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(WEAK) PRE-L-IDEALS AND ATOMS IN L-ALGEBRAS

DANIEL ABRAHAM ROMANO

ABSTRACT. The notion of L-algebras was introduced in 2008 by W. Rump. He
also introduced the concept of L-ideals in this class of logical algebras. This pa-
per introduces the concept of (weak) pre-L-ideals and atoms in L-algebras and
discusses some of their important properties. A connection has been established
between pre-L-ideals and atoms in L-algebras.

1. INTRODUCTION

L-algebras, which are closely related to non-classical logical algebras and quan-
tum Yang-Baxter equation solutions, were first introduced 2008 by Rump in [7].
Since then it was shown that many non-classical logical algebras can be unified
into L-algebras. In [8], Rump showed that three classes of algebras (Heyting alge-
bras, MV-algebras, and orthomodular lattices) were associated to specializations of
a bounded L-algebra. Since then, this class of logical algebras has been the focus of
interest of many researchers (see, for example [1-3, 5, 6, 10]). Thus, in the articles
[1, 8, 10], the relation of L-algebra to other types of logical algebras was analyzed.
Categories of L-algebras are discussed in articles [3, 9]. Substructures of ideals and
corresponding congruence relations in these algebras are treated in [5].

In this paper, by using the notion of L-algebras, we introduce the notions of (weak)
pre-L-ideals and atoms in L-algebras. We have found examples of (weak) pre-L-
ideals that are not L-ideals. The concept of pre-L-ideals designs an equivalence on
A left compatible with the operation in A but the reverse does not have to be true.
However, if the left congruence p on an L-algebra A is right-cancellative, then the
set [1], is a pre-L-ideal in A. The connection between the concepts of weak pre-L-
ideals and atoms is established. In addition, it is shown that the family of all (weak)
pre-L-ideals in an L-algebra forms a complete lattice. In Subsection 3.2 of the main
part of this paper, the concept of atoms in (K)L-algebras is discussed and some of
its basic properties are shown. While, for example, the set L(A) of all atoms of an
L-algebra A is an anti-chain, the set L(A) of a KL-algebra A is an subalgebra in A.
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In addition to the previous one, two types of extensions of the (K)L-algebra A to the
(K)L-algebra AU {a} were designed so that the element a is an atom in AU {a}.

2. PRELIMINARIES: CONCEPT OF L-ALGEBRAS

Let us emphasize here that the formulas in this text are written according to the
standard rules for writing formulas in Mathematical Logic. Likewise, the logical
functions in these formulas have literal meanings. If a formula is not closed by a
quantifier, it means that the formula is open and all variables in it are free variables.
The notation :=, and notation :<=>, when they appear in formulas, means that the
symbol on the left side in relation to :=, in relation to :<=>, is an abbreviation for
the formula on the right side according to the same label respectively.

Recall that an L-algebra [7] is a set A with a binary operation A x A > (x,y) —
x-y € A and a O-ary operation 1 € A such that

(LO) (Vx e A)(1-x=x),

(L1) (VxeA)(x-x=1),

(L2) (VxeA)(x-1=1),

(L3) (V3,2 € A)((r-y) - (x-2) = (y-x)- (-2)). and

LHVx,ycA)((x-y=1Ay-x=1) = x=y).

Similarly, we define a pre-L-algebra assuming that only properties (L0)-(L3) holds
[5]. These pre-L-algebras are called unital cycloids in [7]. It is easily seen that in a
pre-L-algebra the element 1 with properties (L0)-(L2) is unique. It is called the logi-
cal unit of the pre-L-algebra. An example of a pre-L-algebra that is not an L-algebra

can be found in [5], Example 3.1. Equation (L3) holds in most generalizations of
classical logic, including intuitionistic, many-valued, and quantum logic.

