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ABSTRACT. This study is devoted to the dynamical analysis of the following
higher order difference equation

xn+1 = pxn +
q

rx2
n−k

, k ∈ {1,2, ...},

where p,q,r and the initial conditions are positive real numbers. In particular, we
discuss the existence of periodic solutions of the difference equation. We also
handle the boundedness, local and global stability of solutions of the difference
equation. Moreover, we study the existence of Neimark-Sacker bifurcation of
solutions of the difference equation for k = 1 and also give an invariant curve of
the difference equation. Finally, we provide some numerical examples to support
our results and present some open problems for future works.

1. INTRODUCTION

Higher order difference equations and their systems have garnered increased in-
terest from researchers over the past few decades for several reasons. One principal
reason is that they provide a natural means of describing many discrete mathemat-
ical models utilized across a broad range of fields such as biology, physics, engi-
neering, economics, and population dynamics. Consequently, these models have
received considerable attention and analysis in these areas. We anticipate that the
study of difference equations will surge in popularity as researchers uncover more
intriguing and innovative applications. Despite their apparent simplicity, these
equations still present a challenging task, and comprehending the behaviors of the
solutions they offer requires rigorous investigation. However, it is these challenges
that make difference equations an enticing subject for future research in the field,
fueling interest among scholars. Researchers in this field have extensively studied
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the dynamical properties of various difference equations, including their bounded-
ness, stability, periodicity, and oscillations. However, only a few researchers have
investigated the bifurcation analysis of the equilibrium points, which can provide
insights into the qualitative behavior of the solutions near these critical points. This
gap in research presents an interesting opportunity to explore and further extend our
understanding of the complex behavior of difference equations, as it is an area ripe
for new insightful discoveries.

In [27], Ouyang et al. discussed a kind of Bobwhite quail population model

xn+1 = A+Bxn +
xn

xn−1xn−2
,

where n ≥ 1, the parameters and initial values are positive parabolic fuzzy num-
bers. They especially argued the conditional stability of this model and also the
existence, boundedness and persistence of its unique positive fuzzy solution.

In [31], Taşdemir handled the dynamics of the following difference equations

xn+1 = A+B
xn

x2
n−m

,m ∈ {2,3, · · ·} , (1.1)

where A, B and the initial conditions are positive real numbers. The author studied
the existence of bounded solutions, rate of convergence, global stability analysis
and periodic solutions of the higher order difference equations.

In [33], Taşdemir et al. explored some dynamical properties of solutions of
following higher order difference equations

xn+1 = A+B
xn−m

x2
n

,m = {1,2, ...},

where A, B and initial conditions are positive real numbers. In particular, the au-
thors dealt with the periodic solutions, bounded solutions, oscillation behaviours,
stability and rate of convergence of the higher order difference equations.

In [21], Kulenovic et al. discussed the Neimark-Sacker bifurcation of the fol-
lowing quadratic fractional difference equation

xn+1 =
βxnxn−1 + γx2

n−1 +δxn

Bxnxn−1 +Cx2
n−1 +Dxn

,

with the parameters β,γ,δ,B,C,D and the initial conditions non-negative numbers
with B+C+D > 0 and the denominator is positive for all n ≥ 0.

In [12], Kalabusic et al. investigated the dynamics of the following two differ-
ence equations

xn+1 =
βxnxn−1 + γxn−1

Ax2
n +Bxnxn−1

,xn+1 =
αx2

n +βxnxn−1 + γxn−1

Ax2
n

,

with the non-negative parameters α,β,γ,δ,A,B and non-negative initial conditions.
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In [3], Bešo et al. considered the dynamics of the second order difference equa-
tion

xn+1 = γ+δ
xn

x2
n−1

,

where γ,δ and the initial conditions are positive real numbers. The authors proved
the boundedness, global attractivity and Neimark-Sacker bifurcation results of this
difference equation.

In [10], Hassan discussed the dynamics of the following second order difference
equation

xn+1 = pxn +
q

x2
n−1

, (1.2)

where p,q ∈ (0,1). Hassan studied the periodic solutions, boundedness and stabil-
ity of Equation (1.2).

There are also many papers related to difference equations (see, for example,
[1, 2, 4, 7, 11, 15, 17–20, 24–26, 29, 30, 30–35] and references therein).

Considering the above studies, we extend Equation (1.2) to a higher order and
also present many new results on boundedness, periodicity, global asymptotic sta-
bility and Neimark-Sacker bifurcation. Therefore, we handle the global dynamics
of solutions of unique equilibrium point of the following higher order difference
equation

xn+1 = pxn +
q

rx2
n−k

, (1.3)

where p,q,r and the initial conditions are positive real numbers and k ∈ {1,2, ...}.
In particular, we investigate the periodicity, boundedness, local and global stability
of the solutions of the difference equation (1.3). Moreover, we study the existence
of Neimark-Sacker bifurcation of solutions of the equilibrium point of the differ-
ence equation (1.3) for k = 1. We also give an invariant curve of the difference
equation (1.3) for k = 1.

