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ABSTRACT. In this paper, we study the dynamics and bifurcation of a two-
dimensional discrete-time predator-prey model. The existence and local stability
of the equilibrium points of the model are analyzed algebraically. It is shown
that the model can undergo a transcritical bifurcation at the equilibrium point
on the x-axis and a Neimark-Sacker bifurcation in a small neighborhood of the
unique positive equilibrium point. Some numerical simulations are presented to
illustrate our theoretical results.

1. INTRODUCTION AND PRELIMINARIES

The ecological theory aims to provide reasonable explanations for interactions
among biological populations in nature using dynamic models to predict the dis-
tribution and structure of populations. Since Lotka and Volterra constructed the
well-known Lotka-Volterra ecosystem model, the use of mathematical models to
explain complex ecological properties has become common in biology. Among
them, predator-prey systems, which can explain predation relationships, have been
intensively studied and made significant progress in the 1980s (see [1,9]).

The classical and well known Lotka—Volterra model is given by

X = rx— oy,
Y = —dy+mxy, (1)

where r > 0 is the growth rate (in the absence of the predator) and d > O represents
the decay rate of the predator in the absence of the prey. The positive parameters
and v determine the consumption rate and consumption-energy rate, respectively.
A criticism of the model is the structural instability, since a small change in the
equations can eliminate the existence of periodic orbits (see [15]). Another criti-
cism of (1.1) is the assumption of exponential growth for the prey population.
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Verhulst in [25] introduced the so-called logistic growth model, assuming lim-
ited resources and resulting in convergence to a positive carrying capacity, known
as a modified predator-prey model

X =rx(1-%)— oy,

1.2
Y = —dy+7xy, (1.2)

where the parameters r,a,d, and y have the same biological interpretation as in
(1.1) and the additional parameter K > 0 that represents the carrying capacity of the
prey population was introduced. The dynamics of (1.2) differs from the behavior
of the solutions of the classical Lotka—Volterra model (1.1).

In contrast to (1.1), where solutions cycle periodically about the coexistence
equilibrium with x-amplitude and y-amplitude dependent on initial conditions, no
periodic orbits exist for (1.2). If the prey consumption-energy rate of the predator 7y
satisfies y > %, then the coexistence equilibrium is globally asymptotically stable.
If, however, y < %, then the prey-only equilibrium is globally asymptotically stable
(see [3]). In the ecological community, many populations do not vary in numbers
continuously. Therefore, it is particularly important to study discrete models. A
discrete model has multiple periodic bifurcations, chaotic properties and gener-
ates periodic orbits, while a continuous one produces only simple S-shaped curves
(see [5,11,13,14,21]). In [24] the authors observed a discrete predator—prey model
based on the same assumptions as (1.2) because discrete mathematical models are
often more appropriate for modelling non overlapping generations, such as mono-
carpic plants and semelparous fish species. A discretization of a predator—prey
model that is related to our model was introduced in [20] as

oo — (Enem)x,
"1 (h) (an X, +anty,)’ 13)

Y, = (1+r@a(h) — @2(h)axi X,)Y, '
" 14 @2 (h)axny, :

In our paper, we consider a predator-prey model after conducting the following
analysis. The population at time n+ 1 can be described as a factor f(n) of the
population at time n, that is, X,,+1 = f(n)X,. The factor f(n) is determined by
growth and decline processes. Thus, we may express the population at time n + 1
as

_ 1+p(n)

Xn+1 = f(n)Xn = 1—|—q(l’l)

X(n),

where p(n) captures the processes contributing to the increase of the population
and g(n) captures the processes contributing to the decrease in the population be-
tween time steps n and n 4 1. We can consider the interaction of several species X;,
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fori=1,2,... k. In this case, species X; at time n+ 1 is expressed by

1 +pi(t,X1,X2, e ,Xk)
Xi(n+1)= 1—l—qi(t,X1,Xz,...,Xk)Xl(n)' 1.4)
In our case, X;, for i = 1,2, represents the prey and the predator. We assume that
the prey population increases with a constant growth rate » > 0. Thus, the growth
contribution is p(n) = r. We also assume that competition and predation are the
factors responsible for any decline in the prey population. More precisely, for the
prey population, we consider

r
q(n) = ?Xn + oYy,

where the carrying capacity is given by K > 0 and the intra-specific competition
for the prey population is given by % and predation rate o > 0. We therefore obtain
the recurrence for the prey as

1+r

_X,. 1.5
1+ 2X, +aY, " (1.5

Xn+1 =
For the predator population, we assume that the predator population declines with
a constant rate d > 0, and captures the decline due to predation resulting in g(n) =
d +Y,, and the growth rate depends on the consumption of the prey, and hence is
proportional to the size of the prey population. We therefore consider p(n) = yX,,
where Y > 0 is the prey consumption-energy rate of the predator. This results in the
recurrence for the predator

(1+7X)
Yoj=—2Y,. 1.6
n+1 1+d+Yn n ( )
Hence, we analyse the following model
1+r
Xpt1 = ————Xo,
T X ar,
(1.7)
1+vX,
I’l+1 = T i ns
1+d+Y,

where the initial conditions Xy, Yy are assumed to be nonnegative and the parame-
ters r, K, o,y and d are assumed to be positive.

