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CUBIC EIGENVALUE PROBLEMS
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ABSTRACT. In this paper, we observe cubic eigenvalue problems, which belong
to a special class of nonlinear eigenvalue problems. The degree of a cubic eigen-
value problem is relatively small, which allows us to determine some important
properties of these problems. We present an algorithm to determine whether a
cubic pencil is hyperbolic or not. Also, a definite cubic pencil will be considered.
We use a variational characterization as a tool for solving cubic eigenvalue prob-
lems and compare the results with the application of the linearization method.

1. INTRODUCTION

The cubic eigenvalue problem is a special case among polynomial eigenvalue
problems. We will start by defining a polynomial eigenvalue problem as:

P(Mx=0, x#0 (1.1)

where
/

P(A\) =Y MA;, A e C™" A #£0, Al = 4. (1.2)
j=0

The most common way for solving polynomial eigenvalue problems is lineariza-
tion (see [7]). In [2], the authors proved that Hermitian matrices from equation
(4.2) which allow definite linearization, are characterized with the property that
there exists u € RU{oo} so that P;(u) is positive definite and for eachx € C", x # 0

the scalar polynomial
f(x) =x"P(M)x (1.3)
has [ distinct roots in R U {eo}. In mathematical literature, these Hermitian ma-
trix polynomials are called definite. More about polynomial eigenvalue problems
can be found in [10]. Most commonly observed polynomial eigenvalue problems
are quadratic eigenvalue problems, since for solving these problems we can use
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linearization and variational characterization. Variational characterization for qua-
dratic eigenvalue problems can be easily applied because of the simplicity of defin-
ing the related functionals.

The cubic eigenvalue problem is defined as

P;(M)x=0,x#0 (1.4)
where
Ps(M) = MA3 + X245 +AA | +Ag, A;€C™" A;#0, j=0,3, (1.5)

where A ; are Hermitian.

Tsung-Min Hwang et al. [4] proposed multiple Jacob-Davidson type methods
for computing interior eigenpairs of large-scale cubic eigenvalue problems.

In this paper, we will observe cubic eigenvalue problems and their properties.
The paper is organized as follows: In Section 2, in order to define functionals we
will be using Vieta’s formulas. In Section 3, we consider variational characteriza-
tion, in Section 4, we observe the hyperbolic cubic eigenvalue problem and algo-
rithm for determining whether the cubic eigenvalue problem is hyperbolic or not.
Definite cubic pencils are considered in Section 5. We present numerical results in
Section 6, and the Conclusion in Section 7.

2. RooTSs OF CUBIC POLYNOMIALS

Multiplying the equation (1.4) on the left with x// we obtain the cubic equation
with real coefficients:

xA Py (M)x = MxH Asx 4+ A2xH Apx 4+ AxTA x + xH Agx = 0, 2.1

by observing Vieta’s formula and the corresponding discriminant of the cubic equa-
tion. Using a proper change of variables, we obtain a cubic equation in one variable
as follows:

al + b\ +ch+e=0,a#0, (2.2)
and the discriminant of a cubic equation is defined by
d = —4b’e +b*c* —dac® + 18abce — 27a*e*. (2.3)

Roots of the cubic equation with real coefficients depend on the sign of the dis-
criminant: if d < 0 there is one real and two complex roots, if d > 0 then there are
three different real roots and if d = 0 then equation has three solutions with at least
two being equal.

These properties hold only for equations with real coefficients. Cubic equations
were known to the ancient Babylonians, Greeks, Chinese, Indians and Egyptians
[1,3,12]. Although these equations were known earlier, only after finding Cardano
formulas, we have found the solutions to these equations.
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Through linear Tschirnhaus-Transformation

b
X—Z—%, 2.4)

the cubic equation is reduced to the short reduced form z> + pz + ¢ = 0 that can
be solved in many ways. If we go back to the equation (2.1), for determining
eigenvalues it is enough to observe the following equation:

Pxflx+ oA C x4+ x1Cox =0, x £ 0. (2.5)

From equation (2.4) it is easy to calculate the corresponding A. The corresponding
discriminant of the reduced form is

d=—4c® —27¢°. (2.6)

3. VARIATIONAL CHARACTERIZATION AND SYLVESTER’S LAW OF INERTIA

One of the most common tools for solving nonlinear eigenvalue problems is
a minmax characterization or a variational characterization. Let us observe the
nonlinear eigenvalue problem:

T(\)x =0, 3.1)
where T'(A) € C"", A € J, is a family of Hermitian matrices that depend continu-
ously on the paramater A € J, and J is a real open interval which may be unbounded.