This paper is divided into seven sections. In the first section, we provide some
brief information about the papers related to our study. We also give the important
results and definitions related to the theory of difference equations. In section 2, we
analyze the existence of periodic solutions of Equation (1.3) with period two. In
section 3, we investigate the boundedness of solutions of Equation (1.3). In section
4, we study the local and global asymptotic stability of solutions of Equation (1.3).
In section 5, we handle the existence of Neimark-Sacker bifurcation of solutions
of Equation (1.3). In addition to this, we deal with the invariant curve of Equation
(1.3). In section 6, we present some numerical examples to support to our results.
In the last section, we summarize our results and offer some open problems for
researchers.

We first transform Equation (1.3) using a change of variables as follows:
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xn =
3

√
q
r

yn.

Hence, we obtain the difference equation

yn+1 = pyn +
1

y2
n−k

(1.4)

where p > 0 and k ∈ {1,2, ...}. Therefore, we handle the difference equation (1.4).
Thus, we have the following solutions of Equation (1.4):

ȳ1 =
1

3
√

1− p
, ȳ2 =

1
3
√

1− p
e

2πi
3 , ȳ3 =

1
3
√

1− p
e

4πi
3 ,

where p ̸= 1. During this study, we consider the equilibrium point ȳ = ȳ1 > 0 for
0 < p < 1. The other equilibrium points can be handled in different studies.

We now provide a summary of the important results and definitions related to
the theory of difference equations. For more information, see [5, 6, 13, 16] and the
references contained therein.

Definition 1.1. Let I be some interval of real numbers and let f : Ik+1 → I be a
continuously differentiable function. Then, for every initial condition, the differ-
ence equation

yn+1 = f (yn,yn−k),n = 0,1, · · · ,k = 1,2, ... (1.5)
has a unique solution {yn}∞

n=−k.

Definition 1.2. The equilibrium point ȳ of the equation

yn+1 = f (yn,yn−k) ,n = 0,1,2, · · · ,k = 1,2, ...

is the point that satisfies the condition

ȳ = f (ȳ, ȳ) .

Definition 1.3. The equation

yn+1 = q0yn +qkyn−k,n = 0,1, · · · , (1.6)

is called the linearized equation of Equation (1.5) about the equilibrium point y
such that

q0 =
∂ f
∂yn

,qk =
∂ f

∂yn−k
.

Its characteristic equation is

λ
k+1 −q0λ

k −qk = 0.

Theorem 1.1 (See [14]). Linearized Stability. Consider the difference equation

yn+1 = q0yn +q1yn−1,n = 0,1, · · · .
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a: If both roots of the equation have absolute values less than one, then the
equilibrium ȳ of the equation is locally asymptotically stable.

b: If at least one of the roots of the equation has an absolute value greater
than one, then ȳ is unstable.

c: Both roots of the equation have absolute values less than one if and only
if |q0|< 1−q1 < 2, in this case, ȳ is a locally asymptotically stable.

d: Both roots of the equation have absolute values greater than one if and
only if |q1|> 1 and |q0|< |1−q1|, in this case, ȳ is a repeller.

e: One root of the equation has an absolute value greater than one while the
other root has an absolute value less than one if and only if q2

0 + 4q1 > 0
and |q0|> |1−q1|, in this case, ȳ is unstable and is called saddle point.

f: A necessary and sufficient condition for a root of the equation to have
absolute value equal to one is |q0| = |1−q1| or q1 = −1 and |q0| ≤ 2, in
this case, ȳ is called a nonhyperbolic point.

Theorem 1.2 (See [22]). Let a be a nonnegative real, b an arbitrary real and k a
positive integer. The difference equation

xn+1 −axn +bxn−k = 0,n = 0,1,2, ..., (1.7)

is asymptotically stable if and only if |a|< k+1
k , and

a: |a|−1 < b <
(
a2 +1−2 |a|cosφ

) 1
2 , for k odd,

b: |b−a|< 1 and |b|<
(
a2 +1−2 |a|cosφ

) 1
2 , for k even,

where φ is the solution in
(
0, π

k+1

)
of sin(kθ)/sin[(k+1)θ] = 1/ |a|.

Theorem 1.3 (See [8]). Let f : [a,b]k+1 → [a,b] be a continuous function, where
k is a positive integer, and where [a,b] is an interval of real numbers and consider
the following difference equation

xn+1 = f (xn, · · · ,xn−k) ,n = 0,1, · · · . (1.8)

Suppose that f satisfies the following conditions:
i: For each integer i with 1 ≤ i ≤ k + 1, the function f (z1,z2, · · · ,zk+1) is

weakly monotonic in zi for fixed z1,z2, · · · ,zi−1,zi+1, · · · ,zk+1.
ii: If (m,M) is a solution of the system m = f (m1,m2, · · · ,mk+1) and M =

f (M1,M2, · · · ,Mk+1), then, m = M, where for each i = 1,2, · · · ,k+ 1, we
set

mi =

{
m if f nondecreasing in zi,
M if f nonincreasing in zi,

}
and

Mi =

{
M if f nondecreasing in zi,
m if f nonincreasing in zi

}
.
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Then, there exists exactly one equilibrium point x̄ of the difference equation
(1.8), and every solution of (1.8) converges to x̄.