The rest of this paper is organized as follows. The second section presents the lo-
cal stability of the equilibrium solutions. In the third section, we prove that the
system exhibits transcritical and Neimark-Sacker bifurcation. Neimark—Sacker
bifurcation, as an interesting phenomenon, has been examined in many papers
using normal form theory, which simplifies dynamical systems by reducing the
number of terms in the equations and introducing symmetry into the system (see
[7,10,12,17,18]).
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2. LOCAL STABILITY OF EQUILIBRIUM POINTS

First we will determine the equilibrium points of system (1.7). From

1+r

1+vX %
14+ X +a¥

Y: B —
1+d+Y

X, Y=
we obtain the following equilibrium points Ep = (0,0), E; = (K,0), E; = (0,—d)
K(rt+od) r(Ky—d) d s
L) %) for y> 4. The equilib-
rium point E; is inadequate because of its biological interpretation. Denote with T’
the map associated with the system (1.7), i.e.,

()= ()

(1+7r)x
_ , x,y) = ~——"", 2.1
1+§x—|—ocy 8(x.y) 1+d+y (2.1

The Jacobian matrix of the map T at the equilibrium point E = (x,y) is given by

(r+1)K?(ya+1) B (r+1)K?xo
(K + rx+ Kyo)? (K + rx+ Kyo)?
vy (d+1)(xy+1)

d+y+1 (d+y+1)°
Hence, the partial derivatives of the functions f and g in (1.7) satisfy

of(xv,y)  (r+1)K*(ya+1) af (x,y) (r+1)K*xo
= D) >0, == — 2 <07
ox (K 4+ rx+ Kyo) dy (K+rx+Kyo)

and unique positive equilibrium E; = (

for

Flry) (1+w)y

Jr(x,y) = (2.2)

08(x,y) v dg(ry) _ d+Dw+1) o

ox  d+y+1" 7 dy (d+y+1)>

The following Lemma states that the solutions of System 1.7 are bounded.

Lemma 2.1. The solutions of System (1.7) with nonnegative initial conditions are
bounded for n > 0. Precisely, X, € [0,max{Xo,K}| and ¥, € [0,1+7y-max{Xo,K}]
foralln > 0.

Proof. Notice that X,,,Y,, > 0 holds for nonnegative initial conditions. Additionally,
ifXg=0,then X, =0foralln>0.IfYy=0,thenY,=0foralln>0. If X; >0
and Yy > 0, then X;, >0 forall n > 0. If Xy > 0 and Yy > 0, then Y;,, > O for all
n>0.

As we have shown, f is increasing in the first variable, but it does not imply that
the sequence of iterates, X, is increasing. In fact, X, is increasing if the forward
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operator, AX,, = X1 — X, is positive. We will distinguish two scenarios, when
X, <Kand X, > K. If X, <K, then

(I+r)K
X1 =(X,,Y,) < f(K)Y,)) = ——F—
n+1 f( ny n)—f(an) l+trday, —
For X, > K, since
1+r Xn+1 Xn
Ny =X —Xy=———-X,— X, = 1—— ) —aY,| <0
n n+1 n 1+%XH+OCYH n n 1+7 r K n s

we have that X,, decreases in that case. Then X,, is convergent. Suppose X,, does

not converge to K. Then lim X, = X > K. However,
n—yoo

~ 1 X
X = limX,y = lim M
n—eo n—eo 1 + £X, + ¥y,

(141X, - (1+rX
1+ £X, 1+r

S limn—>°° = 5(\7

which is a contradiction. This implies that X,, < max{Xo, K} for all n > 0. We now
show that Y, is bounded. Since,

(14+¥X,)Y,
Yo 1=—7-—"7+—<1 X, <1 . Xo, K
n+1 1+d+Yn +’Y n = +Y maX{ 0, }7
the conclusion follows. U
. . ey . I+r O . .
The Jacobian matrix at equilibrium Ey is Jr (Ep) = 0 1 | . It is obvious
T+d

that Ay =1+r>1and Ay = ﬁ < 1, so the equilibrium point Ej is unstable, more
precisely a saddle point for all values of parameters.

Furthermore,

T(0,y)= (O,IJFZJFQ - <O’ (1+d) (ijry)—y)’

2 _ yd
o (0’ <1+d>2<d+y>—y>’

n _ yd
" (0) = (0’ <1+d>"<d+y>—y)'



330 S. HRUSTIC , S. MORANJKIC, Z. NURKANOVIC

So, lgn T"(0,y) = (0,0) which implies that the y-axis is a stable manifold for
n—yoo
equilibrium Ey. Similarly,

10 = (g o).