On any pre-L-algebra A there is a natural quasi-order <, i.e., a reflexive and tran-
sitive relation, defined by (Vx,y € A)(x <y :<= x-y =1). A pre-L-algebra is an
L-algebra if and only if this natural quasi-order is a partial order, that is, if and only
if it is also an antisymmetric relation.

According to (L2), it is obvious that any L-algebra A satisfies
(L5) (VxeA)(x < 1).

Example 2.1. Let A = {x,y,z,1} be a set and let the operation in A be given by the
following table

— = | =
—_= = R =
= o= e
— = = NN

N R =
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Then (A,-,1) is an L-algebra. O

Example 2.2. Let (A, <) be a partially ordered set with the greatest element 1 and
A\ {1} be discrete. Let us define the binary operations - and as following:

y ifx,yeA\ {1},

Xy = y ifx=1,
1 ify=1.
Then we can easily check that (A,-, 1) is an L-algebra. O

Example 2.3. Set A = (—oo, 1] C R. Define

_ )1 ifx<y,
xy_{y ify<x.

Then (A,-,1) is an L-algebra. O

Regarding examples of L-algebra, the reader can refer to the article [4].

Although the following two results are known, we include them in this paper for
consistency of presentation.

Lemma 2.1 ([7]). Let (A,-,1) be an L-algebra. The induced partial order is left
compatible with the operation in A in the following sense

(an)’aZEA)(y <z —= xX-y <X'Z).

Lemma 2.2 ([7]). Let (A,-,1) be an L-algebra. The induced partial order is reverse
right compatible with the operation in A in the following sense

(Vx,y,z GA)(ng = y-Z <X'Z)
if and only if the following formula
K) (vx,y € A)(x-(y-x) =1)

is valid in A.

According to [3], if the L-algebra A satisfies the condition (K), then it is called a
KL-algebra. A CL-algebra is an L-algebra (A, -, 1) such that

(©) (Vx,y,z€A)((x- (y-2)) - (v- (x-2)) = 1)
It follows that in any L-algebra A satisfying the condition (C) we have
(Vx,y,z€A)(x- (y-2) =y~ (x-2)).
Clearly, every CL-algebra is a KL-algebra, since for any x,y € A, we have x- (y-x) =
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Example 2.4. Let the set A = {1,x,y,z} be ordered by the order relation < in the
following way x < 1, y < 1 and z < 1. If an operation - is determined in L as follows

Y

—_ |

NN R
— N < NN

y
y
1
<

N R =]

Then (A,-,1) is an L-algebra, but it is neither a KL-algebra nor a CL-algebra. [

Example 2.5 ([7], Example 1). Let (X,<) be a partially ordered set, and A :=
X U{1}, where x < 1 for all x € X. Let us define an internal operation in L as
follows

1 ifx<y,
xX-y= :
Y {y ifx Ly
forall x,y € A. Then (A,-,1) is an KL-algebra. O

3. THE MAIN RESULTS

This section is the central part of this article. It consists of three subsections.
In the first, the concept of (weak) pre-L-ideals in L-algebras is introduced and its
basic properties are recorded. In the second, the concept of atoms in L-algebras A is
determined and the behavior of the set L(A) of all atoms in A is determined. In the
last subsection, an extension of the L-algebra (4, -, 1) to the L-algebra (AU {a},*,1)
is created so that the element a is an atom in AU {a}.

3.1. (Weak) pre-L-ideals

A subset J of a pre-L-algebra A is an L-ideal in A ([7]) if
Joy 1€y,
dl) (Wx,yeA)((xeJAx-yel) = yel),
J2g) (Vx,ycA)(xeJ = (x-y)-y€J),
J2) (Vx,y€A)(xeJ = y-(x-y) €J),
3) (Vx,ycA)(xeJ = y-xel).
For the purposes of this paper, we introduce the following concepts:
Definition 3.1. [fthe conditions (JO) and (J1) hold for a subset J of A, it is said to be

a weak pre-L-ideal in pre-L-algebra A. If J additionally satisfies the condition (J3),
then we say that it is a pre-L-ideal in A.
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Although the following statements are obvious, we still write they in the form of
lemmas due to the consistency.

