
SARAJEVO JOURNAL OF MATHEMATICS DOI: 10.5644/SJM.21.02.08
Vol.21 (34), No.2 (2025), 325–350

BIFURCATIONS OF A TWO-DIMENSIONAL
DISCRETE-TIME PREDATOR-PREY MODEL
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ABSTRACT. In this paper, we study the dynamics and bifurcation of a two-
dimensional discrete-time predator-prey model. The existence and local stability
of the equilibrium points of the model are analyzed algebraically. It is shown
that the model can undergo a transcritical bifurcation at the equilibrium point
on the x-axis and a Neimark-Sacker bifurcation in a small neighborhood of the
unique positive equilibrium point. Some numerical simulations are presented to
illustrate our theoretical results.

1. INTRODUCTION AND PRELIMINARIES

The ecological theory aims to provide reasonable explanations for interactions
among biological populations in nature using dynamic models to predict the dis-
tribution and structure of populations. Since Lotka and Volterra constructed the
well-known Lotka-Volterra ecosystem model, the use of mathematical models to
explain complex ecological properties has become common in biology. Among
them, predator-prey systems, which can explain predation relationships, have been
intensively studied and made significant progress in the 1980s (see [1, 9]).

The classical and well known Lotka–Volterra model is given by

x′ = rx−αxy,
y′ =−dy+ γxy, (1.1)

where r > 0 is the growth rate (in the absence of the predator) and d > 0 represents
the decay rate of the predator in the absence of the prey. The positive parameters α

and γ determine the consumption rate and consumption-energy rate, respectively.
A criticism of the model is the structural instability, since a small change in the
equations can eliminate the existence of periodic orbits (see [15]). Another criti-
cism of (1.1) is the assumption of exponential growth for the prey population.
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Verhulst in [25] introduced the so-called logistic growth model, assuming lim-
ited resources and resulting in convergence to a positive carrying capacity, known
as a modified predator-prey model

x′ = rx
(
1− x

K

)
−αxy,

y′ =−dy+ γxy, (1.2)

where the parameters r,α,d, and γ have the same biological interpretation as in
(1.1) and the additional parameter K > 0 that represents the carrying capacity of the
prey population was introduced. The dynamics of (1.2) differs from the behavior
of the solutions of the classical Lotka–Volterra model (1.1).

In contrast to (1.1), where solutions cycle periodically about the coexistence
equilibrium with x-amplitude and y-amplitude dependent on initial conditions, no
periodic orbits exist for (1.2). If the prey consumption-energy rate of the predator γ

satisfies γ > d
K , then the coexistence equilibrium is globally asymptotically stable.

If, however, γ < d
K , then the prey-only equilibrium is globally asymptotically stable

(see [3]). In the ecological community, many populations do not vary in numbers
continuously. Therefore, it is particularly important to study discrete models. A
discrete model has multiple periodic bifurcations, chaotic properties and gener-
ates periodic orbits, while a continuous one produces only simple S-shaped curves
(see [5,11,13,14,21]). In [24] the authors observed a discrete predator–prey model
based on the same assumptions as (1.2) because discrete mathematical models are
often more appropriate for modelling non overlapping generations, such as mono-
carpic plants and semelparous fish species. A discretization of a predator–prey
model that is related to our model was introduced in [20] as

Xn+1 =
(1+ r1ϕ1(h))Xn

1+ϕ1(h)(a11Xn +a12Yn)
,

Yn+1 =
(1+ r2ϕ2(h)−ϕ2(h)a21Xn)Yn

1+ϕ2(h)a22Yn
.

(1.3)

In our paper, we consider a predator-prey model after conducting the following
analysis. The population at time n+ 1 can be described as a factor f (n) of the
population at time n, that is, Xn+1 = f (n)Xn. The factor f (n) is determined by
growth and decline processes. Thus, we may express the population at time n+1
as

Xn+1 = f (n)Xn =
1+ p(n)
1+q(n)

X(n),

where p(n) captures the processes contributing to the increase of the population
and q(n) captures the processes contributing to the decrease in the population be-
tween time steps n and n+1. We can consider the interaction of several species Xi,
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for i = 1,2, . . . ,k. In this case, species Xi at time n+1 is expressed by

Xi(n+1) =
1+ pi(t,X1,X2, . . . ,Xk)

1+qi(t,X1,X2, . . . ,Xk)
Xi(n). (1.4)

In our case, Xi, for i = 1,2, represents the prey and the predator. We assume that
the prey population increases with a constant growth rate r > 0. Thus, the growth
contribution is p(n) = r. We also assume that competition and predation are the
factors responsible for any decline in the prey population. More precisely, for the
prey population, we consider

q(n) =
r
K

Xn +αYn,

where the carrying capacity is given by K > 0 and the intra-specific competition
for the prey population is given by r

K and predation rate α > 0. We therefore obtain
the recurrence for the prey as

Xn+1 =
1+ r

1+ r
K Xn +αYn

Xn. (1.5)

For the predator population, we assume that the predator population declines with
a constant rate d > 0, and captures the decline due to predation resulting in q(n) =
d +Yn, and the growth rate depends on the consumption of the prey, and hence is
proportional to the size of the prey population. We therefore consider p(n) = γXn,
where γ > 0 is the prey consumption-energy rate of the predator. This results in the
recurrence for the predator