K+rx
2
7200 = |
K+ (1) =1)x
K(l—i_)znfl
T" (x,0) = A S

K+ (140" =1)x
Hence, lgn T" (x,0) = (K,0) which implies that the x-axis is an unstable manifold
n—yoo

for the equilibrium point E.
This completes the proof of the following Lemma.

Lemma 2.2. Consider System (1.7) with positive initial conditions. The equilib-
rium point Ey is a saddle point, with the x-axis and y-axis representing the unstable
and stable manifolds, respectively.

For visual ilustration see Figure 1.

1 _ Ko
The Jacobian matrix at equilibrium E; is Jy (E;) = [Hr : Jrl;;] The corre-
1+d
sponding eigenvalues are A} = %—&-r < 1land
<l1lforKy<d
Ky—+1 ’
Ay = dyil — 1 for Ky—d,
+ > 1 for Ky>d.

For Ky = d, we will determine conditions for local semi-stability of the non-
hyperbolic equilibrium point E| using center manifold theory. First, we shift the
equilibrium point E; of system (1.7) to the origin by letting u, = x, — K, v, = y,.
So, we have the following system

u, — oKv,
Upi] = ,
ntl 1+ Luy+r+ow,
4 (2.3)
(1 + fun + d)Vn
Vol = -
n+1 1+d+ v, )
which has (0,0) as an equilibrium point. The Jacobian matrix Jy at the zero equilib-
1 _ oK
riumis Jo = [ 16’ i*’ . The corresponding eigenvalues are A| = ﬁ, =1,
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and corresponding eigenvectors v; = [ 1 0 ]T, vy = [ —% 0 ]T. System (2.3)
can be written as

[t =t o [
where
r r—1 Ko’
E(ttn, i) _K£11+r)2”3+ ((11+r)>?””v”+<1+ar)zvi’ 2.5)
N (1t vp) = a +d)Kunvn 144 "
Let

=]

1 —Ka
where P is the matrix that diagonolizes Jy defined by P = [ 0 1’ ] . The in-
1 K =5 0
verse matrix of P is P~ = " | and P~'JpPp = | ! . By (2.6) we
0 1 o 1| 7
have
K
= I — 0y,
N @7
n — n
and substituting (2.7) into (2.5) we have
o r
g(unvvn) = gl(tnasn) = ——S8nln — 71‘2’
r+1 2n
K(r+1) 2.8)

(tnyva) = M1t )_L , _ rtda
NUn,Vn) = MNi1lfn,Sn —<1+d)Ksnn r(d—l—l)sn.

Thus (2.4) can be written as

P e ] [Blen ],

Sn+1 Sn nl(lnysn)
or
It —1 In | -1 E.vl(tnasn)
=P JyP +P ,
|: Sn+1 :| 0 |: Sn | |: nl(tnasn)
1.€e.,

— ?]'t,,Hazan,sn)],

Int1 —
Sn4-1

o+
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where
Ka(r+da) , (d+r+2dr)a r )
by Sn = - n nln — tn7
G2t 5n) 2+ D)@+ )" K1)
(tnySn) = _r+docs2+ d Snt
RAmSn) = = a1 T K@

Let t = »(s) = Q(s) + O(s*), where Q(s) = As®> + Bs®, A, B € R is the central
manifold, and where map »(s) must satisfy the center manifold equation

7(Mos +Ma(5(s),s)) — M se(s) — Ex(5¢(s),s) = 0. (2.9
From (2.9) we obtain the following system
B 2A(r+da) QA (d+r+2dr)

_ - 0

r+1 * r(d+1) r(d+1)(r+1) ’
A Ka(r+do)

A— —

r—|—1+ r2(d+1) 0

with the solution

A:_Koc(r—i-l)(r—i—doc)

r(d+1) ’
B _ Ko(r+1) (27 +r(a+4da+2) +3da) (r+da)
rS(d+1)° '

Finally, we obtain that the dynamics of the system (1.7) is reduced to the dynamics
of the following one-dimensional map
r+do , od(r+do)(r+1) ;5
s — §°— .
r(d+1) P (d+1)*

. d d? 2(r+da)
Since dsG(O) =1land dszG(O) =@
equilibrium E; of (1.7) is an unstable fixed point, that is semi-stable from above.
Recall the fact that lim,,_,.. 7" (x,0) = (K,0).

This completes the proof of the following Lemma.

G(s) = s+M(Q(s),5) =

< 0, from Theorem 1.6 of [16], the

Lemma 2.3. Consider System (1.7) with positive initial conditions and Yy = %

The equilibrium point E| is LAS for Y < Yo, a non-hyperbolic point of semi-stable
type (stable from above) for Y =Yy and a saddle point for Yy > Yo with the x-axis as
a stable manifold.

For visual representation see Figure 1.

r+Koy 7 r+Koy
for Ky > d we will use the following Lemma which can be easily proved by apply-
ing the relations between roots and coefficients of the quadratic equation, see [4,6].