Theorem 1.4 (See [4]). Let n ∈ N+
n0

and g(n,u,v) be a nondecreasing function in
u and v for any fixed n. Suppose that, for n ≥ n0, the inequalities

yn+1 ≤ g(n,yn,yn−1) ,

un+1 ≥ g(n,un,un−1)

hold. Then

yn0−1 ≤ un0−1,

yn0 ≤ un0

implies that

yn ≤ un,n ≥ n0.

2. EXISTENCE OF PERIODIC SOLUTIONS OF EQUATION (1.4)

This section is devoted to whether Equation (1.4) has two periodic solutions.

Theorem 2.1. Let p > 0 and {yn}∞

n=−k be a positive solution of Equation (1.4).
Then, the following are true:

a: If k is an odd number, then Equation (1.4) has no two periodic solutions.
b: If k is an even number and if p ∈

(
0, 1

3

)
, then Equation (1.4) has two

periodic solutions. But, if p ≥ 1
3 , then Equation (1.4) has no two periodic

solutions.

Proof. a: Suppose that Equation (1.4) has a periodic solution with period two
such that

· · · ,a,b,a,b,a, · · ·
where a, b ∈ R+ and different from the other. Let k be an odd number.
Hence, from Equation (1.4) we get

a = pb+
1
a2 ,

b = pa+
1
b2 .

Therefore, we obtain that

(a−b)
(

1+ p+
a+b
a2b2

)
= 0.

From p > 0, we have

1+ p+
a+b
a2b2 > 0,

and thus, we get a = b a contradiction.
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b: Assume that Equation (1.4) has a periodic solution with period two such
that

· · · ,a,b,a,b,a, · · ·

where a, b ∈ R+ and different from the other. Let k be an even number.
Then, we have from Equation (1.4) that

a = pb+
1
b2 , (2.1)

b = pa+
1
a2 . (2.2)

Hence, we get the following

ab2 − pb3 −1 = 0, (2.3)
ba2 − pa3 −1 = 0. (2.4)

Subtracting (2.4) from (2.3), we obtain that

(a−b)
(

pa2 +(p−1)ab+ pb2)= 0.

Here, if the following equation has two roots different from each other

pa2 +(p−1)ab+ pb2 = 0,

then we get two periodic solutions as a ̸= b. On the other hand, we have
the equilibrium solutions of Equation (1.4) as a = b. Therefore, we have
p ∈

(
−1, 1

3

)
. Via our assumption, we complete the proof. Moreover, when

(2.2) is substituted into (2.1), we obtain that

a = p
(

pa+
1
a2

)
+

1(
pa+ 1

a2

)2 . (2.5)

Therefore, we get with p ∈
(
0, 1

3

)
a =

1
3
√

1− p
,

a =
3

√
(1+ p)(1−2p)−

√
(1−3p)(1+ p)

2(p2 + p3)
,

a =
3

√
(1+ p)(1−2p)+

√
(1−3p)(1+ p)

2(p2 + p3)
.

Note that the other roots of Equation (2.5) are not taken into account be-
cause they are not real numbers. We also know that a = 1

3√1−p
is an equi-

librium solution so it is not a periodic solution. Therefore, we have two
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cases with periodic solutions with two periods as follows:

a =
3

√
(1+ p)(1−2p)−

√
(1−3p)(1+ p)

2(p2 + p3)
,

b =
3

√
(1+ p)(1−2p)+

√
(1−3p)(1+ p)

2(p2 + p3)
,

and

a =
3

√
(1+ p)(1−2p)+

√
(1−3p)(1+ p)

2(p2 + p3)
,

b =
3

√
(1+ p)(1−2p)−

√
(1−3p)(1+ p)

2(p2 + p3)
.

□

3. EXISTENCE OF BOUNDED SOLUTIONS OF EQUATION (1.4)

In this section, we investigate the boundedness of solutions of Equation (1.4).
Here, we reveal under what conditions the solutions of Equation (1.4) are bounded
or unbounded. We now discuss the existence of bounded solutions of Equation
(1.4).

Theorem 3.1. Let p ∈ (0,1). Then, every solution of Equation (1.4) is bounded.

Proof. Let p ∈ (0,1) and {yn}∞

n=−k be a positive solution of Equation (1.4). From
Equation (1.4), there exists a c0 such that

yn+1 = pyn +
1

y2
n−k

= p

(
yn +

1
py2

n−k

)
≥ pc0,

where c0 is a positive real number and n ≥−k. Hence, we obtain that

yn+1 = pyn +
1

y2
n−k

≤ pyn +
1

p2c2
0
.