Important conditions for application of variational characterization, that must be
satisfied, are:

(Ay) forevery fixed x € C", x # 0, the scalar real equation
fux) =xTMx=0 (3.2)
has at most one solution A =: p(x) € J.
(Ap) for every x € D and every A € J with A # p(x),
(A= p(x))f(A:x) > 0. (3.3)
If p is defined on D = C"\ {0}, then the problem (3.1) is called overdamped.

Important theorem that refers to minmax characterization is:

Theorem 3.1. [11] Let T(A) € C"™", A € J, be a family of Hermitian matrices
depending continuously on the parameter h € J, where J is an open interval in R,

such that conditions (A1) and (Ay) are satisfied. Then the following statements
hold:

(i) For every | € N there is at most one lth eigenvalue of T (-) which can be
characterized by

N = min su ) 3.4
! VeH;, VND#0 veVrl?po(V) ( )
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(ii) If
A= inf J
e s SUP P(V) €
for some | €N, then A, is the Ith eigenvalue of T(+) in J, and (3.4) holds.

(iii) If there exist the kth and the Ith eigenvalue Ny and A in J (k < 1), then J
contains the jth eigenvalue Aj(k < j < 1) as well with Ay < Aj < Ay.

(iv) Let M = infycp p(x) € J and N; € J. If the minimum in (3.4) is attained for
an l-dimensional subspace V, then V. C DU{0}, and (3.4) can be replaced
by

A= i .
' Ven e} eyase” )

(v) X is an lth eigenvalue if and only if u = 0 is teh lth largest value of the
linear eigenproblem T (A)x = p.
(vi) The minimum in (3.4) is attained for the invariant subspace of T (A\;) cor-

responding to its | larges eigenvalues.

Theorem 3.2. [5] Assume that T : J — C"*" satisfies the conditions of the minmax
characterization in Theorem 3.1, and assume that the nonlinear eigenvalue prob-
lem (3.1) is overdamped, i.e., for every x # 0, Equation (3.2) has a unique solution
plx) elJ.

For o €, let (n,,ny,n;) be the inertia of T(c). Then the nonlinear eigenproblem
(3.1) has n eigenvalues in J, n, of which are less than G, n, exceed G, and for
n, > 0, ¢ is an eigenvalue of geometric multiplicity n,.

Let us observe the following condition
(A%) forevery x € D and every A € J with A # p(x),
(A—p(x))f(A;x) <O, (3.5)

instead of the condition (A;). Then Sylvester’s law is as follows:
Theorem 3.3. [5] Assume that T : J — C"*" satisfies the conditions of the minmax
characterization (A) and (A%), and assume that the nonlinear eigenvalue problem
(3.1) is overdamped, i.e., for every x # 0, Equation (3.2) has a unique solution
plx) ed.
For 6 € J, let (np,ny,n;) be the inertia of T(c). Then the nonlinear eigenvalue

problem (3.1) has n eigenvalues in J, n, that exceed G, n, are less than G, and for
n, > 0, © is an eigenvalue of geometric multiplicity n,.

4. HYPERBOLIC CUBIC PENCILS

The cubic matrix polynomial

3
Py(A) =Y MA;, A=A, j=0,3, 4.1)
Jj=0
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where A3 is a positive definite matrix,is hyperbolic, if f(A;x) := xH P;(A)x = 0 for
x # 0 has exactly 3 distinct real roots.

Remark 4.1. For a positive definite matrix A we will use the notation A > 0, and for
anegative definite matrix A we will use the notation A < 0. Positive semidefinitness
of a matrix A, we will denote with A > 0, and negative semidefinitness of matrix
A, we will denote with A < 0.

For a hyperbolic pencil there are 3 disjoint open intervals A; C R, j=1,3,
such that the equation P3(A)x = 0 has exactly n eigenvalues in each interval A;
which allow for a minmax characterization. In order to fix the numeration let
supA; <infA; ;.