Lemma 3.1. Any pre-L-ideal in a L-algebra A is a weak pre-L-ideal in A.

Let A be an L-algebra. For a nonempty subset S in A we say that it is a subalgebra
in A if the following holds

(S1) (Vx,y€eA)(xeSAyeS) = x-y€S).
It should be added here that the subalgebra S of the L-algebra A obviously also
satisfies the condition

SOy 1€8.
Also, in accordance with (J3), we have:

Lemma 3.2. Any pre-L-ideal in a L-algebra A is a subalgebra in A.

Example 3.1. Let A = {1,x,y,z} as in Example 2.1. The relation < in this L-algebra
A is given by

<= {((1,1),(x,1), (x,x), (v, 1), 0,x), (3,9), (2, 1), (z,%), (z,2) }
The subsets Jy = {1} and A are pre-L-ideals in A. The subset K = {1,x} is not a
weak pre-L-ideal in A because, for example, x € K and x-z = x € K hold but 7 ¢ K.
The subset T = {1,x,y} is also not a weak pre-L-ideal in A because, for example,
x€Tandx-z=x €T hold but z ¢ T. It can be shown that the subset V ={1,x,z}

is not a weak pre-L-ideal in A, either, because, for example, we have that z €V,
z-y=x€Visvalidbuty ¢ V. O

The following example shows that the concepts of weak pre-L-ideals, pre-L-ideals
and L-ideals are mutually independent.

Example 3.2. Let A = {1,x,y,z} be as in Examples 2.4. The sets {1,x} and {1,y}
are weak pre-L-ideals in A but they are not L-ideals in A. For example, for the pre-
L-ideal J = {1,x} we have x € J but (x-z)-z =y -z =z ¢ J which means that the
condition (J2g) is not satisfied. These two weak pre-L-ideals in A are not pre-L-
ideals in A. For the first of them J = {1,x}, we have x € J but z-x =z ¢ J. For
the second weak pre-L-ideal I = {1,y}, we have'y € I but z-y =z ¢ I. The subset
K ={1,z} is not a weak pre-L-ideal in A because, for example, z€ K andz-x=z € K
is valid but x ¢ K. Also, the subsets {1,x,y} and {1,x,z} are not weak pre-L-ideals
inA. ([l

It is easy to show that for a weak pre-L-ideal J in a pre-L-algebra A holds:
Lemma 3.3. IfJ is a weak pre-L-ideal in a L-algebra A, then the following
J4) (Vx,ycA)(xeJ Ax<y) = yel).

is valid.
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Proof. Letx,y € LsuchthatxeJandx<y. Thenx € J and x-y=1 € J by (LO).
Thus y € J according to (J1). O

In [9], Proposition 3.6, it is shown that a subset K of a self-similar L-algebra L
(The definition of self-similarity, see in [7], pp. 2329) is an ideal in L if and only if

0) 1€k,

() (x,yeL)(xe KANy€eK) <= x-y€eK)and

(i) (Vx,y € L)(x € K = ((x-y)-(y-x) €K A (y-x)- (x-y) € K)).
Let us show that the first parts of the second and third requirements mentioned above
are satisfied if K is a pre-L-ideal in an L-algebra L.

Proposition 3.1. Any pre-L-ideal J in an L-algebra A satisfies the conditions
(iii) (Vx,y€ A)(xeJANyeJ) = (x-yeJ ANy-x€J))and

(iv) (Vx,y€A)(xeJ = (x-y)-(y-x) €J).
If the condition

(S) (Vx,y€A)(x-y<y)
is valid formula in the L-algebra A, then the reverse implication of the implication
(iii) is also valid in A.

Proof. LetJ be a pre-L-ideal in L-algebra A. Since x € Jandy € J, (J3) givesx-y € J
and y-x € J. It is obvious that the reverse implication is valid according to (J4) if (S)
is valid in L.