Inordertodetermine the stability of the positiveequilibrium £, = ( K(riod) r(Ky—d) )



BIFURCATIONS OF A TWO-DIMENSIONAL DISCRETE-TIME PREDATOR-PREY MODEL 333

Lemma 2.4. Assume that ®(N) = A*> — TrJr A+ DetJr is a polynomial associated
to the characteristic equation. Suppose that ®(1) > 0 and A; and X, are the two
roots of ®(L) = 0. Then

a) |h| <1land A <1iff ®(—1) > 0and P(0) < 1.

b) |M| > 1and|\y| > 1iff ®(—1) > 0 and $(0) > 1.

¢) |M| < land|hy]| > 1 (or |h| > 1and |h2| < 1)iff (—1) <O0.

d) M and Ay are complex and |A| = |\y| = 1 iff (TrJr)? — 4DetJr < 0 and

DetJr = 1.
e) M =—landhy # —1iff ®(—1) =0and Triy # -2,
HM=M=—-1iff®(—1)=0and Triyr = -2.

The Jacobian matrix of equilibrium E; = (x,y), by applying the equilibrium rela-
tions

rx+oyK =rK,
2.10
d+y=xy, (210)
has the form
ay+1 .o
| r+l r+1
JT(E+)_ vy d+1
w+1  ypx+1

Further, the characteristic polynomial of the Jacobian matrix J(E. ) is given by
oay+1  d+1 d+1)(yoa+1)+o
r+1  m+1 (r+1)(yx+1)

First, let us check if (1) > 0 in E;. To facilitate easier calculation, let us in-

@2.11)

_ : _ Btrd . _ (B+dr)(r+da)
troduce ; change f = r(Ky—d) > 0 from which K = r; o X = Bt rdra) and
r
Y= wprrrara NOWs
d
o (1) = rB(r+do) -0,

(r+1)(r2(d+1)+r(od*+od +B)+op (d+1))

and 7\,1 ?é 1, 7\,2 75 1 in E+.
Further, for

0 (B) = PB*o(3r*+r(4o+5da+2)+4o(d+1))
+Br (2 +r(60+Tdo+2) +8a(d + 1)) (r+do)
+272 (r+2) (d+1) (r+da)’,

D(~1)= @0 (B)
(r+1)(rP+dra+af) (r2(d+1)+r(ad>+od+B)+op(d+1))’

and ®(—1) >0. So, A} # —1, A # —1in E,.
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Let us calculate ®(0) — 1 = AjA, — 1 in E.. For
01 (B) = PPou(doe—1) = Br(r+o+1) (r+do) —r? (d+1) (r+da)?,

we obtain

o1 (B)

Ml —1= (r+1)(r2+dra+oP) (r2(d+1)+r(ad*+od+B)+af(d+1))

Notice that

d 1+¥
0(B) =0 p—po = MU ELALIED),
where
‘P:\/r2+2r((x—|—1)+(oc+2d(x—1)2. (2.12)

Fordo—1>0wehave B_ <0, r(Ky—d) =P ory= %—l— E—I} =Y.. We distinguish
the following two cases .
1) If doo—1 <0, then MA; — 1 <0, i.e., AjA; < 1 and by using Lemma 2.4
we obtain A o| < 1.
2) Ifdoo—1 > 0, then
a) MA,=1fory=1v,,
b) M < 1fory<v.,
c) AMAp > 1 fory> 1.,

where ( Y )
d r+do) (r+o+1+Y¥
=— . 2.13
Y=kt T a(da—1)K (2.13)
Hence, if doo < 1 or (doe > 1 and 7 < 7,), we obtain @ (0) = AjA; < 1, ie., E; is
LAS. Further, if da. > 1 and y > ., we get ®(0) = AjA > 1, i.e., E is a repeller.
Since,

02 (B) = B2at(r+1) +Br(r+do) (2r+a+do+1)+r> (d+1) (r+da)* > 0,

we have

MEAM—2= A (B) < 0.

(r+1)(r*+dra+af) B(r+o(d+1))+r(d+1)(r+do))
For do. > 1 and Y =,, DetJy = ®(0) = LA, = 1 holds, which implies
(TrJr)* —4Detdy = (M +A2)* —4MAy <22 —4-1=0.

So, by Lemma 2.4, equilibrium E is a non-hyperbolic point with complex-conjugate
eigenvalues |A; 2| = 1.

Thus, we have proved the following Theorem:

Theorem 2.1. Let o.,7V,r,d,K be positive parameters such that y > % and V. is
given by (2.13). The unique positive equilibrium point E . of the System (1.7) is:
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(1) locally asymptotically stable if

d
do<1 d Y>—=
s oand Y K
or
d
da>1 and §<y<%,

(2) non-hyperbolic with complex conjugate eigenvalues if

do>1 and Yv=1,,

(3) a repeller if
do>1 and v>7,.

3. BIFURCATIONS IN THE SYSTEM

In this section, we prove that system exhibits two type of bifurcations: transcrit-
ical and Neimark-Sacker bifurcation.

Theorem 3.1. Ify= %, then E1 = E and System (1.7) undergoes a transcritical
bifurcation.