The corresponding functionals are denoted as follows:

P (x) for 3p, (x)*x7Asx+2p, (x)xAsx 4+ xTA1x > 0, and p, _(x) € As,
“4.2)

p—(x) for 3p_(x)°xH Asx+2p_ (x)x Asx +xA1x < 0, and p_(x) € Ay, (4.3)

P (x) for 3py (x)?x Asx 4+ 2p, ()X Ayx +xHA1x > 0, and p (x) €A, (4.4)

The question of hyperbolicity is not that simple. Every hyperbolic pencil must
have all real eigenvalues, but the converse does not hold. The following example
shows a cubic pencil that has all real eigenvalues, but it is not hyperbolic.

Example 4.1. Let us observe a cubic pencil

1 00 0 0 O -4 0 0 0 1 0
Ao 1 0)+A* |0 =2 2 |+2[ 0 -2 0 |+|1 4 -—4]=0.
0 0 1 0o 2 =2 0O 0 =2 0 —4 4
The corresponding eigenvalues are:
—2.019593030949422¢ 4+ 00

—1.414213562373098e + 00

—1.357332128074832¢ + 00

—2.645960456369809¢ — 01
2.473012331625537e¢ — 01
1.393476608283088¢ +- 00
1.414213562373066¢ 4 00
2.000000000000002¢ + 00
4.000743363215627¢ - 00.
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Hence, this problem is not hyperbolic, because for x = [0.231;0.8907;0.1286] it
follows that d(x) = —17.0309, which means that for the vector x the equation has
one real and two complex solutions.

Now we will present an algorithm for determining whether a cubic matrix poly-
nomial is hyperbolic or not. This algorithm is a modification of the algorithm
from [9], that determines whether a quadratic matrix polynomial is hyperbolic or
not. This modification is not as simple as it may seem at first glance. It is not
enough to change the discriminant d(x;), because this problem reduces to a cu-
bic equation that always has a real solution. Therefore, in addition to the largest
eigenvalue and the corresponding eigenvector of the matrix P3(A), we must also
observe the smallest eigenvalue and the corresponding eigenvector. To simplify
the presentation of the algorithm we will define

d(x) = —4(xTAx)> (xAox) + (¥ Axx)? (2 A x)?
—4(x" Asx) (XA 1 x)3 + 18(x Asx) (6 Apx) (xTT A1 x) (¥ Agx)
—27(x"A3x)* (x1Apx)? < 0.
Figure 1 shows that the function f(0), which has the same sign as the discrimi-
nant d(x) can have negative values, that is it intersects the plane z = 0, if the algo-

rithm modification mentioned above is not introduced, and the algorithm without
the modification can show hyperbolicity even when that is not the case.

normalized f(#)

FIGURE 1. Eigenvectors corresponding to Gy as they converge us-
ing the modification of algorithm 2 from [9]

In order to understand the meaning of the function f(6) and the need to modify
the algorithm let us observe the following example: For n = 2 we can present the
graph of the function d(x), where x = (x,x2) and ||x|| = 1, as a curve in space,
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d(x)
1+ |d(x)|
values x = (x1,x;), assuming ||x|| can be represented as x = (cos 0, sin0). Hence the
d(®

blue curve shown in the Figure 1 is a plot of a function f(8) = l—i—](cl()9)|’ where
d(8) =d(x),x=(cos8,sinB). The red points ((cosO_1,sinO_;), f(6x_1)), where
(cosOk_1,sin0;_1) is the eigenvector corresponding to the largest eigenvalues of
P3(0k—1), where Oy is given in Algorithm 1. All red points are above the plane
z =0 and we cannot use them to determine whether the pencil is hyperbolic. That
is why in the, following, Algorithm 1 we need to add a new condition which checks

the smallest eigenvalues and corresponding eigenvectors and their convergence.

as in Figure 1. In the previous figure, we have plotted the function

Algorithm 1 Detecting hyperbolic cubic pencils

Require: initial vector xo # 0
1: if d(xp) < O then
2: STOP: P;(A) is not hyperbolic.
3: end if
4: Determine 6y = p(xg).
5. for k=1,2,... until convergence do
6: Determine eigenvector x; of P3(0k—;) corresponding to its largest
eigenvalue.

