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ABSTRACT. This study is devoted to the dynamical analysis of the following
higher order difference equation
Xpp1 = pXn+ %, ke{l,2,...},
X

where p, ¢, r and the initial conditions are positive real numbers. In particular, we
discuss the existence of periodic solutions of the difference equation. We also
handle the boundedness, local and global stability of solutions of the difference
equation. Moreover, we study the existence of Neimark-Sacker bifurcation of
solutions of the difference equation for k = 1 and also give an invariant curve of
the difference equation. Finally, we provide some numerical examples to support
our results and present some open problems for future works.

1. INTRODUCTION

Higher order difference equations and their systems have garnered increased in-
terest from researchers over the past few decades for several reasons. One principal
reason is that they provide a natural means of describing many discrete mathemat-
ical models utilized across a broad range of fields such as biology, physics, engi-
neering, economics, and population dynamics. Consequently, these models have
received considerable attention and analysis in these areas. We anticipate that the
study of difference equations will surge in popularity as researchers uncover more
intriguing and innovative applications. Despite their apparent simplicity, these
equations still present a challenging task, and comprehending the behaviors of the
solutions they offer requires rigorous investigation. However, it is these challenges
that make difference equations an enticing subject for future research in the field,
fueling interest among scholars. Researchers in this field have extensively studied
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the dynamical properties of various difference equations, including their bounded-
ness, stability, periodicity, and oscillations. However, only a few researchers have
investigated the bifurcation analysis of the equilibrium points, which can provide
insights into the qualitative behavior of the solutions near these critical points. This
gap in research presents an interesting opportunity to explore and further extend our
understanding of the complex behavior of difference equations, as it is an area ripe
for new insightful discoveries.
In [27], Ouyang et al. discussed a kind of Bobwhite quail population model

X
Xnr1 =A+Bx, + ! ’
Xn—1Xn—2

where n > 1, the parameters and initial values are positive parabolic fuzzy num-
bers. They especially argued the conditional stability of this model and also the
existence, boundedness and persistence of its unique positive fuzzy solution.

In [31], Tagdemir handled the dynamics of the following difference equations

Xn
2_

Xpi1 =A+B yme{2,3,---}, (1.1)
where A, B and the initial conditions are positive real numbers. The author studied
the existence of bounded solutions, rate of convergence, global stability analysis
and periodic solutions of the higher order difference equations.

In [33], Tagdemir et al. explored some dynamical properties of solutions of
following higher order difference equations

Yo :A+Bx’;;m,m: 1,2,..},
n

where A, B and initial conditions are positive real numbers. In particular, the au-
thors dealt with the periodic solutions, bounded solutions, oscillation behaviours,
stability and rate of convergence of the higher order difference equations.

In [21], Kulenovic et al. discussed the Neimark-Sacker bifurcation of the fol-
lowing quadratic fractional difference equation

anxnfl + Yxi—l + Oxy,
Bxx,_1+ Cxﬁf1 +Dx,’

Xn+1 =

with the parameters B,Y,8,B,C, D and the initial conditions non-negative numbers
with B+ C+ D > 0 and the denominator is positive for all n > 0.

In [12], Kalabusic et al. investigated the dynamics of the following two differ-
ence equations

2
B Boxpxn—1 +VXn—1 . 0, + BXuXn—1 + VXn—1
1 L . 1 pr—
i Ax2+Bx,x,—1 i Ax2 ’

with the non-negative parameters o, 3,7y, 9, A, B and non-negative initial conditions.
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In [3], Beso et al. considered the dynamics of the second order difference equa-
tion
Xn
2 ?
-1

Xpi1 =7Y+0

X

where 7,8 and the initial conditions are positive real numbers. The authors proved
the boundedness, global attractivity and Neimark-Sacker bifurcation results of this
difference equation.

In [10], Hassan discussed the dynamics of the following second order difference
equation

" (1.2)
n—1
where p,q € (0,1). Hassan studied the periodic solutions, boundedness and stabil-
ity of Equation (1.2).

There are also many papers related to difference equations (see, for example,
[1,2,4,7,11,15,17-20,24-26,29, 30,30-35] and references therein).