Applying (J3) to x € J twice, we get (x-y)- (y-x) € J. O

If we denote by pJ(A) the family of all (weak) pre-L-ideals in an L-algebra A, it
is obvious that {1} € pJ(A) and A € pJ(L) holds. Therefore, the family pJ(L) is not
empty.

For a (weak) pre-L-ideal J in an L-algebra A we say that it is a minimal (weak)
pre-L-ideal in A if K C J = K = J holds for every other (weak) pre-L-ideal K in
A.

Theorem 3.1. The family pJ(A) forms a complete lattice.

Proof. Let {J;}ic; be a family of (weak) pre-L-ideals in an L-algebra A. It is easy to
conclude that ();; J; is a (weak) pre-L-ideal in A. Let ) be the family of all (weak)
pre-L-ideals in L-algebra A that contain the set | ;c;J;. Then N2) is a minimal (weak)
pre-L-ideal in A that contains |J;c; J;. If we put Uie;J; = NY) and M J; = (¢ Ji» then
(pJ(A),U,M) is a complete lattice. O

Corollary 3.1. For every subset X in an L-algebra A there is a minimal (weak)
pre-L-ideal containing X.
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Corollary 3.2. Let A be an L-algebra. For every element x € A there is a minimal
(weak) pre-L-ideal J, that contains x.

For what follows, we need the following definition: For an equivalence p on an
L-algebra A, we say that it is a left congruence on A, or that p is left compatible with
the operation in A, if

(Vx,y,z€A)((x,y) €p = (z-x,2:y) €P).

Theorem 3.2. Any pre-L-ideal J in an L-algebra A defines an equivalence p on A
left compatible with the operation in A as follows

(Vx,y € A)((x,y) €p < (x-yeJ ANy-x€J)).

Proof. From (JO) and (L1) we get the following (x,x) € p, which shows that p is a
reflexive relation. p is a symmetric relation by definition.

Let us prove transitivity. Let x,y,z € A be such that (x,y) € p and (y,z) € p. This
means x-y € J Ay-xeJANy-z€JANz-yeJ. Fromy-z e J follows (y-x)(y-z) €
J according to (J3). Thus (x-y)-(x-z) € J using (L3). Now, from x-y € J and
(x-y)-(x-z) € J we get x-z € J by applying (J1). We have that y-x € J implies
(y-z)-(y-x) € Jby (33). Then (z-y) - (z-x) € J according (L3). Thus, from this and
from z-y € J, according to (J1), we get z-x € J. Therefore, (x,z) € p.

Let us show that p is left compatible with the operation in A, that is, show that
the implication (Vx,y,z € A)((x,y) € p = (z-x,z-y) € p) is valid. If x-y € J, then
(x-z)-(x-y) € J by (J3). Thus (z-x)-(z-y) € J according to (L3). Similarly, from
y-x € J follows (y-z)- (y-x) € J according to (J3). From here, according to (L3), we
get (z-y)(z-x) € J. This proves that (z-x,z-y) € p holds. O

Remark 3.1. As can be seen in the proof of the previous theorem, it is questionable
whether the assertion of the theorem is valid for weak pre-L-ideals in an L-algebra.

If we denote by [€(A) the family of all left congruences on the L-algebra A, then
without much difficulty it can be proved that:

Theorem 3.3. The family I€(A) forms a complete lattice.

Remark 3.2. Let p be an equivalence left compatible with the operation in L-algebra
A. Let us determine the properties of the set [1], =: {u € A: (u,1) € p}. Ttis
obvious that 1 € [1], because (1,1) € p since p is a reflexive relation. Let x € A be an
arbitrary element such that x € [1],. Them (x,1) € p. Thus (y-x,y-1) = (y-x,1) € p
due to the left compatibility of the relation p with the operation in L and (L2). So,
y-x € [1]p, which shows that the set [1], satisfies the condition (J3). Since p is not
right compatible with the operation in A, it is not possible to prove that [1], satisfies
the condition (J1).
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Therefore, there is no bi-unique correspondence between the family pJ(L) and
the family [€(A) of all equivalence relations on A left compatible with the operation
in A.