Now we consider Theorem 1.4. Then, we handle the {un}∞

n=0, and yn ≤ un,n =
0,1,2, ..., and

un+1 = pun +
1

p2c2
0
, (3.1)

for n ≥ 1 such that

us+i = ys+i, i ∈ {0,1} ,s ∈ {0,1,2, ...} ,n ≥ s.
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Therefore, we obtain the solution of first order difference equation (3.1) as follows

un = pnc1 +
pn −1

(p−1) p2c2
0
,

where c1 = y1. Thus, we get that

yn+1 −un+1 ≤ p(yn −un) ,

where n > s and p ∈ (0,1). Hence, we obtain that yn ≤ un,n > s. Moreover, we
have the following

pc0 ≤ yn ≤ pnc1 +
pn −1

(p−1) p2c2
0
,

where c0 is a positive real number, c1 = y1, n ≥ 1 and p ∈ (0,1). So, the proof has
been completed as desired. □

Here, we handle the unbounded solutions of Equation (1.4).

Theorem 3.2. Let p≥ 1. Then, every solution of Equation (1.4) is unbounded from
above.

Proof. Let p ≥ 1 and {yn}∞

n=−k be a positive solution of Equation (1.4). We have
from Equation (1.4)

yn+1 = pyn +
1

y2
n−k

≥ pyn ≥ yn.

From this, the result follows. □

4. STABILITY ANALYSIS OF EQUATION (1.4)

In this section, we study the local stability of Equation (1.4) about the equilib-
rium point ȳ. We also handle the global asymptotic stability of Equation (1.4) about
the equilibrium point ȳ. We first examine the linearized equation and characteristic
equation of Equation (1.4) about the equilibrium point ȳ as follows:

The linearized equation of Equation (1.4) about the equilibrium point ȳ = 1
3√1−p

is
zn+1 = pzn +(2p−2)zn−k. (4.1)

Hence, we have the following characteristic equation about the equilibrium point
ȳ = 1

3√1−p
,

λ
k+1 − pλ

k +2−2p = 0.

First, we consider Equation (1.4) for k = 1.

Theorem 4.1. The followings are true:
a: If p ∈

(1
2 ,1
)
, then the equilibrium point ȳ of Equation (1.4) is locally

asymptotically stable.
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b: If p ∈
(
0, 1

2

)
, then the equilibrium point ȳ of Equation (1.4) is a repeller.

c: If p = 1
2 , then the equilibrium point ȳ of Equation (1.4) is a nonhyperbolic

point.

Proof. Since the proof of the Theorem 4.1 can be easily completed via Theorem
1.1, we left it to the readers. □

Now, we consider Equation (1.4) for k = {2,3, ...}. Here we apply Theorem 1.2
for difference equation (4.1) as follows:

Theorem 4.2. Let p > 0. The difference equation (4.1) is asymptotically stable if
and only if |p|< k+1

k , and

a: p < 1 and 2−2p <
(

p2 +1−2pcosφ
) 1

2 , for k odd,

b: 1
3 < p < 1 and |2−2p|<

(
p2 +1−2pcosφ

) 1
2 , for k even,

where φ is the solution in
(
0, π

k+1

)
of sin(kθ)/sin[(k+1)θ] = 1/p.

Proof. From Theorem 1.2, we can deduce the proof of the theorem for k is odd or
even. □

Remark 4.1. Consider Theorem 4.2 with k = 2. Then, we find φ that is the solution
in
(
0, π

3

)
of

psin2θ = sin3θ.

Hence, we obtain that

sinθ
(
4cos2

θ−2pcosθ−1
)
= 0.

Thus, we have

sinθ = 0,

cosθ =
p−
√

p2 +4
4

,

cosθ =
p+
√

p2 +4
4

.

Since φ is the solution in
(
0, π

3

)
, we get

cosθ = cosφ =
p+
√

p2 +4
4

.

Therefore, we consider the following inequilities

|2−2p| <
√

p2 +1−2pcosφ,

|2−2p| <

√√√√p2 +1− p

(
p+
√

p2 +4
2

)
. (4.2)
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From the solution of the inequality (4.2) with 1
3 < p < 1, we obtain that

p >
3−

√
3

2
.

So, if 3−
√

3
2 < p < 1 and k = 2, then the equilibrium point ȳ of Equation (1.4) is

locally asymptotically stable.

Theorem 4.3. Let p ∈ (0,1), suppose p satisfies the conditions in Theorems 4.1
and 4.2. Then, the equilibrium point ȳ of Equation (1.4) is globally asymptotically
stable.