Proof. According to the theorems in [2, 22, 23], one interior equilibrium point
branches off from E; when 7y passes the threshold yy = %.

Recall that the Jacobian matrix of map T at equilibrium E; for Y=y = % is
1 Ko
JT«{(El,’Y()):JT(K,O)’YO:%: 1+r 1+r
0 1
Let the eigenvectors v = [—£% 1]7 and w = [0, 1]7 indicate the eigenvectors corre-
sponding to A, = 1 of JTy(E\,Yo) and J” Ty(E1, Yo), respectively. We can get
0
/ !/ 0
Ty = Xy = Ty(ElaYO) = 0 )
1+d+y
and
0 0 ] 0 0
JTy = y x(1+d) = JTy(E1,Y0) = 0 K ,
l+d+y (1+d+y)? | 1+d
1.e.,
o o |[ Ko 0
JT,(E1,Yo0)v = 0 K r|=| K
1+d | 1 1+d
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FIGURE 1. Phase portraits for K =1,d =4,a0=2,r =6 and
(A)y=1.5 <0, B)y=4=m0, ©)y=45>1.
Further,
92 9?2 9?2
—];v% + Z—fvlvz + —chv%
) ox 0xdy dy
J Ty(vv) = ;
0% 0? 92
cEp + 228 ViV + S8
ox2 ' Toxdy dy? 2

0
JZTY(EU’YO)(VJV) - [ _p rtda ] :
r(d+1)
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Therefore,
‘P] = WTTY/ (E] ,’Y()) =0
K
W, =wlyJ E >0,
2=W ()(hYo) 1+d
Wy = W 2T (o) () = —2- 9% g
L rd+1) ~
From Sotomayor’s theorem in [23], System (1.7) undergoes a transcritical bifurca-
tion at E; = (K,0) when'y:y():l‘é. O

Hence, when the prey population reaches its maximum growth rate at a specific
boundary of y= %, a transcritical bifurcation occurs. This boundary also serves
as the invasion boundary for prey populations. Once this boundary is reached,
predator populations begin to invade, causing the exclusion equilibrium to lose
stability and a locally stable interior equilibrium to emerge. In general, the physical
interpretation of a local transcritical bifurcation reflects a change in the system’s
dynamics in terms of stability. Specifically, a critical population threshold appears,
beyond which alternative system states arise. This phenomenon is also referred
to as an exchange of stability, as two equilibrium points interchange their stability
properties during the bifurcation process (see [19]).

Now, we prove that the system undergoes a Neimark-Sacker bifurcation when y=
Ye. In order to check the first and the second degeneracy conditions, we will rewrite
the eignevalues in the polar form A = v/A;Aye™®). Recall that r (Ky—d) =B > 0
andda—1=A > 0. So,

(d+1)ya+1)+o
W) = VIha = \/ Jat 1) +apy G.1)

(r+1)(y+1)

Further, we obtain

d (A (v)]) 1 (r+da)Kr(aoA* + a1A+ay)
= 3 5 > 0,
dy 2V MMy, (r+Koy)” (r+1) (r+ (r+o+do) K.
since
2
o= 2B

ay=o(4r+3(a+1))d* +r(r+40)d+r

N B2o(2r+3 (a4 1)) +2Bro(3d (r+ o+ 1) +2r)
2

>0,
.

a(B(r+o+1)+r((r+oa+1)d+r)?
r2

a = > 0.
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The condition AjAz|y—y, = 1 is equivalent to

d—r+yx(oy—r—1)+oy(d+1)y—y, =0. (3.2)
Notice that tan(8) = W >0, so e £ 1, ie., M(y.) # 1 for k =

1,2,3,4. It implies that the second degeneracy condition is satisfied (see [8], The-
orem 15.31). Hence, there is a Neimark—Sacker bifurcation at Y = 7y,. In order to
determine the criticality of the bifurcation and obtain the normal form of System
(3.3), when y = 7., we first translate the equilibrium point £ = (x,y) to the origin
using the substitution:

Up = Xp — X,
Vn=Yn—),

So we get
(14+7) (uy +x)

. —
I+r+ Eun—i-ocvn

Un+1 =

3.3)

(Yl ()
ntl 1+ vn+ Y-

Let us define the function
(1+7)(u+x)

> _
14+7r+—-u+av
F( “ > = K . (3.4)
v
(I+v(u+x) (v+y)
1+v+1yx

Then F(u,v) has the unique fixed point (0,0). Rewrite the System (3.3) in the
following form

[ ] oy 0] [ P ] s

Vi+1 n HZ(“IHVH)

where
ay+ 1 ol

r+1 r+1

Yy d+1 |’
w+1 w41
_Ocy—i—lu o (I+r)(uatx)
r+1 " 1" 1+r+%un+ocvn

v —d+1v (I4+v(u+x))(v+y)
w1 1" 1+v+yx

Jr(0,0) =Jr (Ey) =

H; (”navn) =

)

H2(”na Vn) =
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System (3.3) has complex eigenvalues, let us denote them with A = s+ it and A =
s —it. From the corresponding characteristic equation for (2.11) we get