Considering the above studies, we extend Equation (1.2) to a higher order and
also present many new results on boundedness, periodicity, global asymptotic sta-
bility and Neimark-Sacker bifurcation. Therefore, we handle the global dynamics
of solutions of unique equilibrium point of the following higher order difference
equation

Kol = P+ —a—, (1.3)
X,

where p, g, r and the initial conditions are positive real numbers and k € {1,2,...}.
In particular, we investigate the periodicity, boundedness, local and global stability
of the solutions of the difference equation (1.3). Moreover, we study the existence
of Neimark-Sacker bifurcation of solutions of the equilibrium point of the differ-
ence equation (1.3) for k = 1. We also give an invariant curve of the difference
equation (1.3) for k = 1.

This paper is divided into seven sections. In the first section, we provide some
brief information about the papers related to our study. We also give the important
results and definitions related to the theory of difference equations. In section 2, we
analyze the existence of periodic solutions of Equation (1.3) with period two. In
section 3, we investigate the boundedness of solutions of Equation (1.3). In section
4, we study the local and global asymptotic stability of solutions of Equation (1.3).
In section 5, we handle the existence of Neimark-Sacker bifurcation of solutions
of Equation (1.3). In addition to this, we deal with the invariant curve of Equation
(1.3). In section 6, we present some numerical examples to support to our results.
In the last section, we summarize our results and offer some open problems for
researchers.

We first transform Equation (1.3) using a change of variables as follows:
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i
Xn =1/ ~Yn-
r

Hence, we obtain the difference equation

1
Yn+1 :p))n"i‘T (1.4)
Yn—k
where p >0 and k € {1,2,...}. Therefore, we handle the difference equation (1.4).
Thus, we have the following solutions of Equation (1.4):

1 1 2mi 1 4mi
)_’1:37,@7)72: 7 1—p€3 7)73:37fpe3 )
where p # 1. During this study, we consider the equilibrium point y = y; > 0 for
0 < p < 1. The other equilibrium points can be handled in different studies.
We now provide a summary of the important results and definitions related to
the theory of difference equations. For more information, see [5, 6, 13, 16] and the
references contained therein.

Definition 1.1. Let I be some interval of real numbers and let  : I¥' — I be a
continuously differentiable function. Then, for every initial condition, the differ-
ence equation

yl’l-‘r]:f(yn7yn—k)7n:0717‘”7k:1727"‘ (15)
has a unique solution {y,};__,.

Definition 1.2. The equilibrium point y of the equation
Ynit = f nsYnt) ,n=0,1,2,- k=1,2,...
is the point that satisfies the condition
y=r@.9).
Definition 1.3. The equation
Ynt1 = qoYn + qiyn—k;n =0, 1,---, (1.6)

is called the linearized equation of Equation (1.5) about the equilibrium point y
such that

_odf ~_ of
= ayn k= aynfk .
Its characteristic equation is
karl

—qoM — g =0.
Theorem 1.1 (See [14]). Linearized Stability. Consider the difference equation
Ynt+1 =qoyn+q1Yn—1,n=0,1,---.
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[V

: If both roots of the equation have absolute values less than one, then the

equilibrium y of the equation is locally asymptotically stable.

b: If at least one of the roots of the equation has an absolute value greater
than one, then ¥y is unstable.

c: Both roots of the equation have absolute values less than one if and only
if |qo| < 1 —qy1 <2, in this case, ¥ is a locally asymptotically stable.

d: Both roots of the equation have absolute values greater than one if and
only if |q1| > 1 and |qo| < |1 — q1|, in this case, y is a repeller.

e: One root of the equation has an absolute value greater than one while the
other root has an absolute value less than one if and only if q% +491 >0
and |qo| > |1 — q1|, in this case, y is unstable and is called saddle point.

f: A necessary and sufficient condition for a root of the equation to have

absolute value equal to one is |qo| = |1 —q1| or g1 = —1 and |qo| < 2, in

this case, y is called a nonhyperbolic point.