Proof. For the proof of this theorem, we consider Theorem 1.3. According to this
Theorem, we observe the function

f (yn,yn−k) = f (u,v) = pu+
1
v2 . (4.3)

The function f (4.3) is non-decreasing in u and non-increasing in v. Let (m,M)
be a solution of the following system: m = f (m,M) and M = f (M,m). Thus, we
have, via the function f (4.3)

m = pm+
1

M2 ,

M = pM+
1

m2 .

From these, we obtain that

mM (m−M)(1− p) = 0.

Therefore, we get, from p < 1,

m = M.

Thus, every solution of Equation (1.4) converges to the equilibrium point ȳ. So,
this completes the proof. □

5. ANALYSIS OF NEIMARK-SACKER BIFURCATION

During this section, we consider the Equation (1.3) for k = 1 and r = 1. Here,
we consider Equation (1.3) for k = 1. Hence, we obtain the following second order
difference equation

xn+1 = pxn +
q

y2
n−1

, (5.1)

where p,q > 0 and the initial conditions x−1,x0 > 0. Hence, we obtain the follow-
ing solutions of Equation (5.1) as follows:

x̄1 = 3

√
q

1− p
, x̄2 =− 3

√
q

1− p
e

πi
3 , x̄3 = 3

√
q

1− p
e

2πi
3 ,
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where p,q > 0 and p ̸= 1. In this section, we consider the equilibrium point x̄ = x̄1
since it is a real number. From this, we have the linearized equation and character-
istic equation about its equilibrium point x̄ respectively

zn+1 − pzn − (2p−2)zn−1 = 0,

λ
2 − pλ+2−2p = 0.

From the Linearized Stability Theorem (1.1), we obtain the following:

a: If p ∈
(1

2 ,1
)
, then the equilibrium point ȳ of Equation (5.1) is locally

asymptotically stable.
b: If p ∈

(
0, 1

2

)
, then the equilibrium point ȳ of Equation (5.1) is a repeller.

c: If p = 1
2 , then the equilibrium point ȳ of Equation (5.1) is a nonhyperbolic

point.

Now, we investigate the Neimark-Sacker bifurcation of the equilibrium point x̄
of Equation (5.1). In this section, we need the following theorem which is also
known as Poincare-Andronov-Hopf bifurcation theorem for maps, see [9, 28, 36].

Theorem 5.1. Let f : R×R2 → R2;(λ,x) → f (λ,x) be a C4 map depending on
the real parameter λ satisfying the following conditions:

i: f (λ,0) = 0 for λ near some fixed λ0;
ii: D f (λ,0) = 0 has two non-real eigenvalues µ(λ) and µ(λ) for λ near λ0,

|µ(λ0)|= 1;
iii: d

dλ
|µ(λ)|= d(λ0) ̸= 0 at λ = λ0;

iv: µk(λ0) ̸= 1 for k = 1,2,3,4.

Then, there is a smooth λ-dependent change for coordinate bringing f into the
form

f (λ,x) = G(λ,x)+O(∥x∥5).

and there are smooth functions a(λ), b(λ) and w(λ) so that in polar coordinates
the function G(λ,x) is given by(

r
θ

)
=

(
|µ(λ)|r−a(λ)r3

θ+w(λ)+b(λ)r2

)
. (5.2)

If a(λ0) > 0 and d(λ0) > 0 (d(λ0) < 0), then there is a neighborhood U of the
origin and a, δ > 0 such that for |λ−λ0| < δ and x0 ∈ U, then the w-limit set of
x0 is the origin if λ < λ0 (λ > λ0) and belongs to a closed invariant C1 curve Γ(λ)
encircling the origin if λ < λ0 (λ > λ0). Furthermore, Γ(λ0) = 0.

If a(λ0) < 0 and d(λ0) > 0 (d(λ0) < 0), then there is a neighborhood U of the
origin and a, δ > 0 such that for |λ−λ0| < δ and x0 ∈ U, then w-limit set of x0
is the origin if λ > λ0 (λ < λ0) and belongs to a closed invariant C1 curve Γ(λ)
encircling the origin if λ > λ0 (λ < λ0). Furthermore, Γ(λ0) = 0.
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Considering a general map f (λ,x) that has a fixed point at the origin with com-
plex eigenvalues µ(λ) = α(λ)+ iβ(λ) and µ(λ) = α(λ)− iβ(λ) satisfying α(λ)2 +
β(λ)2 = 1 and β(λ) ̸= 0.

By putting the linear part of such a map into Jordan canonical form, we may
assume f to have the following form near the origin

f (λ,x) =
(

α(λ) −β(λ)
β(λ) α(λ)

)(
x1
x2

)
+

(
g1(λ,x1,x2)
g2(λ,x1,x2)

)
.