1 Ocy+l+d+1
S 2\ r+l o ay+1

=l

where z,, and w,, are new variables and

§s= %(k—l—x) ) and 1*y—y, = 1 — 5%, (3.6)

Further, let

_ o _r+l
— | d+r—yx(oy+1)—oy+dr _t ’ - | _dtr—w(y+)—oy+dr 1
2(xy+1)(r+1) 2txou(xy+1) t

—t

are such that P~1Jr(0,0)P = [ ; _St } with ‘ j = 1. Hence, from System

(3.5) we obtain

[ Znt1 ] :PljF(an)P[ Zn ]+P1 [ Hi (20, Wn) ]

Wn+1 n H (vawn)

z s —t zZ 1| Hi(zg,w
[ i | A Rl s B

Considering the fact that p,; in P and P~! can be equal or not equal to zero, we
will distinguish two cases:

Case1: d+r—vyx(ay+1)—oy+dr=0,

Case 2: d+r—yx(ay+1)—oy—+dr#0.
Consider Case 1. In order to prove the existance of a Neimark-Sacker bifurcation,
(2.10) and (3.2) must hold, i.e.,:

1.€.,

d+r—x(oy+1)y.—ay+dr=0,
d—r+x(ay—r—1)y.+ay(d+1)=0,
rx+oayK —rK =0,

d+y—xy.=0.

(3.8)

The positive solution of system (3.8) is:
(a) forr=3ua

K 3042 3(50+2)
dY.)=\ 5,2 ; s
(o) = (5.2 2052, 2022

(b) for r # 3

e = (4

I

o+3r+3-INK —a—r—3+T r+2 a+2r+3+4T
2r ’ 20 T oK ’
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where
= \/51”2 +2r(Bo+7) 4 (o +3)*.
Case 1 (a)
The corresponding characteristic equation for (2.11) is now of the form
22o+1)
M- A+ 1=0 3.9
30041 + ’ (39)

with eigenvalues

- 200+ 1 +iy/o(50+2) T 2004+ 1 —iy/o(5a+2)

3a+1 ’ 3+ 1
Further,
oK . 3BatD)
P=| 3(3a+l) and P'= oK e
0 —t 0 ——

t
where, from (3.6), r = 7W. The Jacobian matrix of F(u,v) at the equilibrium
point is given by

200+1 oK
30+ 1 3(3a+1)
Jr(0,0) =

3(50+2) 200+1
K(3a+1) 3oe+1

and in (3.7) the functions H, (u,,v,) and Hy (up,v,) have the following form:

Hy (2n,wn) = f&‘ﬁfiﬁx ot 3Rt 3<§°ﬂ3@3?§&i3§ﬁ?§zz7
Ha (on) = 552, 4 G0, e et asat2) s
Further,
[ S (zn, W) } _pl { Hi (20, Wn) }
8 (zn,wn) H (20, wn) |’
1.e.,
Flew) —a((2o+ 1)z—w(3wo+ 1)t) (zoo+ (3o + l)tw)’
(Bo+1)(3(3a+1) (arw — 3o+ 1)) +3027)
(W) woc(20c+1)((5oc—|—2)z—(30H—1)tw).

(Bo+1)? (twar—2(3004- 1))
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Now, for f(x,y) we get

9*£(0,0) 202 (20+1) 02£(0,0) _ 2 302
2 Gatl)] ow? Go+1)*

02£(0,0) a(o+1)y/o(50+2) 0°£(0,0) 60t (20t+1)
dzw (Bot1) ’ i (Bot1)

Pr0,0) 603 (5a+2) /o (50+2) Pf(0,0) 203 (50+2)
ows (Bot1)° ’ dzow? Bo+1)°

0°£(0,0) 20 Ba+2) /o (50+2)

020w Bo+1)° ’

and for g(x,y)

0%g(0,0) aa+1)(5a+2) 9%g(0,0)
=— =0,
0zow 23a+1)° 072
9%g(0,0)  (20+1)oy/ou(500+2) g (z,w)
ow? Ba+1)° ’ o2ow
0%¢(0,0) 30’ (204 1) (5004-2) 0°¢(0,0) 0
ows 2(3041)° ’ 03
°g(0,0) o200+ 1) (50+2) /o (50+2)
ozow? 230+ 1)’ ’

Now, we have

{(fez = fow +280w) T (822 — gww —2fow) }

o (40 —3oc 2) +_ _a(4a+3) /o (50+2)
(Ba+1)° l (Bo+1)° ’

{(f Jrfww (gzz+gww)}
2oc+1)oc\/oc(50c+2)
CBat1)? gk

&2 =

&=

(3oc+l)

N 2a+1)a/o(5a+2) ?
(3oc+1)

4(3o+1)°

Enl* =

/\ 4>\~ 4>\~ oow— 00\~

o (17004 5207 + 560" +2)

16 (3004 1)°
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1 .
Eo = {(fzz — fow = 28zw) +i(822 — 8w "‘2fzw)}
G2 +1504+2  V20t50,