Theorem 1.2 (See [22]). Let a be a nonnegative real, b an arbitrary real and k a
positive integer. The difference equation

Xpa1l —axy +bx, r=0,n=0,1,2, ..., (1.7)

is asymptotically stable if and only if |a| < % and

1
a: |a| —1<b< (a®+1—2lalcos0)?, for k odd,
1
b: |b—a| <1and |b| < (a*+1—2lalcos)?, for k even,
where § is the solution in (0, 1) of sin(k8)/sin[(k+1)8] = 1/al.
Theorem 1.3 (See [8]). Let f : [a,b]*! — [a,b] be a continuous function, where

k is a positive integer, and where [a, D) is an interval of real numbers and consider
the following difference equation

xn+1:f(xnv'”axnfk))nzoal)“" (18)

Suppose that f satisfies the following conditions:
it For each integer i with 1 < i < k+ 1, the function f(z1,22,  ,2k+1) IS

weakly monotonic in z; for fixed 71,22, yZi—1,Zi+1," " s Zk+1-

ii: If (m,M) is a solution of the system m = f(my,mp,--- ,my41) and M =
f(M, My, ;Myi1), then, m = M, where for eachi =1,2,--- . k+ 1, we
set

M if f nonincreasing in z;,

m { m if f nondecreasing in z;, }
i pr—

and

M= M if f nondecreasing in z,
"\ mif f nonincreasing inz; |’
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Then, there exists exactly one equilibrium point X of the difference equation
(1.8), and every solution of (1.8) converges to X.

Theorem 1.4 (See [4]). Letn € N,% and g (n,u,v) be a nondecreasing function in
u and v for any fixed n. Suppose that, for n > ng, the inequalities

Yoyl < g(naymyn*l)v
Upt1 > g(n,u,,,un_l)
hold. Then

Uny—1,

IA A

Up,
implies that

Yn < up,n 2> ny.
2. EXISTENCE OF PERIODIC SOLUTIONS OF EQUATION (1.4)

This section is devoted to whether Equation (1.4) has two periodic solutions.

Theorem 2.1. Let p > 0 and {y,},__, be a positive solution of Equation (1.4).
Then, the following are true:

a: If k is an odd number, then Equation (1.4) has no two periodic solutions.
b: If k is an even number and if p € (0,%), then Equation (1.4) has two
periodic solutions. But, if p > % then Equation (1.4) has no two periodic
solutions.

Proof. a: Suppose that Equation (1.4) has a periodic solution with period two
such that

e 7a’b7a7b’a7...

where a, b € R" and different from the other. Let k be an odd number.
Hence, from Equation (1.4) we get

1

— bt —

a )4 +a2,
1

Therefore, we obtain that

(a—b) <1+p+(;;_bf> =0.
From p > 0, we have
a+b
a’b?
and thus, we get a = b a contradiction.

1+p+ >0,
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b: Assume that Equation (1.4) has a periodic solution with period two such
that

“ee 7a’b,a’b’a’...

where a, b € R and different from the other. Let k be an even number.
Then, we have from Equation (1.4) that

1
a = pb + ﬁ’ (21)

1
b = pa+—. 2.2)

a

Hence, we get the following

ab>*—pb*—1 = 0, (2.3)
ba*—pa*—1 = 0. 2.4)

Subtracting (2.4) from (2.3), we obtain that
(a—b) (pa*+ (p—1)ab+ pb*) =0.
Here, if the following equation has two roots different from each other
pa* + (p—1)ab+ pb* =0,

then we get two periodic solutions as a@ # b. On the other hand, we have
the equilibrium solutions of Equation (1.4) as a = b. Therefore, we have
pE (— 1, %) Via our assumption, we complete the proof. Moreover, when
(2.2) is substituted into (2.1), we obtain that

1 1
=p(pat—)+—-s. 23)
a p(]?a a2> (p(H-aiz)z
Therefore, we get with p € (0’ %)
1
a = )
31_p
L _ o) (1=2p)— V(1 -3p)(1+p)
2(p*+p3) ’
L (1 -2p) +/(T-3p)(T+p)
2(p*+p?) '

Note that the other roots of Equation (2.5) are not taken into account be-
cause they are not real numbers. We also know that a = ﬁ is an equi-

librium solution so it is not a periodic solution. Therefore, we have two
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cases with periodic solutions with two periods as follows:
_ 3/(+p)(1=2p)—/(1=3p)(1+p)
a =
2(p*+p)

o \3/<1+p><1—2p>+ (1=3p)(1+p)
27+ 1)

)

)

and

. \3/<1+p><1—2p>+ (1=3p)(1+p)
) 27+ pY) |

, §/<1+p><12p>

(1-3p)(1+p)

3. EXISTENCE OF BOUNDED SOLUTIONS OF EQUATION (1.4)

In this section, we investigate the boundedness of solutions of Equation (1.4).
Here, we reveal under what conditions the solutions of Equation (1.4) are bounded
or unbounded. We now discuss the existence of bounded solutions of Equation
(1.4).

