ r =log (log“’] r) ,p € Z". More-

over, we denote by expl¥ r = r, log[o] r=r, log[fl] r=exp!l rand expl~!r = logm r.
The order p s and lower order A; of a meromorphic function f are defined by

log T logT
ps = limsup RN (r.f) , Ay = liminf RN (r.f)
oo logr r—oo logr

respectively. Also for a positive integer p > 1, the p-order p?» and lower p-order 7»?-
of a meromorphic function are respectively defined by

logP~ 7 (r, f

logP~1IT
p’ = limsup (r.f) and A} = liminf ) {Sato [32]}

oo log r oo logr
and if f is entire, then T'(r, f) can be replaced with logM (r, ).
Juneja, Kapoor and Bajpai [21] defined the (p,g)-order and lower (p, q)-order of
an entire function respectively as follows:

[p] »
pf (PyCI) = llmsupw and 7\’f (p q) = hmlnfw
r—seo logl r r—seo logle r

)
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where p, g are positive integers with p > ¢. When f is meromorphic, one can easily
verify that

P IT(ns)

loglP~ 1T 1
ps(p.gq) =limsup log? _T(51) 4ng As(p,q) = liminf o

r—oo log[q] r

)

logl! r
see [4, 7, 33]. Obviously, p(2,1) = p =ps and Ap(2,1) = A7 = Ay
The translation of a meromorphic function f(z) is denoted by f(z+n), where

n € Z. For each n € Z, one may obtain a function with some properties. Let us
denote this family by f, (z), i.e.,

fo(@) ={f(z+n):neZ}.

It is clear that the number of poles of f may be changed in a finite region after
translation but it remains unaltered in the open complex plane C, i.e.,

N(r,f(z+n))=N(r,f)+en, (1.2)

where ¢, is a residue term such that ¢,, — 0 as r — 0. Also
1 27
m(r,f(z+n)) = E/log+ ‘f(reie+n) ‘de
0

= m(r,f)+é,, (1.3)

where ¢}, (may be distinct from e,) is such that e/, — 0 as r — oo. Therefore, from
(1.2) and (1.3) we get

N(rf(z4n)+m(rf(z+n) =N(rf)+etm(rf)+e,
ie,T(rf(z+n)=T(rf)+e,+e,.
Now if n varies, then the Nevanlinna’s Characteristic function for the family f;, (z) is

T(r.fa)=nT (r.f)+Y (entey). (1.4)

Since T (r, f) is an increasing function of r,

T

llm (r7 fn)
r== T (1, f)

Again it is obvious that the maximum modulus M (r, f) of an entire function f (z)

may be changed in a finite region after translation but it remains unaltered in the
open complex plane C, and for the family f, (z) we obtain

M f)=M(rf)+Y e,

=n, see [8].

where e:; (may be distinct from e, €,) is such that e:; — 0 as r — oo. This implies,

logM (r, f,) =logM (r, f)+0O(1). (1.5)
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Now from (1.4) we obtain

p—1 = -1 -l et T
log T (1, fn) = log n+log T (r.f)+log b nT (r,f) 7

where e, — 0, e, — 0 as r — 0. Since T (r, f) is an increasing function of r,
log” T (r,fu) =10g” 1 T (nf)+0(1). (1.6)
This implies,

Py, (P,q) =pr(p;q)-

Similary, it can be proved that

A, (p,q) =As(p,q)-

Biswas and Datta [6], Biswas et al. [7], and Biswas [8] etc. investigated the
changes in Nevanlinna’s characteristic function for integer-translated entire and mero-
morphic functions. Their research focused on how these changes affect the compar-
ative growth of the composition of entire and meromorphic functions. Building on
their contributions, we aim to explore this topic in greater depth.

In this paper, we present some new results regarding the growth rates of the com-
position of integer-translated entire and meromorphic functions with respect to one
of the factors of the composition. We utilise concepts of (p,g)-order and (p, g)-lower
order, where p and ¢ are positive integers with p > q.

This naturally raises the question: Why focus on integer translations? Transla-
tions of meromorphic functions by integers introduce subtle yet significant changes
in their growth behavior and characteristics, which may not be evident in the un-
shifted case. These shifts present a rich area for further study. Unresolved issues in-
clude understanding the exact effects of these translations on more complex function
compositions and determining how these changes influence order and type within
Nevanlinna’s theory.