7: if d(x;) < 0 then
8: STOP: P;(A) is not hyperbolic.
: end if
10: Determine 6 = p.y (xx).
11: if 6, > o;_ then
12: STOP: P;(A) is not hyperbolic.
13: end if
14: Determine eigenvector y; of P3(Gy—1) corresponding to its smallest
eigenvalue.
15: if d(yx) < 0 then
16: STOP: P3(A) is not hyperbolic.
17: end if
18: Determine T = p1—(yx)-
19: if T, > t;,_; then
20: STOP: P3(A) is not hyperbolic.
21: end if
22: end for

According to [8] the following characterization of cubic hyperbolic problems
holds:
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Theorem 4.1. Let P3(A) be a Hermitian matrix polynomial of degree | = 3 with a
positive definite A3. Then P3(\) is hyperbolic if and only if there exist y; € R such
that Yy >y and (—1)’P3(y;) >0, j=1,2.

Because of the possibility of suitable transformation of the cubic hyperbolic
equation as we mentioned in Section 2, it is enough to observe the following cubic
pencil:

C(A) = AI14+)C) +C, (4.5)

(Co, C1 - Hermitian matrices, / - identity matrix) and the corresponding eigenvalue
problem. Let us observe some properties of matrices from the cubic pencil (4.5)
and the corresponding eigenvalue problem

C(Mx=0, x#0. (4.6)

Analogously to Theorem 4.1 for the reduced form of the cubic pencil (4.5) and
eigenvalue problem (4.6) we obtain Theorem 4.2.

Theorem 4.2. Let C(A) be a cubic hyperbolic Hermitian matrix polynomial, then
there exist Yo >y > Y > Y3 and (—1)/C(y;) >0, j=0,1,2,3, withyy >0, y3 <O0.

Proof. The existence of y; and 7y, with the corresponding properties follows from
Theorem 4.1. For each x # 0 we have:

lim xC(M)x = lim (A3xfx 4 xCrx+ xCox) = 400,
A—>oo A—>+oo0

and analogously

lim x7C(A)x = —co

A—>—oo

i.e. existence of Yy and y3 with property C(Yo) > 0 and C(y3) < 0. O

Let us denote f(A;x) = A3xfx + Axf Cx 4 xH Cyx. In [6], the influence of the
properties of matrices in the quadratic pencil on the eigenvalue problem was ob-
served. Now, we will try to observe the influence of properties of matrices C; and
Cp on the corresponding cubic eigenvalue problem.

Theorem 4.3. If the cubic pencil (4.5) is hyperbolic, then C; < 0.
Proof. A discriminant that gives us the answer whether it is a cubic pencil hyper-
bolic is:
d(x) = —4(xfx) (xCyx)* — 27 (xMx)? (x" Cox)*.
If the matrix C; > 0O it is enough to take the eigenvector that corresponds to the

positive eigenvalue or the zero eigenvalue for the vector x. We immediately get a
negative value of the discriminant d. (]
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Remark 4.2. Theorem 4.3 can be proved in a different way, and the proof sketch is
as follows: According to Theorem 4.2 there exists ¥, and y; with properties y; > Y»
and

C(n) <0<C(12), 4.7)
so for each x #£ 0
P x +yx Crx 4 x1Cox > 0, (4.8)
and
Tixx +yx1Crx+ 2 Cox < 0. (4.9)
Subtracting from (4.9) the equation (4.8) we get
(Vi =) x4 (11 — ) Cx < 0. (4.10)
Dividing (4.10) with y; — 2 > 0 we get
B +1v+8)xx+xCix < 0. (4.11)

From (v} +Y1v2 +73)xx > 0 for each x # 0 and (4.11), x¥!Cix < 0ie. C; <0
follows.

The following theorem gives us information about the nature of the eigenvalues.

Theorem 4.4. If the cubic pencil C(MN) is hyperbolic, then it has n negative eigen-
values and n positive eigenvalues.

Proof. Since,
3f (hx)
oA

and xC;x < 0, it follows that, for each x, %;fx) has two real zeroes, one negative
and one positive. For the fixed x let us define g(A) = f(A;x), therefore g'(A) =
9/ (Ax)

ak ) . . . .
According to Rolle’s theorem there exists a zero of the first derivative between the
zeroes of the function, therefore there are n positive, and n negative eigenvalues.