However, if the relation p is right-cancellative in the sense

(Vx,y,z GA)((X‘Z,))'Z) S (x7y) € p)v
then the set [1], is a pre-L-ideal in A. Indeed, let x,y € A be such that x € [1], and
x-y € [1]p. This means (x,1) € p and (x-y,1) € p. Then (x-y,1) = (x-y,y-y) €p
implies (x,y) € p. Now from this and from (x, 1) € p it follows (y, 1) € p which gives
y € [1]p. This proves that the condition (J1) is valid. We conclude that:

Theorem 3.4. There is a correspondence between the family of all left congruences
on L-algebra A that are right cancellative and the family pJ(A) of all pre-L-ideals
inA.

Example 3.3 ([9], Proposition 8.2). Let f: A —> B be a morphism of L-algebras.
If K is a (weak) pre-L-ideal in B, then the set f~'(K) is a (weak) pre-L-ideal in A.
If f is surjective, then for every (weak) pre-L-ideal J in A, the set f(J) is a (weak)
pre-L-ideal in B. O
Example 3.4. Consider L = {xo = 1,x1,x2,...} as a countable set and define the
operation on L as follows:

1 ifj<i,
Ny — { if J

Xj ifi<j
With a little effort, it can be shown that (L,-,1) is an L-algebra. The set J(n) =
{1,x1,...,x,} is a pre-L-ideal in L for any n > 1. Indeed, it is clear that 1 € J(n). Let
xi,xj € L\ {1} be such that x; € J(n) and x;-x; € J(n). This meani <n. If j <i<n,
we have x;-xj =1 € J(n). Ifi < j, then x;-xj = xj € J(n) so j < n. Thus, xj € J(n).
If x; € J(n), then i < n. Therefore, for each x;j € L we have x;-xj =1 € J(n) or
xi-Xxj =xj € J(n). This shows that J(n) is a pre-L-ideal in L. O

In what follows, we need the following lemma:
Lemma 3.4 ([3], Theorem 5.1). The direct product [1;c;L; of a family {L;}ic; of
L-algebras is an L-algebra.

We conclude this section with the following theorem:

Theorem 3.5. Let {L;}ic; be a family of L-algebras and let {J;} jc; be family of
pre-L-ideals in L; =: (L;,-;, 1;) respectively. Then the direct production [1;c;J; is a
pre-1lie; Li-ideal in [];c; Li.

Proof. As is well known, [];c;L; is the set of all maps f : 1 — [J;c;L; such that
f(i) € Liforall i € I. If 1; and -; are the logical unit and the operation in L-algebra
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L;, we consider the map 1:1 — |J;;L; defined by 1(i) = 1,. For any f, g € [T,/ Li
define the operation - on [[;c;L; by (f-g)(i) = f(i) - g(i), for all i € I. It is easy to
check that ([T;¢;Li,-, 1) is an L-algebra, let’s check that [];c;J; satisfies the condi-
tions (JO), (J1) and (J3):

It is obvious, according to the determination of the function 1, that 1 € [];c;J;
holds.

Let x,y € [1;;Li be arbitrary elements such that x € [];;J; and x-y € [];; /i
This means (Vi € I)(x(i) € J;) and (¥ € I)((x-y)(i) = x(i) - ¥(i) € J;). Then (Vi €
I)(y(i) € J;) according to (J1). So, y € [T;e; /i

Let x,y € [[;c; Li be arbitrary elements such that x € [];;J;. Then, we have (Vi €
I)(x(i) € J;). Thus (V € I)(y(i) -ix(i) € J;) according to (J3). This means x-y €
[Tiei Ji- O

In the following two examples we give left congruences on an L-algebra [];¢; L;.