2. PREPARATORY LEMMAS

We now recall a well-known definition : The Nevanlinna’s deficiency of a finite
or infinite complex number ‘@’ with respect to a meromorphic function g is defined
as

. N (r,a;g
S(a;g) =1 — limsup——2>~ — 1o
i T R A

The following lemmas are necessary.
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Lemma 2.1. [14] If f and g are two entire functions, then for all sufficiently large
values of ,

M (54 (3.6) -1 0.1 ) <M fo0) < MOM(8) ).

Lemma 2.2. [5] If f is a meromorphic function and g is an entire fucntion, then for
all sufficiently large values of r,

T (rg)

T(r,fog) < {l—i-O(l)}m

T(M(r.g),f).

Lemma 2.3. [7, 15, 21] Let f be an entire function with non zero finite l-order
p} ( non zero finite lower l-order klf) If p—q=1—1,thenthe (p,q)-orderp¢(p,q)

(lower (p,q)-order As(p,q)) of f will be equal to 1. If p—q # 1 —1, then ps(p,q)
(Ar(p,q)) is either zero or infinity.

3. MAIN RESULTS
In this section we present the main results of the paper.

Theorem 3.1. Let f be meromorphic and g be entire such that pg (s,t) < Ar(p,q) <
pr(p,q) < oo, where p,q,s,t are positive integers with p > g and s > t. If fi,(2) =
{f(z+m):meZ}andg,(z) ={g(z+n):ne€Z} then

log?” T (expl!Ir, fin 0 g1)

i) lim =0, ifg>s
( )r—>oo ]Og[p—Z] T (exp[qfl] r, fm) fq

and

(ii) lim log” "~ T (expl "), fuy 0 gn)

=0, ifg <s.

Proof. From the definition of the (p,q)-lower order of f,,, we have for any positive
€ and for all sufficiently large values of r that

togh? =17 (explt~17: f) = (b (p.q) —&)log) (expl =)
or,logl~ 1T (eXp["’” nﬁn) > (Mg, (p.q) —€)logr
Or’ 10g[p_2] T (exp[q_l] r’ f;n> Z r("’fm (pvq)fe)

or, log[l’_z] T (exp[q_l] r,fm) > r(kf(””)*g), by As, =As. (3.1
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Let f,,0g, = h; , where h is a meromorphic function and ¢ € Z. So, h, can be
expressed as h; (z) = {h(z+1t):1 € Z} .Then,

T (r,h;) =1tT (r,h) —l—Z(e,—i—e;),
t
where ¢, — 0, ¢; — 0 as r — oo.

i.e,T(r,fmogn)ZIT(r,fog)—{—Z(et—ke;). (3.2)

Using Lemma 2.2 and the inequality T (r,g) < logt M (r,g), we get from (3.2)
for all sufficiently large values of r that

10g[p71]T("7megn) < IOg[piuT(M(rag> ) (1)
or,log“””T(eXp“’”r,fmogn) < log[”’”T<M (eXpt U ) f) o(1)

or,log?~!IT (exp[’_l] v fon ogn)

< (pr(p,q)+e) log[‘ﬂM (exp[”” r,g) +0(1). (3.3)

Now the following two cases may arise.
Case—1I:Letg>s.
Then, from (3.3) we get for all sufficiently large values of r that

logP~ 1T (GXP“’” 1 fon ogn>

< (pr(poa)+e)log" M (exp! Vg ) +0(1). (3:4)

Again for all sufficiently large values of r,
loghl M (exp[’*” r, g) < (pg(s,1)+¢€)logl! (exp[’*” r)

or,log[s}M(exp[’_l]r,g) < (pg(s,t)+¢€)logr

or,loglt~m (exp[’*” r,g) < plPs(s)+e), (3.5)
From (3.4) and (3.5) it follows for all sufficiently large values of r,
tog 17 (exp! 7 fuoga) < (s (pog) +8)r*C* 0(1).  (3.6)

Now, from (3.1) and (3.6) we have for all sufficiently large values of r that
log? U7 (exp"r fuogn) _ (py(p.g)+€)rP7e 4 O(1)
logl?=2IT (exp rfm) r(ts(pa)—¢)
1 o(1)
< .
= (pf (p’CI) +£) 2<kj.(p$q);pg(s,t)7 s) + (7\-f([) - 8)
r