O

= 37\,2)CHX+XHC1X

Theorem 4.5. Let C(L) = A1 +ACy + Cy be hyperbolic, and let (n,,ny,n;) be
inertia of C(0) for o € R. Then the following statements hold:

(i) If362x x +x1Cyx > 0, for arbitrary x # 0, and & > 0 the number of eigen-
values greater than & is n,. If 36°x"x+x"Cyx > 0 for arbitrary x # 0, and
6 < 0 the number of eigenvalues greater than G is 2n + n,.
(ii) If n, =n, 6 > 0 and 36%xf x +xHC1x > 0, then there are no eigenvalues
greater than G.
(iii) If 36’x x+xC1x < 0, then there are n+ n, eigenvalues less than 6 and
n-+n, eigenvalues greater than G.
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Proof. () If 36%x" x + x"Cyx > 0 for an arbitrary x # 0 and 6 > 0, then ¢ €
A1. According to Theorem 3.2 there are n, eigenvalues greater than G.
If 36%x"x + x"Cyx > 0, for an arbitrary x # 0 and 6 < 0, then 6 € As.
According to Theorem 3.2 there are n, eigenvalues greater than G in A3
and 2n eigenvalues outside Az. That is a total of 2n+ n, eigenvalues greater
than ©.

(i1) If n, = n and 6 < 0 then 6 € A3 or 6 € Ay. If 0 € A3 all eigenvalues
outside Az are greater than ¢ and there are 2n of them. If 6 € A, according
to Theorem 3.3 there are n, = n eigenvalues in A, greater than ¢, and
all eigenvalues in A; are greater than the eigenvalues in A, and therefore
greater than 6. If n, = n, 6 > 0 and 362xHx4+x"Cix > 0 then 6 € Ay, so
according to Theorem 3.2 there are no eigenvalues greater than G.

(iii) If 36%x"x +x"Cix < 0, then 6 € A,. If 6 € A; according to Theorem 3.3

there are n, = n eigenvalues in A, greater than 6. All eigenvalues from

A are greater than 6. Hence, there are n+n, eigenvalues greater than G.
Therefore there are n+ n, eigenvalues less than G.

]

The matrix Cy can give us more information about the eigenvalue problem (4.6),
as seen in the previous theorems.

Theorem 4.6. The cubic eigenvalue problem (4.6) has zero as an eigenvalue if and
only if Cy is singular and in that case the eigenvector of matrix C(N) coincides with
the eigenvector of matrix C3 corresponding to the eigenvalue zero.

Proof. The proof of Theorem 4.6 is trivial. (I

Theorem 4.7. Let C(A) = A1 +AC) +Cy be hyperbolic, and let In(Cy) = (n,,ny,n;)
be the inertia of matrix Co, then we have in total n+ n,, positive eigenvalues, n+n,
negative eigenvalues and n; zero eigenvalues of the problem (4.6).

Proof. We have,

e 4.12)
and
g(();x) =x"cix <0, (4.13)

and from Theorem 4.5 (iii) the claim of Theorem 4.7 follows.

5. DEFINITE CUBIC PENCILS

In this section we deal with definite cubic pencils, because the rank of some
associated matrices has a great role in the corresponding eigenvalue problems.
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Definition 5.1. A Hermitian matrix polynomial P3(A) = Z?:o MA; is called def-
inite if there exists u € RU {eo} such that P3(u) is positive definite and for every
x € C", x # 0 the scalar polynomial f(\;x) := x"'P;(AN)x has 3 distinct roots in
RU{oo}.

If the matrix A3 from the definite pencil is regular we can apply the linear
Tschirnhaus-Transformation and reduce the problem to a short reduced form which
gives the hyperbolic pencil. In the case that the matrix A3 is singular, and matrix
A is regular i.e. 0 < rank(As) = m < n, and rank(Ao) = n we can divide the initial
problem with A3 and get the following equation:

%xHAO)H— %xHA X+ %xHA2x+xHA3x =0. (5.1

Dividing with A3 is possible according to Theorem 4.6. We can apply the linear
Tschirnhaus-Transformation on (5.1), and get a reduced form of the problem:

1 1
ﬁﬁx—i— XJ\,Hng—i-xHQx:O. (5.2)

From equation (5.2) we can calculate % i.e. A. Hence, if A3 is singular, it will have
zero as an eigenvalue, which means that the initial problem will have infinity as an
eigenvalue. We have seen that singularity of matrix A3 influences the existence of
infinity as an eigenvalue, and that in the case when matrix Ag is regular the problem
reduces to hyperbolic. Regardless of whether Ay is regular or singular, the number
of infinity eigenvalues gives us the following theorem:

Theorem 5.1. Ler P3(A) = 23:0 MA; be definite and matrix A singular; so that
Rank(Az) = p < n, then the corresponding eigenvalue problem has at least n — p
infinite eigenvalues. Let €0a, = Ker(Az) = {x| Asx = 0}, then each x € €y, is an
eigenvector of infinite eigenvalue.