Theorem 3.1. Let p € (0,1). Then, every solution of Equation (1.4) is bounded.

Proof. Let p € (0,1) and {y,},__, be a positive solution of Equation (1.4). From
Equation (1.4), there exists a ¢y such that

1 1
Ynt1 =pP¥n+—5—=p|Yn+—5— | = pco,
Yn—k DYy

where ¢ is a positive real number and n > —k. Hence, we obtain that
1 1
Ynt1 = PYn+ 35— < pynt —55.
Yok pPcy
Now we consider Theorem 1.4. Then, we handle the {u,}, ,, and y, < u,,n =

0,1,2,...,and

1
Unt+1 = plin + ——, (3.1)
P Cy

for n > 1 such that

Usgri = ys+i,i €{0,1},5 € {0,1,2,...} ,n >s.
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Therefore, we obtain the solution of first order difference equation (3.1) as follows
p'—1

u, = p'cr+ )
" (p—1) p2c

where ¢; = y;. Thus, we get that

V1 — Un+1 < p (Yo —tn),

where n > s and p € (0,1). Hence, we obtain that y, < u,,n > s. Moreover, we
have the following

<y < pley+—P il
POSYnSP ClT 7 5 7
! (p—1)p%c
where ¢ is a positive real number, c; = y;, n > 1 and p € (0,1). So, the proof has
been completed as desired. (I

Here, we handle the unbounded solutions of Equation (1.4).

Theorem 3.2. Let p > 1. Then, every solution of Equation (1.4) is unbounded from
above.

Proof. Let p > 1 and {y,},__, be a positive solution of Equation (1.4). We have
from Equation (1.4)

1
Ynt1 =PYn+ 35— 2 DPVn 2 Yn-
Yi—k

From this, the result follows. O

4. STABILITY ANALYSIS OF EQUATION (1.4)

In this section, we study the local stability of Equation (1.4) about the equilib-
rium point y. We also handle the global asymptotic stability of Equation (1.4) about
the equilibrium point y. We first examine the linearized equation and characteristic
equation of Equation (1.4) about the equilibrium point y as follows:

The linearized equation of Equation (1.4) about the equilibrium point y = \3/%
is

Zn+1 = PZn+ (ZP - 2) Zn—k- (41)

Hence, we have the following characteristic equation about the equilibrium point
1

Y=

M —pAfy2-2p=o0.
First, we consider Equation (1.4) for k = 1.

Theorem 4.1. The followings are true:
a:lfpe (%, 1), then the equilibrium point y of Equation (1.4) is locally
asymptotically stable.
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b: Ifp e (0, %), then the equilibrium point y of Equation (1.4) is a repeller.
c lfp= % then the equilibrium point y of Equation (1.4) is a nonhyperbolic
point.

Proof. Since the proof of the Theorem 4.1 can be easily completed via Theorem
1.1, we left it to the readers. ]

Now, we consider Equation (1.4) for k = {2,3,...}. Here we apply Theorem 1.2
for difference equation (4.1) as follows:

Theorem 4.2. Let p > 0. The difference equation (4.1) is asymptotically stable if

and only if |p| < k%l, and

1
a: p<land2—-2p< (p2—|— 1 —2pcos¢)2,f0rk odd,
1
b: % <p<land|2—2p| < (p*+1—2pcos0)?, fork even,
where § is the solution in (0, 1) of sin(k6)/sin[(k+1)8] = 1/p.

Proof. From Theorem 1.2, we can deduce the proof of the theorem for k is odd or
even. U

Remark 4.1. Consider Theorem 4.2 with k =2. Then, we find ¢ that is the solution
in (0,%) of
psin26 = sin 36.
Hence, we obtain that
sin® (4cos*@ —2pcos®—1) =0.
Thus, we have
sin@ = 0,

— 214

4
p+p*+4
—

cos® =

Since ¢ is the solution in (0, %), we get

cos® =cosp =

p+p*+4

B E—

Therefore, we consider the following inequilities
2-2p| < /pP*+1-2pcoso,

2
P2rl—p <p+ V2p+4>. 4.2)

2-2p] <
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From the solution of the inequality (4.2) with % < p < 1, we obtain that
3-V3
7

So, if 3’2\/5 < p < 1 and k = 2, then the equilibrium point ¥ of Equation (1.4) is
locally asymptotically stable.

p>

Theorem 4.3. Let p € (0,1), suppose p satisfies the conditions in Theorems 4.1
and 4.2. Then, the equilibrium point y of Equation (1.4) is globally asymptotically
stable.