3.7
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Since pg (s,1) < As(p,q), we can choose € (> 0) in such a way that

7“f (p,Q) —Pg (S7t)
2
ie,0 < (pg(s,t)+¢) <Ar(p,q)—¢

In view of (3.8), we get from (3.7) that

0 < e«

. log? T (expl=Ur, £, 08,)
limsup 5 =0
F—s00 log[[F ] T (exp[‘l*l] r,fm)
_logl? T (exp!~r, 0 gn)
or, lim

r—yeo log[”_z] T (exp[’i—l] r,fm)

This proves the first part of the theorem.
Case—1II:Letg <s.
Then, from (3.3) we have for all sufficiently large values of r that

log=11T (eXp[”” Iy fon ogn)

< (pr (g +&)expt T logh M (exp! ! g) +0(1).

Now, for all sufficiently large values of r,

log" M (eXp[F” r,g) < (pg (5,1) +€) logexpl =1
or, 10g[s]M(eXP[t71] hg) < (pg(s,1) +€)logr
or,exp? 4 logl! M (exp[t*” 1, g) < expl~ 9 log rPs(s1)+¢)

or,expl 4 logh! M (exp[’_l] 7, g) < expl= a1 pps(s)+e)

Now, from (3.9) and (3.10) we get for all sufficiently large values of r that

(3.8)

(3.9)

(3.10)

togh" ™17 (exp! 1 fyn080) < (py (p.g) +€)expl 41 P:04) o (1)

or,log T (expl =117, 0.8, ) < expl=42 00 8) 1 0 (1)

orloglPts—a AT (exp[t_l] Ty fn og,,> < P+ L g (7).

(3.11)



ON THE GROWTH RATES OF THE COMPOSITION OF INTEGER TRANSLATED ... 171

Using (3.1) and (3.11), we get for all sufficiently large values of r that
10g[l7+s—q—2] T (exp[t—l] 7, fn Ogn) B HPelsn)e) 4 o (1)
logP~ 2T (exple—1lr, f,) - rhi(pa)—¢
1 o(1)
rz <xf<p,q>2— pglss) 8) rhr(pg)—¢

In view of (3.8), we get from above that

O [p+s—q—2]

li T( P[t l]rfmogn)
imsup

F—3o0 loglP AT (expla=1lr, f,)
loglPts—a-2 T(exp[t 1]rfmogn)

or, lim = 0.
r—seo log[p Ar (exp 1]rfm)

This completes the proof of the second part.

Remark 3.1. The condition py (s,7) < A (p,q) in Theorem 3.1 is essential as we see
in the following example.

Example 3.1. Let f =g=expzandp=s=2,q=t=1.Then, py(s,t) =As(p,q) =

Pr(p,q) = 1. Now, fu(z) = exp(z+m), g(z) = exp(z+n) and (fnogn)(2) =
exp (exp (z+n) +m). Then,

exp ( r+n )
(2m313")?

T (1 fmo8n) 2T (5 fno8n) ~ +0(1)(r— =)

and T (r, fin) <logM (r, fm) =r+m.

Therefore,

i log[PJrsquZ] (exp [t—1] 7, fm ogn) ~lim logT (r7 fn ogn)

r—peo log[p At (exp rfm) roe T (1, fin)
r 1
> lim = Slog(r+n)+0(1)
r—eo r+m

1
=5 = 0, which is contrary to Theorem 3.1.

Theorem 3.2. Let f be meromorphic and g be entire such that hg(s,t) < Af(p,q) <
pr(p,q) < oo, where p,q,s,t are positive integers with p > q,s > t. If fu(z) =

{f(z+m):meZ}and g,(z) ={g(z+n) :n€Z}, then

(i)lirninfl()g[ T (exp rf’”°g”)
r—eo log[” Ar (exp rfm)

=0,ifqg=>s
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and

(id) liminflog[pﬂiqiz} T (exp! 17, fiwogn)

= 0 / .
r—yoo log?~2 T (exple—117, £,,) s ifg<s

Proof. For any positive € and for a sequence of values of r tending to infinity we
have that

logh! M (exp[’_l] r,gn> < (Ag(s,1) +€)log expl =1 7
or, logh' M (exp[t*” r,gn) < (Ag(s,t) +€)logr
or, logh! M (exp[’_l] r,g,,) < log Pelsi)+e
or, logt~m (exp[t*” r,g,,) < phels)re, (3.12)