Proof. An infinite eigenvalue is obtained only in the case of singularity of matrix
Ajz. From Rank(As) = p < n it follows that matrix A3 has zero as an eigenvalue of
multiplicity n — p. The number of zeroes as eigenvalues of matrix A3 is equal to the
number of infinity eigenvalues P3(A). As matrix A3 is Hermitian it is immediately
normal and can be diagonalized. This means, the geometric and the algebraic

multiplicity €4, are the same. Let {x1,x2,...,x,_ p} be the base of the vector space
€04, andletx € €045> e x= 27:_1[) o;x;. Then Azx = Az (Z?;lp OC[)C,') = 27:_]17 OA3X; =
0. O

Remark 5.1. Based on Theorem 5.1, Rank(A3) can influence the existence of in-
finity as an eigenvalue. However, Rank(A,) and Rank(A;) can influence the multi-
plicity of infinite eigenvalues.



402 ALEKSANDRA KOSTIC, VALENTINA TIMOTIC, AND AMIN AGANOVIC

Example 5.1. Let us observe now the cubic pencil P3(A) = Z;:o MAj, where

530 1 00 1 20 0 00
A3=13 5 0|,A=10 5 3], A=(2 1 0)andAo=10 1 2],
0 00 0 3 5 00 5 0 2 1

which has infinity as a single eigenvalue. If we observe now instead of A, the
matrix

Ay = the multiplicity of the infinity eigenavalue is 2. If we additionally

(=l e R e]
S W O
S O O

change the matrix Ay, placing A| = we get infinity as an eigenvalue

O = =
[=>RN (S 2 \V]
oS O O

of multiplicity 3.

This example opens up many possibilities for considering the definite eigenvalue
problem depending on the singularity of the matrices A, and A;. Example 5.1 is a
motivation for the following theorem:

Theorem 5.2. Let P3(A) = ;’-:0 MA; be definite and matrices Ay and A singular,
so that Rank(A3) = p < n, then the corresponding eigenvalue problem has at least
n— p infinite eigenvalues. Let Ay be also singular and €94, = Ker(A) = {x] Axx =
0}. The necessary condition for the cubic pencil P3() to be definite is €ga, N€oa, =
0. IfA;, i=0,1,2,3 are singular and €9s, = Ker(A;) = {x| Aix=0},i=0,1,2,3 the
necessary condition for the cubic pencil P3(N) to be definite is (€0a; N€oa, ) N€04, =
0 and ((80,43 N EOAZ) N EOAl) MN€pa, = 0.

Proof. According to the Theorem 5.1 it is obvious that x € €p4, is an eigenvector
of the infinity eigenvalue. If x € €94, M €pq, it is obvious that it is an eigenvector
of the infinity eigenvalue of multiplicity 2, then according to the Definition 5.1 the
cubic pencil P3(A) is not definite. If (€94, N€pa,) N€pa, # 0 and ((€0a, NEQa,) N
€04, ) N€oa, = 0, then there is x € (€a, N€oa,) NEoa,, Which is an eigenvector of the
infinite eigenvalue of multiplicity 3. If (€pa, N€oa,) N€pa, # 0 and ((€0a, N€oa,) N
8()A1) M€o4, # ( then there is a vector x € ((80,43 N 80A2) N SOAl) M €4, Which is an
eigenvector of the zero eigenvalue, multiplicity 3, therefore P3(A) is not definite.

O

6. NUMERICAL RESULTS

In this Section we will give the numerical results. The question of hyperbolicity
is not so stable, which we can see in the following example:
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Example 6.1. We observe C(A) = A3 +AC; + Co.

Cy = 1000 rand(1000)

/
C+C /
¢ =94 ¢ =—cc

C1 =0.5(C1 +C))

Co = rand(1000)

Co=0.5(Co+C,).
Experiments in 100 iterations prove that all matrices are hyperbolic. In the next
step with for loop we multiply each matrix C; by u=2xrand — 1 and we obtain 53

matrices that are not hyperbolic. If we multiply in the following 100 iteration the
matrix Cy with u; we obtain 23 matrices that are not hyperbolic.

Example 6.2. Let us observe C(\) = A3 1+AC; +Cy, where I,Cy and Co are 10 x 10
matrices, given by :

Ci = nxrand(n);
G = +Ci)/2§
Ci = (=1)*Cy*Cy;
Co = rand(n);

Co = (Co+Cy)/2.