Proof. For the proof of this theorem, we consider Theorem 1.3. According to this
Theorem, we observe the function

1
f(yna))n7k> = f(u,v) = pu—+ ﬁ 4.3)

The function f (4.3) is non-decreasing in u and non-increasing in v. Let (m,M)
be a solution of the following system: m = f(m,M) and M = f(M,m). Thus, we
have, via the function f (4.3)

"o
1
m
From these, we obtain that
mM (m—M)(1—p) =0.
Therefore, we get, from p < 1,
m=M.

Thus, every solution of Equation (1.4) converges to the equilibrium point y. So,
this completes the proof. U

5. ANALYSIS OF NEIMARK-SACKER BIFURCATION

During this section, we consider the Equation (1.3) for k = 1 and r = 1. Here,
we consider Equation (1.3) for k = 1. Hence, we obtain the following second order
difference equation

q
Xpt1 = PXn+ ——, 6D
n—1
where p,q > 0 and the initial conditions x_j,xp > 0. Hence, we obtain the follow-
ing solutions of Equation (5.1) as follows:

qg _ q n _ q
¥ ,XZ:—S h h

e l—p I—p I—p
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where p,q > 0 and p # 1. In this section, we consider the equilibrium point X = x;
since it is a real number. From this, we have the linearized equation and character-
istic equation about its equilibrium point X respectively

Zn+1*pZn*(2p*2)Zn71 = 0,
M —ph+2-2p = 0.

From the Linearized Stability Theorem (1.1), we obtain the following:
alfpe (%, 1), then the equilibrium point y of Equation (5.1) is locally
asymptotically stable.
b: If p e (0, %), then the equilibrium point y of Equation (5.1) is a repeller.
c:Ifp= %, then the equilibrium point y of Equation (5.1) is a nonhyperbolic
point.
Now, we investigate the Neimark-Sacker bifurcation of the equilibrium point x
of Equation (5.1). In this section, we need the following theorem which is also
known as Poincare-Andronov-Hopf bifurcation theorem for maps, see [9, 28, 36].

Theorem 5.1. Let f : R x R? — R?; (A, x) — f(A,x) be a C* map depending on
the real parameter \ satisfying the following conditions:

it f(A,0) =0 for A near some fixed Ay,

ii: Df(A,0) = 0 has two non-real eigenvalues u(\) and u(\) for k near Ao,

lu(ho)| = 1;
iii: % lu(A)| =d(Ro) # 0 at A= Ao
ive k(M) # 1 fork=1,2,3,4.
Then, there is a smooth h-dependent change for coordinate bringing f into the

form

f(x) = G x) +O(lxl)-

and there are smooth functions a(\), b(A) and w(\) so that in polar coordinates
the function G(\,x) is given by

r _ |lu(?\’)’r_a(}\’)r3 5.2

o )= arw)+o0)2 ) (5-2)
If a(ho) > 0 and d(hy) > 0 (d(ho) < 0), then there is a neighborhood U of the
origin and a, 8 > 0 such that for |L—Xy| < & and xo € U, then the w-limit set of
xo is the origin if L < Ao (A > Ao) and belongs to a closed invariant C' curve T (L)
encircling the origin if A < Ao (A > Ao). Furthermore, I" (Ag) = 0.