O

Case L. If ¢ > s, then from (3.4) and (3.12) we obtain, for a sequence of values
of r tending to infinity, that

tog 17 (exp! 11 fuioga) < (ps (p.g) +©) U0 L 0(1). B13)

Combining (3.1) and (3.13) we get for a sequence of values of r tending to infinity
that

(s (p.q) +€) PG 4 0 (1)
rr(p.g)—€)

log? 17 (exp! ™!V 7, fn 0 g1)
loglP=2IT (exple=1lr, f)

<

1 o(1)

< (br(pa)+e).— (xf T E) Ta (3.14)
r 2
Since Aq (5,1) < As(p,q), we can choose € (> 0) in such a way that
A — g (5,1
ie,0 < (Ag(s,t)+€)<Ar(p,q)—c¢. (3.15)

In view of (3.15), it follows from (3.14) that

T (0" fy o)

=0.
r—yeo log[p_z] T (exp[‘f—l] T, fm)

This proves the first part of the theorem.
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Case IL. If ¢ < s, then from (3.9) we have for a sequence of values of r tending
to infinity that

log[ “lr (exp r, fmogn>
< (pr(p,q)+e)expl~logh M (exp[’*” r, g) +0(1). (3.16)
Again for a sequence of values of r tending to infinity,

logMM<exp[’*”rg> < (Ag(s,1) +€)loglexpl =1,

or,logh M (exp’ 1 ) < (Ag(s,1) +¢€)logr

or, log M <exp g ) < log pe(s.0)+e)
or, exp s=d) log[A M (exp ) < exp[s_‘f] log FAe(s.1)+€)
or,exp®~loghl M <exp ) < expl e pRslsnte), (3.17)

Now from (3.16) and (3.17) we have for a sequence of values of r tending to
infinity that

log=1T (eXp rfmogn> < (pr(pog) +e)expt 1 A0 Lo (7)

or, log[p] T (exp[’_l] 7, fn ogn) < exp[s—q—Z] re(si)+e) | 0(1)

or,loglPts—a=2lT (exp[’_u 7, fin ogn> < rkbn+e) 4 0 (7). (3.18)

Combining (3.1) and (3.18) we obtain for a sequence of values of r tending to

infinity that
loglPts—a=2T (exp[’_]] 1 fmogn) < r(0+8) Lo (1)

logP~2 T (expla=117, f,,) - rhr(p.g)—e

1 o(1)
+ . 3.19
= 2(}7(1)4])27 Ag(sit) B 8) r;x,f(p,(j)—e ( )
r

Now, in view of (3.15), it follows from (3.19) that

o loglrtsmaAT (exp[t_l] 7, fn ogn)
liminf
r—yeo log[” 2]T(exp 17 fin)

This establishes the second part of the theorem.

=0.

Remark 3.2. The condition A, (s,7) < Af(p,q) in Theorem 3.2 is necessary which is
evident from the following example:
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t =1.Then, hy(s,t) =A¢(p,q) =

Example 3.2. Let f =g=expzandp=s=2,q=t=
n ( exp(z+n) and (finogn) (z) =

9

pr(p.q) =1. Now, fu(z) =exp(z+m), g
exp (exp(z+n)+m). Then,
r exp (2
T(rafmogn)2T<§7fmogn)N ( 2 )i +0(1)(V—>°°)
(2%3 r+n)z
and T (r, fin) <logM (1, fu) = r+m.
Therefore,
lo [p+s—q=2] T expl—1] ’ loo T
liminf > (g _rJnogs) = liminf—o— 2280 (1 fn 0 81)
r—yeo logl?~2 T (expla=117, £,) rere T(r, fm)
w1y o(1
> liminf 22108 (") O(L)
r—eo r+m

1
=5 = 0, which is contrary to Theorem 3.2.