Moreover, for all sufficiently small positive (negative) λ, f has an attracting (re-
pelling) invariant circle if a(λ0) < 0 (a(λ0) > 0) respectively; and a(λ0) is given
by the following formula:

a(λ0) = Re

[
(1−2µ(λ0))

−2 µ(λ0)

1−µ(λ0)
γ11γ20

]
+

1
2
|γ11|2 + |γ20|2 (5.3)

−Re
(

µ(λ0)γ21

)
, (5.4)

where

γ20 =
1
8

{
(g1)x1x1

− (g1)x2x2
+2(g2)x1x2

+i
[
(g2)x1x1

− (g2)x2x2
−2(g1)x1x2

] } ,

γ11 =
1
4
{
(g1)x1x1

+(g1)x2x2
+ i
[
(g2)x1x1

+(g2)x2x2

]}
,

γ02 =
1
8

{
(g1)x1x1

− (g1)x2x2
−2(g2)x1x2

+i
[
(g2)x1x1

− (g2)x2x2
+2(g1)x1x2

] } ,

γ21 =
1
8

{
(g1)x1x1x1

+(g1)x1x2x2
+(g2)x1x1x2

+(g2)x2x2x2

+i
[
(g2)x1x1x1

+(g2)x1x2x2
− (g1)x1x1x2

− (g1)x2x2x2

] } .

Now, we focus on the Neimark-Sacker bifurcation of the unique equilibrium
point of Equation (5.1).

First, we take a change of variable such that

yn = xn − x.

Thus, from Equation (5.1), we have that

yn+1 = (p−1)x+ pyn +
q

(yn−1 + x)2 . (5.5)

By using the substitution un = yn−1,vn = yn, we write Equation (5.5) in the equiv-
alent form {

un+1 = vn
vn+1 = (p−1)x+ pvn +

q
(un+x)2

. (5.6)
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We define a corresponding map, denoted as F and defined by:

F
(

u
v

)
=

(
v

(p−1)x+ pv+ q
(u+x)2

)
.

Therefore, we get

F
(

u
v

)
= JF (0,0)

(
u
v

)
+G

(
u
v

)
(5.7)

where

JF (u,v) =

(
0 1

− 2q
(u+x)3 p

)
,

and

G
(

u
v

)
=

(
0

(p−1)x+ q
(u+x)2 +

2qu
x3

)
.

Also, we obtain that

JF (0,0) =
(

0 1
−2q

x3 p

)
=

(
0 1

2(p−1) p

)
.

Hence, we get the eigenvalues of JF (0,0) as follows

µ± (p) =
p±
√

p2 +8p−8
2

.

Thus, we have
|µ± (p)|2 = µ(p)µ(p) = 2(1− p) . (5.8)

Here, we consider the non-hyperbolic equilibrium point. Then, let p = p0 =
1
2

and so xp0 = 3
√

2q. Therefore, we have the Jacobian matrix of F at (0,0) and
p = p0 =

1
2

JF (0,0) =
(

0 1
−1 1

2

)
= A.

Thus, we get the eigenvalues of Jacobian matrix A such that

µ(p0) =
1+ i

√
15

4
,

and

|µ(p0)|= 1.
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µ also satisfies

µ2 (p0) =
−7+ i

√
15

8
,

µ3 (p0) =
−11−3i

√
15

16
,

µ4 (p0) =
17−7i

√
15

32
,

and

µk (p0) ̸= 1,

for k = 1,2,3,4. Additionally, we have the eigenvectors corresponding to µ(p0) as
follows

q =

(
1− i

√
15

4
,1

)T

,

and

γ =

(
2
√

15i
15

,
1
2
−

√
15i

30

)
,

and Aq = µq, γA = µγ and γq = 1 hold. Furthermore, we obtain from (5.8)

d
d p

|µ(p)|
∣∣∣∣

p0=
1
2

=−1 < 0. (5.9)

Theorem 5.2. We consider Equation (5.1). There exists a neighbourhood U of the
equilibrium point (x,x) and a δ > 0 such that for

∣∣p− 1
2

∣∣< δ and x−1,x0 ∈U, then
the w-limit set of solutions of Equation (5.1), with the initial condition x−1,x0 is
the equilibrium point x if p > 1

2 and belongs to a closed invariant C1 curve Γ(α)

encircling the equilibrium point if p < 1
2 . Moreover, Γ(p0) = 0 and invariant curve

Γ(p) can be approximated by

(
u
v

)
≈
(

x̄
x̄

)
+



√
3
√

4q2

3

(1
2 − p

)(
cosθ+

√
15sinθ

)
+

4 3
√

4q2

3

(1
2 − p

)( −17
24 3√2q cos2θ+ 7

√
15

24 3√2q sin2θ+ 2
3√2q

)
4
√

3
√

4q2

3

(1
2 − p

)
cosθ

+
4 3
√

4q2

3

(1
2 − p

)( 7
6 3√2q cos2θ−

√
15

6 3√2q sin2θ+ 2
3√2q

)


.