If a(Mo) < 0 and d(Ay) > 0 (d(Ag) < 0), then there is a neighborhood U of the
origin and a, 8 > 0 such that for |.—Xo| < & and xo € U, then w-limit set of xo
is the origin if L > Ay (A < Ao) and belongs to a closed invariant C' curve T (1)
encircling the origin if A > Ao (A < Ao). Furthermore, I" (Ag) = 0.
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Considering a general map f(A,x) that has a fixed point at the origin with com-
plex eigenvalues u(\) = o(A) +iB(A) and u(h) = a(X) — iB(A) satisfying a(X)? +
B(A)?=1landB(h) #0

By putting the linear part of such a map into Jordan canonical form, we may
assume f to have the following form near the origin

_ ([ ad) —B(A) X1 g1 (A, x1,x2)
ro0=( 5 o ) (0 )+ (o) )
Moreover, for all sufficiently small positive (negative) A, f has an attracting (re-

pelling) invariant circle if a(ho) < 0 (a(ho) > 0) respectively; and a(Ay) is given
by the following formula:

o) = re|[UHOD 00 | Pl 63)
—Re (0o ). (54)
where
o= g S S
Y= %{81 w80, (8200 +(&2)0] 1

’Y02 = 1 { gl xlxl gl)xzxz 2(82)xlx2 }
8 g2 X1X1 (gz)x2x2+2(gl)XIX2] ’

—

Y o= - { .(gl )xlxlxl + (gl )xlxzxz + (gz)xlxlxz + (gQ)xzxzxz } )
8 +1 [(gz)xlqu + (g2)x1x2x2 - (gl)ch]xz - (gl)xzxzxz}

Now, we focus on the Neimark-Sacker bifurcation of the unique equilibrium
point of Equation (5.1).
First, we take a change of variable such that

Yn =Xy —X.

Thus, from Equation (5.1), we have that

Y1 = (p—1)E+ pyn+ ——. (5.5)
(yn—l +x)

By using the substitution u, = y,_1,v, = y,, we write Equation (5.5) in the equiv-
alent form

Up+1 = Vn (5.6)
Vn+1:(P_1)x+PVn+ﬁ ’ ’
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We define a corresponding map, denoted as F' and defined by:

F< l:>: ( (p—l)x+vpv+qu)2 )
F<:>:JF(O’O)<3>+G<3> (5.7)

Therefore, we get

where

and

Also, we obtain that

roo-( Y D)-(a 1)

Hence, we get the eigenvalues of Jg (0,0) as follows

pE/p*+8p—38
p (p) = > .
Thus, we have
s (p)P =u(p)u(p) =2(1-p). (5.8)

Here, we consider the non-hyperbolic equilibrium point. Then, let p = pg = %

and so X, = v/2q. Therefore, we have the Jacobian matrix of F at (0,0) and

p=po=7
0 1
JF(0,0): ( 71 1 > :A

2

Thus, we get the eigenvalues of Jacobian matrix A such that

1415

1 (po) 2

and

lu(po)| = 1.
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L also satisfies

) —T7+iv15
u (po) = g
3(po) = —11-3iv15
H {Po = 16 )
o) = 17 —-7iv/15
H {Po = 32 )
and
:uk (pO) # 17
for k = 1,2,3,4. Additionally, we have the eigenvectors corresponding to u(po) as
follows
T
[ 1—=iV15 !
- 4 9 )
and

15 ’2 30

_ (2@;’ 1 mi>

and Aq = ug, YA = uy and Yq = 1 hold. Furthermore, we obtain from (5.8)

d
ap u(p)l =-1<0. (5.9)

=1
2

Theorem 5.2. We consider Equation (5.1). There exists a neighbourhood U of the
equilibrium point (X,X) and a & > 0 such that for ‘p — %’ < dandx_y,xo €U, then
the w-limit set of solutions of Equation (5.1), with the initial condition x_1,xq is
the equilibrium point X if p > % and belongs to a closed invariant C' curve I' ()
encircling the equilibrium point if p < % Moreover, T (po) = 0 and invariant curve
I'(p) can be approximated by

{/;? (3—p) (cose—i-\/ﬁsin(%)

3
< u > - ( >+ 44 34q2 (1-p) (24\ﬁcos26+274‘gsm26+ T)
' Wcos@

3
44 34q2 (%—p) (6\ﬁcos26 6‘\;sm29+ \;/2—>

Proof. Assume that p = po + & with 0 a sufficiently small parameter. From above
results, we can transform (5.6) into the normal form as follows

- :,u(S)z,,—i—c(S)z,z,Zn—FO(|Zn|4>. (5.10)

==
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Equation (5.10) can be obtained in the polar coordinates as follows