Theorem 3.3. Let f and g are any two entire functions with

(i) Afog(a,b) >0

(if) 0 < pg < o0 and

(iii) M >0,

where l,a,b are all positive integers with | > 1, and a > b. Also, let 0 <A < p,.
If fu(2) ={f(z+m) - meZ} and g,(z) = {g(z+n) : n € Z}, then for any two
positive integers s,t such thats—t =1 and s > 2,

limsup 10g[a71] T (exp"'r, fnogn) IOg[Zfl] T(r,fmogn)
r—soo {IOg[S*I] T (expl] rA,gn)} {log[“l] T(expl-1lr, gn)}

Proof. Let us choose 0 < € < min {?L}‘,)\rfog(ﬂ,b), pg} . O

Using the inequality T (%,fog) <logtM (%,fog) < 3T (r,fog) and Lemma 2.1
we get for all sufficiently large values of r that

T (1, fog) > 5 logM (;M (5:¢) —le) ,f) - (3.20)

From (3.2) and (3.20) for all sufficiently large values of r, we get
1
log! ™ T(r, fiwo gu) > log!' M (8M (5:¢) ~le) ,f) +o(1)
logl!—1] L _ r
orlog! T (. fo8,) = (X —€)logh (7.8) +O(1)

or, log" T (r, fr08,) > (W, —¢) (4)pg*£+ o(1). (3.21)
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Now, in view of (1.6), for the family g, we may write for all sufficiently large
values of r that
logt~ U T (expl 4, g,) =loght I T(expl! 4, g) + O (1).

Since p§ =pg <o and s—r =1, by Lemma 2.3 we get p,(s,r) = 1 and so, it
follows from above for all sufficiently large values of r that

logB T (expl! , g,) < (1+¢)loglexpll A +0(1)
or,Jogt U T (expll A, g,) < (1+e)" +0(1). (3.22)
Now, from (3.21) and (3.22) we get for all sufficiently large values of r that
log' VT (r fuogn) . M —9)(5)" "+0(1)
loght U T(expllr,g,) —  (1+e)r*+0(1)
From (3.2) for all sufficiently large values of r,
log“ 1T (r, fuogn) = log* I T(r,fog)+0(1)
01,102 T (r, frnogn) > (Mpogla,b) —€)log?l r+0(1)
or, 102 U T (exp® Vs fuog) > (Apoga,b) —€)logr+0(1). (3.24)
Again in view of (1.6) for all sufficiently large values of r we obtain
logt U T(rg,) = logt=T(rg)+0(1)
orJogt " UT(expUrg,) = logt U T(expl~rg)+0(1).

(3.23)

Since pg (s,1) = 1, we get from above that

logl U T (expl =1 g,) < (1+€)logr+0(1). (3.25)
Therefore, from (3.24) and (3.25) we get for all sufficiently large values of r that
log[afl] T(exp[b_]] 1 fm Ogn) > (}”fog(a7b) - 8) logr+ 0(1)
logh~U7(expl-rg,) ~ (1+¢€)logr+0(1)
Since € (> 0) is arbitrary, it follows from above that
logle=1 T [b—1]
r=e Jogt U T (expli—1r,g,)

> Aog(a,b). (3.26)

As 0 < A < pg, we can choose € (> 0) in such a way that
0<e<py—A. (3.27)
Now, from (3.27) and (3.23) it follows that

log=!'T
limsup—2 (rifmogn) _ (3.28)

rseo loght=1l T (expllrt g,)
Thus, the theorem follows from (3.26) and (3.28).
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Corollary 3.1. Under the same conditions of Theorem 3.3 when s = 2,
limsup 0% (xp"”" 7 f ogn)log! T (r, fnogn) _
ryes {logT (expr?, gn)} {logT (r,ga)}

Remark 3.3. The condition Nf > 0 in Corollary 3.1 is essential as we see in the
following example: ‘

Example 3.3. Let f =z and g = expz. Also, let| =a =2 and b= 1. Then, N, =\ =
Ar=0andpgy=>~Afog=1.Now f, (2) =z+m, g, (z) =exp (z+n) and (fnogn) (2) =
exp(z+n)+m.

Then,
10g T (r, fnogn) <log? M(r, fnogn) =log(r+n)+0(1)
and
logT(r,gn) > logmM(g,gn) +0(1)=log(r+n)+0(1).
Hence,
limsup (1og T (r, fogn))* < Jimsup log(r+n)+0(1)

r—e log T (exprd, g,)logT (r,g,) r—e log(exprd 4+n)+O(1)
(1)
Ry (.
=0, which is contrary to Corollary 3.1.