Proof. Assume that p = p0 +δ with δ a sufficiently small parameter. From above
results, we can transform (5.6) into the normal form as follows

zn+1 = µ(δ)zn + c(δ)z2
nz̄n +O

(
|zn|4

)
. (5.10)
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Equation (5.10) can be obtained in the polar coordinates as follows(
rn+1
θn+1

)
=

(
|µ(δ)|rn +a(δ)r3

n +O
(
r4

n
)

θn + argµ(δ)+b(δ)r2
n +O

(
r3

n
) ) , (5.11)

for a(δ) = Re
(

c(δ)
µ(δ)

)
and b(δ) = Im

(
c(δ)
µ(δ)

)
. By performing the Taylor expansion

of the coefficients of the first equation of (5.11), we have

rn+1 = (1+dδ)rn +a(0)r3
n +O

(
r4

n
)
.

Substituting p = p0 =
1
2 and x into (5.7), we get

Fp0

(
u
v

)
= A

(
u
v

)
+Gp0

(
u
v

)
,

where

Gp0

(
u
v

)
=

(
0

−1
2

3
√

2q+ q

(u+ 3√2q)
2 +u

)
.

Hence, (5.6) is equivalent to(
un+1
vn+1

)
= A

(
un
vn

)
+Gp0

(
un
vn

)
.

Define the basis of R2 by φ = (q, q̄), then we can substitute for (u,v)(
u
v

)
= φ

(
z
z̄

)
= (qz+ q̄z̄) =

(
1−i

√
15

4 z+ 1+i
√

15
4 z̄

z+ z̄

)
.

Therefore, we have that

G
(

φ

(
z
z̄

))
=

 0
−1

2
3
√

2q+ q(
1−i

√
15

4 z+ 1+i
√

15
4 z̄+ 3√2q

)2 +
1−i

√
15

4 z+ 1+i
√

15
4 z̄

 .

Let

G
(

φ

(
z
z̄

))
=

1
2
(
g20z2 +2g11zz̄+g02z̄2)+O

(
|z|3
)
.

Thus, we obtain

g20 =
∂2

∂z2 G
(

φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0

−21−3
√

15i
8 3√2q

)
,

g11 =
∂2

∂z∂z̄
G
(

φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0
3

3√2q

)
,

g02 =
∂2

∂z̄2 G
(

φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0

−21+3
√

15i
8 3√2q

)
,
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and

K20 =
(
µ2I −A

)−1
g20 =

 −17−7i
√

15
24 3√2q
7+i

√
15

6 3√2q

 ,

K11 = (I −A)−1 g11 =

(
2

3√2q
2

3√2q

)
,

K02 =
(
µ̄2I −A

)−1
g02 =

 −17+7i
√

15
24 3√2q
7−i

√
15

6 3√2q

= K̄20.

By using K20,K11 and K02, we get the following

g21 =
∂3

∂z2∂z̄
G
(

φ

(
z
z̄

)
+

1
2

K20z2 +K11zz̄+
1
2

K02z̄2
)∣∣∣∣

z=0

=

(
0

11−3i
√

15
4 3
√

4q2

)
.

Consequently, we obtain that

a(0) = Re
(

c(0)
µ

)
=

1
2

Re(γg21µ̄) =− 3

4 3
√

4q2
< 0.

Also we have from (5.9)

d
d p

|µ(p)|
∣∣∣∣

p0=
1
2

=−1 < 0.

In addition, we have an asymptotic approximation of the invariant curve as given
in [23]: (

u
v

)
≈
(

x̄
x̄

)
+2ρ0Re

(
qeiθ
)
+ρ

2
0

(
Re
(

K20e2iθ
)
+K11

)
where

d =
d

d p
|µ(p)|

∣∣∣∣
p0=

1
2

,ρ0 =

√
− d

a(0)
δ,θ ∈ R.
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Since ρ0 =

√
4 3
√

4q2

3

(1
2 − p

)
for 0 < 1

2 − p < δ, where δ > 0 is a sufficiently small
parameter, from the above calculations we have that

(
u
v

)
≈
(

x̄
x̄

)
+



√
3
√

4q2

3

(1
2 − p

)(
cosθ+

√
15sinθ

)
+

4 3
√

4q2

3

(1
2 − p

)( −17
24 3√2q cos2θ+ 7

√
15

24 3√2q sin2θ+ 2
3√2q

)
4
√

3
√

4q2

3

(1
2 − p

)
cosθ

+
4 3
√

4q2

3

(1
2 − p

)( 7
6 3√2q cos2θ−

√
15

6 3√2q sin2θ+ 2
3√2q

)


.

□

6. NUMERICAL EXAMPLES

In order to verify our results, we consider four numerical examples with different
choices of p and k in Equation (1.4). Here, each example exhibits the visualization
of the different behaviours of the solutions of Equation (1.4).