Fntl '\ _ (@) ra+a(d)r+0(ry) 5.11)
I 0, +argu(8) +b(8)rn+0(ry) ) '

for a(8) = Re (%) and b (8) = Im ( x%)' By performing the Taylor expansion

of the coefficients of the first equation of (5.11), we have
Fust = (14+d8) ry+a(0)ry + 0 (ry).
Substituting p = po = % and ¥ into (5.7), we get

() -4(2) ()

u 0
Gp()(v)_ —%\3/@+(u+\;1/z)2+u :

Hence, (5.6) is equivalent to

(it )= () (),
Vn+1 Vn Vn

Define the basis of R? by ¢ = (g,§), then we can substitute for (u,v)

u z B 1-iV15 | 14iV15 5
= e oy 4 4
()=0(5)=mem=(HEHE),

Therefore, we have that

0
Z . .
G(¢< : >> = _% 3/2q+ q -+ 1—14\/15Z+ 1+l4\/1 z

(Hﬁﬁwa\ﬁﬂm)

where

Let
1
G ((1) ( ; )> =5 (g20Z2+2gl1ZZ+g0222) +0 (!z|3> )

Thus, we obtain
0
= —21-3V15i | »
z=0 84/2q
0
=1 3 )
z=0 V2

0
= < —21+3V15i >7
z=0 8/2q

82
820 = 872(; <¢
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and

1 —17—371\@
Ky = (WI—A)  gxn= 72_‘:,5\/@% )
62

2

_ 3/
K”:(I—A) 1g11—< 22L]>’
V2

| —17+Zim
K02 = (‘EIZI*A) g02 = 72f;\//27% = KZ().
6/2q

By using K9, K71 and Kp,, we get the following

83 Z 1 2 1 2
= —= ~K K122+ K Z
821 BZZBZG <¢< - ) + 7Kz + K22+ S KooZ

0
= 11-3iV/15 .
43/4q

Consequently, we obtain that

z=0

<0.

a(0) =Re (1)) — TRe(tem) = -

4/4q*
Also we have from (5.9)

=—-1<0.

In addition, we have an asymptotic approximation of the invariant curve as given
in [23]:

u\ __(x i0 2 2i0
( v>~(x>+2p0Re<qe >+p0<Re(K20€ )+K11)
where
d d
d=—lu(p Po=4/———8,6€R.
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3/4.2
Since pg = ! 34q (% — p) for 0 < % — p < 8, where 8 > 0 is a sufficiently small
parameter, from the above calculations we have that

{/;? (3-p) (cose—i-\/ﬁsine)

< ‘bj > ~ ( jc; >+ + I (% P) (24_\%cos29+274‘gsm26+ %ﬁ)
4 \ﬁ( p)cosG
3 4q?
L (1 (6\@ L3 in26 + F)

6. NUMERICAL EXAMPLES

In order to verify our results, we consider four numerical examples with different
choices of p and k in Equation (1.4). Here, each example exhibits the visualization
of the different behaviours of the solutions of Equation (1.4).

Example 6.1. Consider Equation (1.4) with p = % and k = 4. Then, we obtain the
fifth order difference equation

1 1
Yntl = eYnt 5 (6.1)
n 4

According to Theorem 2.1, given the initial conditions

: 3
Voa=ya=yo=1{/12— 18\/;m 0.60022,

3
yoa=y. = {12+ 18\/;z 2.8758,

Equation (6.1) has two periodic solution as shown in Figure 1. Figure I shows the
first 40 terms of Equation (6.1).

Example 6.2. Consider Equation (1.4) with p = 0.64 and k = 2. Then, we have
the following difference equation of order three

1
Yn+1 = 0-64yn + > (6.2)
yn—2
and y = 1.40572. According to Theorem 4.2, Remark 4.1 and Theorem 4.3, if p >
3= \f ~ 0.63397, then Equation (6.2) is globally asymptotically stable. Now, we

conszder Equation (6.2) with the initial conditions y_, =6, y; = 1 and yg = 4.
Figure 2 shows the first 1.500 terms of Equation (6.2).



GLOBAL DYNAMICS AND BIFURCATION OF A HIGHER ORDER DIFFERENCE EQUATION 289

Yn
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20

I 1 I I I I 1 I I I I 1 I I I I 1 n
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FIGURE 1. Two periodic solution of Equation (6.1).
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— y, — y=1.40572
FIGURE 2. Globally asymptotic stability of Equation (6.2).