Theorem 3.4. Let f be an entire function such that 0 < As(p,q) < ps(p,q) <.
Also, let g be an entire function with pé, >0. If fu(2) ={f(z+m):meZ} and
20 (2) ={g(z+n):n€Z}, then
logl?=1T
(l) limsup Ogl (r7fmogn)
o log? U T (expl=1 7, f,,)

logl? T (r, fuogn) _ Pehs(P.a)

i) limsu yifg=1
(i) Hooplog[”_l]T(exp[’_”r“,fm) ~ wpr(pig) /e
and 1]
log? T (1, fin 0 gn As (P,
(i) imsup— o T nogn) o A (pd) ey

oo log? U T (expll=1 4, £,,) ~ Pr(P:q)
where u < plg and l, p,q are positive integers withl > 1, p > q.

Proof. From (3.2) and (3.20) for all sufficiently large values of r,

log”™ T (1, f o gn) > log"' M (;M(;,g) ~12(0) ,f) +0(1)
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orlog" 1T (1 fr0 82) = (As(p,q) —€)log" M (7.) +0(1)

or,JoglP T (r, fnogn) > (As(p,q) —€)loght ™ iog! 1M <£,g) +0(1)

r ) G

or10g T (1, o 8) = (As(p,g) —e)loght ™1 (%

+0(1). (329
O

Again from the definition of py, (p,q), it follows for all sufficiently large values
of r that

log” T (exp! 1, fn) < (P, (P, q) +€)log expl 1

or,Jog"~ T (exp!=1 . £,)
< (pr(pg)+e)log? " by py, =py (3:30)
Thus, from (3.29) and (3.30) we have for all sufficiently large values of r that

log? VT (rfuwog) _ (o (pg) —€)log 1) (5) P9 4 o(1)
log? =V T (expli =1 p, f) ~ (ps (p,q) +€)logle =1 pu '

(3.31)

Since u < pi, , the theorem follows from (3.31).

Remark 3.4. The condition u < pfg in Theorem 3.4 is essential as we see in the
following example:

Example3.4. Let f=g=expzandp=s=2,q=t=1,l=2. Also, let u=1. Then,
A(p,q) =ps(p,q) =1 and plg = péz, =pg=1. Now f,,(z) =exp(z+m), g,(2) =
exp(z+n) and (finogn) (z) =exp(exp(z+n)+m). Then, T (1, fr08n) ~ _exp(rn)

(23 (r+n))2
(r—o)and T (r,fn) =" +0(1).

T

Therefore,

logP—1T
limsup 2" (1. fin © 8n)
oo log? U T (expl=1 7, f,,)
logT (n, f;
reo 10gT (eXpr, fin)
. (r+n)—%log(r+n)+0(1)
< limsup e
r—oo T +0(1)
= 1 # oo, which is contrary to Theorem 3.4.
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Theorem 3.5. Let f and g be any two entire functions such that 0 < A¢(p,q) <
Pr(p,q) < oo and pg(s,t) < e, where p,q,s,t are positive integers with p > q,s > t.
Iffn(2)={f(z+m):meZ}and g,(z) ={g(z+n) :n€Z}, then

log?l T =1y £,08,
(i) limsup o8 l(exp 1 fn081) < Pe(5,1)
oo logl? U T (expla=1lr, £,,) A (p,q)

s ifq>s

and [ ] [t=1]
loglPts—a—1llT =y £ og,
(ii) limsup o8 (exp rrfmo8 ) < Pe(s:7)
F—soo log”~ U T (expla=117, £,,) Ar(p.a

Proof. We have for all sufficiently large values of r,

logl"~ ! T(eXp[q’” rfn) > (Ag, (prq) —€)logexplt~!l r

or,1ogP U T (exple=1, £,)) > (As(p,q) —€)logr,by Az, = As. (3.32)
O

Case L. If ¢ > s, then from (3.6) and (3.32) we get for all sufficiently large values
of r that
log[”]T(exp rfmogn) < (pg(s,t)+€)logr+0O(1)
log[’J Ur T (expla=Ur, f,,) = (Ar(p,q) —€)logr
log?! T (expl =1+, t)+e
or,limsup £ 1( P ry fm og,,) < pg(s, ) + .
rseo loglP T (expla=llr f,) — Ar(p,g)—¢
Since € (> 0) is arbitrary, it follows from the above that

log?! T (explt—1
lim sup—2 1( P rfmog") Ps(5:1)
roeo log? T (expla—1lr, £,) 7‘f( q)
This proves the first part of the theorem.