Example 3.5. Let I be a set and J be a subfamily of P(I) such that
0eJJACBABEJ=—=A€JAcIJABeJ=— AUBEJ.
If {Li}ici is a family of L-algebras, then the relation q on [1;c; L;, defined by
(cy) €q == {icl:x() #y()} €3,
is an equality relation on the product [1;c; Li left compatible with the operation in
[Ticr Li.

Let x € [lic;Li be arbitrary element. Then {i € I : x(i) # x(i)} =0 € J. This
means (x,x) € q for every x € [1;c; Li, that is, the relation q is reflexive. It is obvious
that q is a symmetric relation. Let us prove that q is transitive. Let x,y,z7 € [[;c; Li
be such that (x,y) € q and (y,z) € q. Thismeans {i € I : x(i) #y(i)} € Jand {i €I :
v(i) #z(i)} € J. Then

[i€I:x(i) £2()} C (i € 1:x(i) £ 3()} Ui € 1:9(0) £ 2(1)} € 3.
Thus {i € I : x(i) # z(i)} € J. Hence (x,2) € q. So, q is an equivalence on [];c; L;.

Let x,y,z € [1ic; Li be arbitrary elements such that (x,y) € q, i.e. {i €1:x(i) #
y(i)} € 3. Recall that holds

(Vi € 1)(x(i) = y(i) = 2(i) i x(i) = 2(i) -i9(i))

since the operation - is extensive with respect to the equality =, and that the contra-
position also holds

(Vie D((z-x)(i) # (z-y) (i) = x(i) # ¥(i))-

Now, we have

fiel: @-x)(0) # (z-)()} € {i € 1:x() # ()} €.



14 DANIEL ABRAHAM ROMANO

Thus {(z-x)(i) # (z-y)(i)} € J. Therefore (z-x,z-y) € q. O
Example 3.6. Let I be a set and R be a subfamily of P(I) such that
IeR,ACBNAcR=—BcRAcRANBeER = ANBE K.
If {Li}ici is a family of L-algebras, then the relation q on [1;c;L;, defined by
(x,y) €q = {iel:x(i)=y(i)} € &,

is an equality relation on the product [l;c; L; left compatible with the operation in

[Ticr Li- O
3.2. Atoms in L-algebras

This subsection introduces the concept of atoms in (K)L-algebras. Also, this con-
cept is connected with the concept of weak pre-L-ideals, which justifies the intro-
duction of this last concept here.

Definition 3.2. An element a(# 1) of an L-algebra A is said to be an atom in A if
the following holds

(A)(VxeA)(a<x = (x=aVx=1)).
We denote the set of all atoms in the L-algebra A by L(A).

In the general case, the L-algebra A does not have to have atoms. So, it can be
L(A) = 0. For example, in the L-algebra A in Example 2.3 is L(A) = 0.

Example 3.7. Let A = {1,x,y,z} as in Example 2.1. Then the element x is an atom
in A, so L(A) = {x}. O

Proposition 3.2. Let A be an l-algebra A and (1 #)a € A. If the subset {1,a} is a
weak pre-L-ideal in A, then a is an atom in A.

Proof. Let x be an arbitrary element in A such that ¢ < x. This means a € {1,a} and
a-x=1¢€ {1,a}. From here, according to (J1), we have x € {1,a}. Therefore, x = 1
or x = a which means that a is an atom in A. O

Remark 3.3. The converse of this proposition need not be valid. For example, in
the L-algebra A = {1,x,y,z} in Example 2.1, the element x is an atom in A (see,
Example 3.7) while, on the other hand, the set {1,x} is not a weak pre-L-ideal in A
(see, Example 3.1).