We checked the hyperbolicity of the cubic pencil, while we got the hyperbolic pen-
cil. Then we have observed the new cubic pencil

D(X) = M1+ BAA+ a4 (6.1)

by taking Ay and Ay such that C(N) is hyperbolic, and o, € [—1, 1] are randomly
selected. If for (o,B) the matrix polinomial (6.1) is hyperbolic, then that value
is shown as a blue dot, in the opposite case it is a red dot in the Figure 2. We
observed 10000 random pairs, and we get 6872 nonhyperbolic pairs and the rest
of these pairs were hyperbolic.

Remark 6.1. Algorithm 1 is very efficient but not cheap in terms of the number of
operations. In Examples 6.1 and 6.2, we had a reduced form of the cubic pencil, so
the costs are lower. In the k-th step of the algorithm, we have 2 matrix-vector prod-
ucts, which amount to 4 operations, three dot products with 61 operations and
the determination of the largest eigenvalue and eigenvector, as well as the determi-
nation of the smallest eigenvalue and eigenvectors. This is the most expensive part
of the algorithm, and the costs depend on the choice of the method for determining
eigenvectors and eigenvalues. It is best to use the Lanczos algorithm because the
total number of operations is O(mn?), m < n and m is the number of iterations for
the Lanczos algorithm. The Lanczos algorithm is particularly suitable for extreme
eigenvalues and eigenvectors.
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FIGURE 2. Bounds of hyperbolicity

Example 6.3. We observed 10000 hyperbolic matrix pencils (4.5) of dimension
100 x 100, and we look for eigenvalues using lineraization and variational char-
acterization. We noticed that the same eigenvalues differ up to 107°. For lineariza-
tion we used L(M)x = AGx — Hx where G,H € R are of dimension 300 x 300.

Lo O 0 0 C G
L()\,) =A 0 oo 0 + | =100 0 0
0 0 I 0 —Lp O

Remark 6.2. Linearization is very important for polynomial eigenvalue problems
because they are difficult to solve directly. Linearization enables the application
of efficient and stable numerical methods. The cost of finding eigenvalues and
eigenvectors through linearization amounts to O(2713) operations. The cost of
variational characterization is mnO(n?*), where m is the number of iterations for
determining all eigenvalues and m < n.

7. CONCLUSION

In this paper, we consider a cubic eigenvalue problem. We have developed an
algorithm for detecting whether the cubic eigenvalue problem is hyperbolic or not.
This algorithm differs significantly from the algorithm for a quadratic pencil. Due
to the linear Tschirnhaus-Transformation that can be carried out on the correspond-
ing functional, we considered the reduced form of cubic pencils. In addition to hy-
perbolic cubic pencils and their properties, we also considered definite pencils and
their properties. We considered variational characterization for this class of eigen-
value problems, and we compare the obtained results with the results obtained with
linearization. In further research, we will deal with some unexplored properties of
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the cubic pencil. In this paper, we touched upon the question of the hyperbolic limit
through Example 6.1 and Example 6.2. In Example 6.1, where only the matrix C;
is changed, setting the hyperbolic limit is simple. In Example 6.2, to determine
the limit of hyperbolicity, we had to include numerical optimization through the
gradient ascent function. This provides motivation for further study of this prob-
lem. We will try to set the hyperbolicity limit for the pencil (6.1) and consider
the possibility of a suitable factorization of the cubic pencil, with the aim of using
the corresponding square pencil. We plan to deal with the matrix polynomial of
the fourth degree and the corresponding eigenvalue problems. In future research,
we will try to apply Algorithm 1 to fourth-degree polynomials, because there is
a corresponding determinant d that has the property: if d = 0, the corresponding
fourth-degree polynomial has equal roots; for d < 0, two roots are real and two
are complex; and for d > 0, all roots are either real or all complex. This presents
a new challenge for developing appropriate algorithms for fourth-degree matrix
polynomials. Based on the Abel-Ruffini theorem, for n > 5 a general formula in
radicals does not exist, so there is also no corresponding determinant. Some spe-
cific polynomials of the fifth degree or higher can be solved by radicals, but not all;
therefore, polynomials of degree greater than or equal to 5 are a major challenge to
study. However, some specific higher-degree polynomials can still be solvable by
radicals if their Galois group is solvable.
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