= i
8(3041)° 8(3041)°
,  oF (960’ + 8807 + 250+ 2)
‘&02‘ = 3 )
3230+ 1)
1
&21 = 76{ Jezz +fzww+gzzw+gwww)+l(gzzz + 8zww — fzzw_fwww)}
1 (o’ (59045407 +14) N a2 (380 + 700 —2) v 20+ 502
2 ; 7
16 2(3041)° 2(3a+1)°

e | o (29807 +28302 + 910+ 10)
32(300+1)

Finally, it is necessary to calculate the following coefficient

—2A _
a(y.) = —Re{( ) 5_,115..20} —*|§11|2 \§02!2+Re{7»§21}, (3.10)
which in our case is

o3 (5a+2)(2a+1) (3702 + 2500+ 4
a() = - L CeF2 et ( ) <o

32304 1)’

So we proved the following theorem.

Theorem 3.2. System (1.7) undergoes a supercritical Neimark—Sacker bifurcation

at E. = (%,2) when r =30, d = M Y=Y = (50?;2). There exists & > 0
such that a unique stable closed mvarlant curve bifurcates from the coexistence

equilibrium and exists for Y. <Y< Y.+ 9.

The difference in the dynamics predicted between the model introduced here and
the analogous continuous model is that there is a supercritical Neimark—Sacker
bifurcation at the parameter Y = y.. Consequently, the coexistence equilibrium
remains positive, but loses its local stability and orbits are attracted to a closed
curve even for large ..

In Figure 2, one-parameter bifurcation diagrams show how the stability of the
equilibrium points depends on the parameter Yy > 0 with respect to (A) X, compo—

nent and (B) Y, component. A transcritical bifurcation occurs when y= % Where

E| = E, and a Neimark-Sacker bifurcation occurs when y= 3(53 ,? 2,

In Figure 3 the phase portrait depicts how a smooth invariant cycle bifurcates from
the fixed point E by changing the value of the parameters.
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The bifurcation diagrams and phase portraits were generated by Dynamica, (see

[16]).

wix

35a+2)

3(5a+2)

= la
=xla

ak ak

(A) (B)

FIGURE 2. Bifurcation diagrams were produced using the param-
eter values: K = 1,d =4,00=2,r = 6,7, = 18 and y € (0,30).

Case 1 (b)
The corresponding characteristic equation for (2.11) is now of the form

r+oa+1-—

r
A2+ . A+1=0 (3.11)

with eigenvalues

—r—a—1+T+iy/@r+oa+3-T)(r—a+1+TI)

A=
2(r—|—1) 9
X—_r_a_1+F_i\/(3r+(x+3—F)(r—oc+1+r)
B 2(r+1) .
Now,
1
_w o,
P = r+1 , P—1: ox : 7
0 —t 0 1
t
where
 /Brto+3-T)(r—a+1+TL)
a 2(r+1) :
Furthermore, we get
o+ 1 1)2 | — K |
f(Z7W)=—y * 7—tw— (r+ D)7 (r+ 2) +r+

r+1 OL(K(r+1)2—rx0cz—Kt(x(r—|—l)w) o
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L L L L
0.2 0.4 0.6 08

(A)

FIGURE 3. Phase portraits for K =1,d =4,a0=2,r =6 and
(A)y=15 <. = 18, (x0,y0) = (0.1,3.3),

(B)y="7. =18, (x0,y0) = (0.3,1.5),

(C)y=18.3 > y,, (x0,y0) = (0.35,1.9), (x0,y0) = (0.1,2.3),
(D) y=50 >>y., (x0,y0) = (0.154,2.7), (x0,y0) = (0.5,20).

_ xyory _dtl o -tw) (Gy+ D) (1) —xoyz) |y
8lzw) = (x’Y-l-l)(r-l-l)tZ yx+1 (r+1)(xy+1—tw)t +t'

Applying an analogous procedure like in Case 1 (a) results in highly complex
expressions. Therefore, we provide results for specific numerical values.
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Let us choose the following parameter values r =5, oo =2 and K = 1. Now, we

obtain T = /280 = 21/2v/35 and

10—v2v35 V2V35-5 7 2v/2V35+15
M(x,y,d,Y): 5 9 2 357 2 .

The characteristic equations is

}\’2

+4_\f\/§x+1:o,

with the eigenvalue A = ﬁ\/gis% + = 8\5%/5750 i, where t = 7&&!5750. So, one

can calculate

0’£(0,0)|  2mo(K+Kr—rx)|  7V7V/10-55
072 ’M_ r+10°k2 |, 27 ’
921 (0,0) 2012 25 —4v/24/35
w2 |, r+lly, 27
9%£(0,0)|  a(K+Kr—2rx)t|  V2v4V2V35-25
020w |y (r+1)°%K 108 ’
°£(0,0)|  6r2x%02 (K+Kr—rx)|  125v2+/35—1040
L N S 162 ’
3°£(0,0) 60213 V21/11980v/7v/10 — 99625
Wy |, 162 ’
33£(0,0) 202 (K + Kr—3rx)1? 160 — 19v/2v/35
dzow? |, B (r+17°K ” - 54 ’
2°£(0,0) 2rx0? (2K +2Kr —3rx)t
920w |, - (r+ 1)4K2

V24235 — 25 (8\@%— 65)

162 '
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Similarly, for g(x,y)

9%g(0,0)
072
9%g(0,0)
ow?
9%g(0,0)
0z0w
9°2(0,0)
ow?3
9°¢(0,0)
dzow?