Example 3.8. Let A = {1,x,y,z} as in Example 2.4. The elements x and y, according
to Proposition 3.2, are atoms in A because the subsets {1,x} and {1,y} are weak pre-
L-ideals in A (see, Example 3.2). Also, the element 7 is an atom in A even though
the subset {1,z} is not a weak pre-L-ideal in A (see, Example 3.2). So L(A) =

{x,y,2}. O
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Let us note that in the L-algebra A in the previous example, L(A) = A\ {1} holds.
Thus, there exist L-algebras in which every element, except 1, is an atom in them.

One of the main characteristics of the set L(A) of all atoms of an L-algebra A is
given by the following theorem:

Theorem 3.6. The set L(A) of all atoms in an L-algebra A is an anti-chain.

Proof. Let a and b be atoms in an L-algebra A such that a # b. Suppose a < b. Then
it would be @ = b or b = 1, according to (A). As both options are impossible, we
conclude that it must be a £ b. In the same way, it can be proved that b £ a. g

Theorem 3.7. If A is a KL-algebra, then it holds
(Va,b e L(A))(a-b=bAb-a=a).

Proof. Let A be a KL-algebra and let a,b € L(A). Thena < b-a and b < a- b. This
b-a=aorb-a=1,anda-b=aora-b=1. Since the optionsb-a=1anda-b=1
are not possible according to Theorem 3.6, we getb-a=aand a-b = b. U

Corollary 3.3. If A is a KL-algebra, then L(A) U{1} is a subalgebra in A.

Example 3.9. Let A ={1,a,b,c,d,e} and let the operation - on A be determined as
follows

R /UL Q-
i I VHI U U
Q Q Q ~— = Q|Q
ST ST =TS
O 0 =0 0 oo
QU — QL
— Q8 8 [

Then A is a KL-algebra. The order relation on A is given by

<={(1,1),(a,1),(a,a),(a,1),(b,a),(b,b),(c,1),(c,c), (d; 1), (d,d), (e, 1), (e, ) }.

The subsets J1 = {1,a}, J, ={1,c}, J3 ={1,d} and Jy = {1,e} are pre-L-ideals in
A. Therefore, a,c,d,e are atoms in A according to Proposition 3.2. Hence L(A) =

{a,c,d,e} C A\{1}. O

It is easy to see that this L-algebra illustrates Theorem 3.7 and Corollary 3.3.
Subset L(A) U{1} is a proper subalgebra in L-algebra A.
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3.3. Extension of L-algebras

In this subsection, we will show the construction of the (K)L-algebra (AU{a},*,1)
obtained by the extension of given (K)L-algebra (A,-,1) with an element a (¢ A)
such that the element a is an atom in AU {a}.

Theorem 3.8. Let (A,-,1) be a (K)L-algebra and a ¢ A. We can create a (K)L-
algebra (AU{a},*,1) that the element a is an atom in AU {a}.

Proof. Let A be a (K)L-algebra and a ¢ A. Let us put B= AU {a} and design the
operation * in B as follows

x-y forxeA Ny€eA,

1 for xe A\{l} Ay=a,
Xy = a for x=1Ay=a,

y forx=a A ycA\{l},
1 forx=a Ny=1,
1 forx=a Ny=a.

\
Since it is obvious that the set B satisfies the conditions (LO), (L1), (L2) and (L4),
it is necessary to prove that the set B satisfies the condition (L.3). This is done by
replacing one, two or all three variables in the formula (L.3) with the constant a. For
the sake of illustration, we list some of those procedures:
Forx=a,y=z=1,wehave (a-1)-(a-1)=1-1=1land (1-a)-(1-1)=a-1=1.
Forx=a,y# landz# 1, wehave (a-y)-(a-z)=y-zand (y-a)-(y-z) =1-(y-z) =
Yz
Forx=a,y=aand z# 1, we have (a-a)-(a-7)=1-z=1z

If A is a KL-algebra, then the procedure for checking the validity of formula (K)
in the L-algebra B can be done in the same way.

Let us show that a is an atom in B. If we take x € B such that a < x, we have
a-x = 1. On the other hand, a-x = x so x = 1, which proves that a is an atom in
(K)L-algebra B. ]

To illustrate the previous theorem, we will use the L-algebra in Example 2.1.