Example 6.3. Consider Equation (1.4) with p = 0.51 and k = 1. Then, we get the
following second order difference equation

Yoot = 051y, + 5. (63)
n—1
and y = 1.26843. According to Theorems 4.1 and 4.3, lf% < p <1, then Equation
(6.3) is globally asymptotically stable. Now, we consider Equation (6.3) with the
initial conditions y| =7 and yy = 2. We now present two figures, Figure 3 shows
the global asymptotic stability of the first 1.500 terms of Equation (6.3) and Figure
4 shows the phase portrait behaviour of the first 1.500 terms of Equation (6.3).

Example 6.4. Consider Equation (5.1) with x_1 = 0.1 and xo = 1.1. Then, we get
the following Neimark-Sacker Bifurcation plots for the different p intervals. The
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P R !
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FIGURE 3. Global asymptotic stability of Equation (6.3).

0.8
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0.8 1.0 1.2 14 1.6 1.8

FIGURE 4. Phase portrait behaviour of Equation (6.3).

figures 5 and 6 show that if p € (0,0.5), then the equilibrium point X of Equation
(5.1) is unstable. Figure 7 shows that if p € (0.5,1), then the equilibrium point X
of Equation (5.1) is stable.

Example 6.5. Consider Equation (5.1) with p = 0.4999 and q = 3. Then, we have
the following second order difference equation

2 bl
Xn—1

Xng1 = 0.4999x, + (6.4)



GLOBAL DYNAMICS AND BIFURCATION OF A HIGHER ORDER DIFFERENCE EQUATION 291

FIGURE 5. Bifurcation diagram for x, with respectto p € (0,1)

0.3 0.35 0.4 0.45 0.5 0.55 0.6

FIGURE 6. Bifurcation diagram for x, with respect to p € (0.3,0.6)

with the initial conditions x_1 = 5 and xo = 8. According to Theorem 5.2, Equation
(6.4) has an invariant curve as shown in Figure 8. Figure 8 shows both first 100.000
terms of Equation (6.4) and the invariant curve of Equation (6.4).

7. CONCLUSION AND OPEN PROBLEMS

During this paper, we discuss the dynamical behavior of the solutions of Equa-
tion (1.3). We first give the existence of two periodic solutions of Equation (1.3).
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FIGURE 7. Bifurcation diagram for x, with respect to p € (0.4,0.5)

2.00¢
195+
1901

1850

o Difference equation xn+1=0.4999x,,—|73

n-1
s — Invariant curve I'(p)

170} °

165F .

1.60 165 170 175 1.80 185 190 195 2.00

FIGURE 8. Phase portrait behavior of 100.000 terms of Equation
(6.4) and the invariant curve of Equation (6.4).

We determine that if & is an odd number, then Equation (1.4) has no two periodic
solutions and if k is an even number and if p € (0, 1), then Equation (1.4) has two
periodic solutions. But, if p > 1, then Equation (1.4) has no two periodic solu-
tions. We also reveal the bounded and unbounded solutions of Equation (1.3). We
find that if p € (0, 1), then all solutions of Equation (1.4) are bounded from below
and above. Additionally, we present local and global stability of the solutions of
Equation (1.3). We see that if p € (0,1), and p satisfies the conditions in Theorems
4.1 and 4.2, then the equilibrium point ¥ of Equation (1.4) is globally asymptoti-
cally stable. Moreover, we discover the existence of Neimark-Sacker bifurcation of
the solutions of Equation (5.1) and also give an invariant curve of Equation (5.1).
Lastly, we consider some numerical simulations to support our results.



GLOBAL DYNAMICS AND BIFURCATION OF A HIGHER ORDER DIFFERENCE EQUATION 293

We now offer two open problems to researchers.
Open problem 1: Investigate the dynamics of the following higher order differ-
ence equation

Xnt1 = Ax, +

r i

Xn—k

where A, B, C and the initial conditions are positive real numbers.
Open problem 2: Investigate the dynamics of the following higher order differ-
ence equation

bn
Xpt+1 = ApXp + e
n*p—k

where the initial conditions are positive real numbers and a,,, b, ¢, can be bounded,
convergent or periodic sequences.
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