Hence,

&0 =

M

M

M

M

M

1
8

9°g(0,0) 9°g(0,0)

- aé‘M: " Tow ’MZO’

27—yt 1)1 (4v2v35-43) V2V/4v/2V/35 - 25
v+’ . B 243 ’
_x(y—xy—Day|  194-35V2V/35
Sy DD, 486 ’
_ 6(xy+1—y)r?|  27820—3283V/7V/10
(Dt |, 6561 ’
C 2(y—y+Day| (16770 1613) v2y/4v/2V/35 - 25
oy |, 19683 '

(64\@\/5526 (16v35-95v2) \/m.)
+ i,
243 486

243

: 1(m10 (4\5\/543)\5\/4\5%7525.)
=g 9o A

§02=§

1
&1 =

and

1

16

6593v2/35 27145

2 _
Sl = 236196

118098’

(134\@\/%914 (16@—77@ m)
+ il
243 486

5140 —529v/70 (638\/5 - 3247\@) 4v/2+/35-25 i)
19683 )

( 6561

Re{iga ) = L (

=2
Re{w&]&zo} =

Finally, we obtain

20207875

31847+/70 — 256880
59049 ’

1031917+/2v/35 4313177

5668704 2834352

303425v/2+/35

a(Y) = 53674816

2834352
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a(y.) ~ —4.4636 x 1072 <0

which confirms the existence of the supercritical Neimark-Sacker bifurcation under
the above stated assumptions. So the following proposition holds.

Proposition 3.1. System (1.7) undergoes a supercritical Neimark—Sacker bifurca-
tion at E, = <10_‘?‘/§,‘/§‘/2375_5) whenr=5 K=1,a0a=2,d= % Y=Y =

%. Then, there exists & > 0 such that a unique stable closed invariant
curve bifurcates from the coexistence equilibrium and exists for Y. <y <.+ 0.

Remark 3.1. In Case 2 all expresions become extremely complicated. Let us in-
troduce some part of that tedious calculation. For instance, System (3.8) becomes
d —r—xYe +yo+dyot — rxy. +xyoy, = 0,
rx+ oKy —rK =0,

d+y—"vx=0.

Its solution is in the following form:

(x )_ (rdo+2do—1-W)K r—aq—2do+14+¥ r+r(o+dot1)+do(o+2do—1)+(r+do)¥
W) = 2r ) 20 ) 20(do—1)K

where W is given with relation (2.12). The characteristic equation is now
n P 4r(o—do+3)+dado+o—5)+4— (r+do)
2(do—1)(r+1)

Frti=o (3.12)

with the eigenvalue
—12 —r(a—da+3) —da2do+o—5) — 4+ (r+do) ¥+

A= A(do—1)(r+1) ’

where
® = (r+do)(r+o+2do—1-¥)-[rP+r(o—5do+7)
+2d%0* + do? — 9do+ 8 — (r+da) ] .

Notice that for » = 3o and py; = 0 equation (3.12) becomes (3.9), and for r # 3
and py; = 0 equation (3.12) becomes (3.11). Consequently, the application of
analogous methodological procedures, albeit involving substantially more intricate
analytical expressions, allows the formulation of the Neimark—Sacker theorem.

Theorem 3.3. System (1.7) undergoes a supercritical Neimark—Sacker bifurcation
atE| = <(r+a+2da_l_T)K ria*MWfHT) when do. > 1 and

2r ’ 200

d  (r+do)(r+a+1+¥)
K 200(da— 1)K ’

Y=Y =

Y= \/r2 +2r (04 1) + (0 + 2dac— 1) Then, there exists & > 0 such that a unique
stable closed invariant curve bifurcates from the coexistence equilibrium and exists

fory. <y<7v.+0.
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FIGURE 4. Phase portraits for K =1,d =3,a0=2,r =5 and
(A)y=13 <y, = T () 40y = (0.2,1.2),

(B)y="1. = VI (xq,y0) = (045,1.4)

(© y=2HIE >y (x,y0) = (0.35,1.9), (x0,50) = (0.1,2.3),
D)y= M >> Ye, (x0,¥0) = (0.2,2.3), (x0,y0) = (1,1).

In Figure 3, we present phase portraits analogous to those in Figure 2, but this
time for the parameter values stated in Theorem 3.3 such that r # 3a and py; # 0.

Acknowledgment. The authors are grateful to two anonymous reviewers for sug-
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ments.
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