Case II. If g < s, then from (3.11) and (3.32) we obtain for all sufficiently large
values of r that

loglPs=a=1lT (exp[t—l] 7, fmn 0 8n) _ (pg(s,t) +s) logr+O(1)

1og[” Ur T (expla—1r, f,,) (As(p,q) —€)logr
1 [pt+s—q—1] T [t—1] 08
or,limsup o8 (exp rf °8 ) < g( 0+
F—soo log[” r (exp rfm) Ar(p ,61)

As (> 0) is arbitrary, it follows from above that
_ log[Pﬂqul] T (exp[z—l] 7 fn Ogn) Pe(s,1)
lim sup ; .
rse loglP UT (expli-1lr, £,) As(p.q)
This completes proof of the second part.
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Remark 3.5. The condition p,(s,?) < o in Theorem 3.5 is necessary which is evident
from the following example:

Example 3.5. Let f =expz, g =expZzand p=s=2,qg=1=1. Then hs(p,q) =
pr(p,q) = 1 and pg(s,t) = oo. Now f (z) = exp (z-+m), gn (z) = exp? (z+n) and
(fno8n) (2) = exp (exp (z+n) +m).

Therefore,
log?) (1, f 0 84) > 108" (5. fn 0 84) +0(1)

or, 102 T(r, fn 0 gn) > logPexp (expm (f +n) +m) +0(1)

2
or, 10g (1, fuo 1) = (5 +1) +0(1)
and
102 T (r, fin) < log? M(r, f,n) = log (r+m)+0(1).
So,

log T (expt U fu 0 ga)
limsup ;
oo log[”_ ]T(exp[q_]] 1y fn)
log? T
r—roo IOgT(I’,fm)
5+n)+0(1
> limsup (2 n) ()
P log (r4m) + 0 (1)
- og"t T (expl !y, £ 0 84)
or,limsup 0
F—soo log[p_ }T(exp[‘l—l] 7y fm)
which is contrary to Theorem 3.5.

i

4. CONCLUSIONS

The traditional growth indicators, such as the iterated p-order [25, 32], and the
(p,q)-order [21], have the disadvantage of not adequately covering the arbitrary
growth of entire and meromorphic functions, see [12, 13] for details. To address
this limitation, researchers such as Shen et al. [35], Bouabdelli and Belaidi [9], and
Long et al. [26] introduced the [p,q| p-order to measure arbitrary growth. Also,
Chyzhykov et al. [12, 13] as well as Filevych et al. [16, 19, 20] developed a more
general scale known as the ¢-order, which provides new insights into classifying
entire and meromorphic functions based on their growth behaviours.

Recently, Heittokangas et al. [18] refined the concept of @-order by adding a
subadditivity condition on @, creating a more versatile tool. For more details, refer
to [18]. This concept has since been applied to examine the growth properties of
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solutions to complex differential equations, as explored by Khedim et al. [24], and
Belaidi [1] as well as Kara et al. [22, 23].

Parallely, Mulyava et al. [27], and Sheremeta [34, 36] researched the generalised
(o, B)-order, highlighting its role in characterising growth. Building on this, Belaidi
and Biswas [2, 3] introduced the (o, [3,y)-order, showing its relevance in various
fields. These developments provide important tools for analysing the growth of en-
tire and meromorphic functions.

These innovative growth indicators can also be applied within a broader frame-
work to analyze the growth behavior of integer-translated entire and meromorphic
functions. By advancing our understanding of function growth, these approaches
have the potential to significantly enrich the theoretical foundation of this field, open-
ing up new avenues for future research and practical applications.

Understanding integer translations in this context is essential, as these translations
often uncover more subtle changes in function behavior that might otherwise go un-
noticed. Exploring this area has wide-ranging applications, including improving the
comparative growth of entire and meromorphic functions. It also provides insights
relevant to fields such as differential equations and dynamic systems. This knowl-
edge can be particularly useful in mathematical physics, where function growth is
critical for modeling systems with complex-valued solutions.
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