Example 6.1. Consider Equation (1.4) with p = 1
6 and k = 4. Then, we obtain the

fifth order difference equation

yn+1 =
1
6

yn +
1

y2
n−4

. (6.1)

According to Theorem 2.1, given the initial conditions

y−4 = y−2 = y0 =
3

√
12−18

√
3
7
≈ 0.60022,

y−3 = y−1 =
3

√
12+18

√
3
7
≈ 2.8758,

Equation (6.1) has two periodic solution as shown in Figure 1. Figure 1 shows the
first 40 terms of Equation (6.1).

Example 6.2. Consider Equation (1.4) with p = 0.64 and k = 2. Then, we have
the following difference equation of order three

yn+1 = 0.64yn +
1

y2
n−2

, (6.2)

and ȳ = 1.40572. According to Theorem 4.2, Remark 4.1 and Theorem 4.3, if p >
3−

√
3

2 ≈ 0.63397, then Equation (6.2) is globally asymptotically stable. Now, we
consider Equation (6.2) with the initial conditions y−2 = 6, y1 = 1 and y0 = 4.
Figure 2 shows the first 1.500 terms of Equation (6.2).
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FIGURE 1. Two periodic solution of Equation (6.1).
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yn y=1.40572

FIGURE 2. Globally asymptotic stability of Equation (6.2).

Example 6.3. Consider Equation (1.4) with p = 0.51 and k = 1. Then, we get the
following second order difference equation

yn+1 = 0.51yn +
1

y2
n−1

, (6.3)

and ȳ = 1.26843. According to Theorems 4.1 and 4.3, if 1
2 < p < 1, then Equation

(6.3) is globally asymptotically stable. Now, we consider Equation (6.3) with the
initial conditions y1 = 7 and y0 = 2. We now present two figures, Figure 3 shows
the global asymptotic stability of the first 1.500 terms of Equation (6.3) and Figure
4 shows the phase portrait behaviour of the first 1.500 terms of Equation (6.3).

Example 6.4. Consider Equation (5.1) with x−1 = 0.1 and x0 = 1.1. Then, we get
the following Neimark-Sacker Bifurcation plots for the different p intervals. The
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FIGURE 3. Global asymptotic stability of Equation (6.3).
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FIGURE 4. Phase portrait behaviour of Equation (6.3).

figures 5 and 6 show that if p ∈ (0,0.5), then the equilibrium point x̄ of Equation
(5.1) is unstable. Figure 7 shows that if p ∈ (0.5,1), then the equilibrium point x̄
of Equation (5.1) is stable.

Example 6.5. Consider Equation (5.1) with p = 0.4999 and q = 3. Then, we have
the following second order difference equation

xn+1 = 0.4999xn +
3

x2
n−1

, (6.4)
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FIGURE 5. Bifurcation diagram for xn with respect to p ∈ (0,1)

FIGURE 6. Bifurcation diagram for xn with respect to p ∈ (0.3,0.6)

with the initial conditions x−1 = 5 and x0 = 8. According to Theorem 5.2, Equation
(6.4) has an invariant curve as shown in Figure 8. Figure 8 shows both first 100.000
terms of Equation (6.4) and the invariant curve of Equation (6.4).

7. CONCLUSION AND OPEN PROBLEMS

During this paper, we discuss the dynamical behavior of the solutions of Equa-
tion (1.3). We first give the existence of two periodic solutions of Equation (1.3).
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0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

p

0

0.5

1

1.5

2

2.5

3

3.5

4

x
n

FIGURE 7. Bifurcation diagram for xn with respect to p ∈ (0.4,0.5)

FIGURE 8. Phase portrait behavior of 100.000 terms of Equation
(6.4) and the invariant curve of Equation (6.4).

We determine that if k is an odd number, then Equation (1.4) has no two periodic
solutions and if k is an even number and if p ∈

(
0, 1

3

)
, then Equation (1.4) has two

periodic solutions. But, if p ≥ 1
3 , then Equation (1.4) has no two periodic solu-

tions. We also reveal the bounded and unbounded solutions of Equation (1.3). We
find that if p ∈ (0,1), then all solutions of Equation (1.4) are bounded from below
and above. Additionally, we present local and global stability of the solutions of
Equation (1.3). We see that if p ∈ (0,1), and p satisfies the conditions in Theorems
4.1 and 4.2, then the equilibrium point ȳ of Equation (1.4) is globally asymptoti-
cally stable. Moreover, we discover the existence of Neimark-Sacker bifurcation of
the solutions of Equation (5.1) and also give an invariant curve of Equation (5.1).
Lastly, we consider some numerical simulations to support our results.
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We now offer two open problems to researchers.
Open problem 1: Investigate the dynamics of the following higher order differ-

ence equation

xn+1 = Axn +
B

Cxr
n−k

,

where A, B, C and the initial conditions are positive real numbers.
Open problem 2: Investigate the dynamics of the following higher order differ-

ence equation

xn+1 = anxn +
bn

cnx2
n−k

,

where the initial conditions are positive real numbers and an, bn, cn can be bounded,
convergent or periodic sequences.
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