Example 3.10. Ler A = {1,x,y,x} as in Example 2.1. Let’s put B=AU{a} and let
the operation x be given by the following table

I x vy

Q N2 R =%
—_— = e =

N R R NN
—_ == = Q| Q

X
1
1
1
X

=R = e




(WEAK) PRE-L-IDEALS AND ATOMS IN L-ALGEBRAS 17

Then (B,*,1) is an KL-algebra. The relation < in this L-algebra B is given by <=
{(1,1),(x, 1), (x,x), (x,a), (% 1), 0,x), (), (@), (2, 1), (2,%), (2,2), (z,a), (a, 1), (a,a) }. Let
u € B be such that a < u. This means axu = 1. On the other hand, we have axu =u
which gives u = 1. This shows that the element a is an atom in B. Besides, the subset
{1,a} is a pre-L-ideal in B. O

A different extension of the (K)L-algebra (A, -, 1) to the (K)L-algebra (AU{a},*,1)
can be done so that L(B) = L(A) U{a} holds.

Theorem 3.9. Let (A,-,1) be a (K)L-algebra and a ¢ A. One can create a (K)L-
algebra (AU{a},x,1) such that LAU{a}) = L(A)U{a} holds.

Proof. Let A be a (K)L-algebra and a ¢ A. Let us put B= AU {a} and design the
operation * in B as follows
(

x-y forxeAANy€eA,
1 for x e A\L(A)U{1} A y=a,
piy =4 @ for xe LA)U{1} Ay=a,
y forx=a NyecA\{l},
1 forx=a Ny=1,
1 forx=a Ny=a.

\

Since it is obvious that the set B satisfies the conditions (L0), (L1), (L2) and (L4),
it is necessary to prove that the set B satisfies the condition (L.3). This is done by
replacing one, two or all three variables in the formula (B3) with the constant a.
Since these procedures are of a technical nature, we omit them. g

Example 3.11. LetA={1,a,b,c,d,e} as in example 3.9. According to Example 3.9,
the set of all atoms of the algebra A is L(A) = {a,c,d,e}. Let us put B=AU{w}
and let the operation x be given by the following table

11 a b ¢ d e w
111 a b ¢ d e w
all 1 b ¢c d e w
b1 1 1 ¢ d e 1
c|l a b1 d e w
d|1l a b ¢c 1 e w
e|ll a b ¢c d 1 w
wll a b ¢ d e 1

Then B is a KL-algebra. The order relation < on A is given by <= {(1,1),(a, 1),
(a,a),(a,1),(b,a),(b,b),(b,w),(c,1),(c,c),(d,1),(d,d), (e, 1), (e,e), (W, 1), (w,w) }.
Let x be an arbitrary element in B such that w < x. While on the one hand we have
wxx = 1, on the other hand we have w xx = x which gives x = 1. This shows that w
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is an atom in B. Therefore, L(B) = L(A) U{w}. In addition to the previous one, the
subset {1,w} is a pre-L-ideal of the KL-algebra B. O

4. FINAL COMMENTS

The notion of L-algebras was introduced in 2008 by W. Rump. He also introduced
the concept of L-ideals in this class of logical algebras. Since then, this class of
logical algebras has been the focus of interest of many researchers. This article
introduces the concept of (weak) pre-L-ideals in L-algebras and connects it to the
concept of atoms in this class of logical algebras. Also, two types of extensions
of the L-algebra A to the L-algebra A U {a} were created so that a is an atom in
AU{a}. The space opened by introducing the concept of (weak) pre-L-ideal as
a generalization of the concept of L-ideals and its connection with the concept of
atoms in L-algebras should be filled with new knowledge about these classes of
substructures in L-algebras.

Acknowledgement The author would like to thank the reviewer for the very useful
suggestions that enabled the material presented in this article to be more consistent.
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