Yn+1 =
(1+ γXn)

1+d +Yn
Yn. (1.6)

Hence, we analyse the following model

Xn+1 =
1+ r

1+ r
K Xn +αYn

Xn,

Yn+1 =
1+ γXn

1+d +Yn
Yn,

(1.7)

where the initial conditions X0,Y0 are assumed to be nonnegative and the parame-
ters r,K,α,γ and d are assumed to be positive.
The rest of this paper is organized as follows. The second section presents the lo-
cal stability of the equilibrium solutions. In the third section, we prove that the
system exhibits transcritical and Neimark-Sacker bifurcation. Neimark–Sacker
bifurcation, as an interesting phenomenon, has been examined in many papers
using normal form theory, which simplifies dynamical systems by reducing the
number of terms in the equations and introducing symmetry into the system (see
[7, 10, 12, 17, 18]).
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2. LOCAL STABILITY OF EQUILIBRIUM POINTS

First we will determine the equilibrium points of system (1.7). From

X =
1+ r

1+ r
K X +αY

X , Y =
1+ γX

1+d +Y
Y

we obtain the following equilibrium points E0 = (0,0), E1 = (K,0), E2 = (0,−d)
and unique positive equilibrium E+ =

(
K(r+αd)
r+Kαγ

, r(Kγ−d)
r+Kαγ

)
for γ > d

K . The equilib-
rium point E2 is inadequate because of its biological interpretation. Denote with T
the map associated with the system (1.7), i.e.,

T
(

x
y

)
=

(
f (x,y)
g(x,y)

)
,

for

f (x,y) =
(1+ r)x

1+ r
K x+αy

, g(x,y) =
(1+ γx)y
1+d + y

. (2.1)

The Jacobian matrix of the map T at the equilibrium point E = (x,y) is given by

JT (x,y) =


(r+1)K2 (yα+1)

(K + rx+Kyα)2 − (r+1)K2xα

(K + rx+Kyα)2

γy
d + y+1

(d +1)(xγ+1)

(d + y+1)2

 . (2.2)

Hence, the partial derivatives of the functions f and g in (1.7) satisfy

∂ f (x,y)
∂x

=
(r+1)K2 (yα+1)

(K + rx+Kyα)2 > 0,
∂ f (x,y)

∂y
=− (r+1)K2xα

(K + rx+Kyα)2 < 0,

∂g(x,y)
∂x

=
γy

d + y+1
> 0,

∂g(x,y)
∂y

=
(d +1)(xγ+1)

(d + y+1)2 > 0.

The following Lemma states that the solutions of System 1.7 are bounded.

Lemma 2.1. The solutions of System (1.7) with nonnegative initial conditions are
bounded for n ≥ 0. Precisely, Xn ∈ [0,max{X0,K}] and Yn ∈ [0,1+γ ·max{X0,K}]
for all n ≥ 0.

Proof. Notice that Xn,Yn ≥ 0 holds for nonnegative initial conditions. Additionally,
if X0 = 0, then Xn = 0 for all n ≥ 0. If Y0 = 0, then Yn = 0 for all n ≥ 0. If X0 > 0
and Y0 ≥ 0, then Xn > 0 for all n ≥ 0. If X0 ≥ 0 and Y0 > 0, then Yn > 0 for all
n ≥ 0.

As we have shown, f is increasing in the first variable, but it does not imply that
the sequence of iterates, Xn, is increasing. In fact, Xn is increasing if the forward
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operator, △Xn = Xn+1 −Xn is positive. We will distinguish two scenarios, when
Xn ≤ K and Xn > K. If Xn ≤ K, then

Xn+1 = f (Xn,Yn)≤ f (K,Yn) =
(1+ r)K

1+ r+αYn
≤ K.

For Xn > K, since

△Xn = Xn+1 −Xn =
1+ r

1+ r
K Xn +αYn

Xn −Xn =
Xn+1

1+ r

[
r
(

1− Xn

K

)
−αYn

]
< 0,

we have that Xn decreases in that case. Then Xn is convergent. Suppose Xn does
not converge to K. Then lim

n→∞
Xn = X̂ > K. However,

X̂ = lim
n→∞

Xn+1 = lim
n→∞

(1+ r)Xn

1+ r
K Xn +αYn

≤ limn→∞

(1+ r)Xn

1+ r
K Xn

<
(1+ r)X̂

1+ r
= X̂ ,

which is a contradiction. This implies that Xn ≤ max{X0,K} for all n ≥ 0. We now
show that Yn is bounded. Since,

Yn+1 =
(1+ γXn)Yn

1+d +Yn
< 1+ γXn ≤ 1+ γ ·max{X0,K},

the conclusion follows. □

The Jacobian matrix at equilibrium E0 is JT (E0) =

[
1+ r 0

0 1
1+d

]
. It is obvious

that λ1 = 1+r > 1 and λ2 =
1

1+d < 1, so the equilibrium point E0 is unstable, more
precisely a saddle point for all values of parameters.

Furthermore,

T (0,y) =
(

0,
y

1+d + y

)
=

(
0,

yd
(1+d)(d + y)− y

)
,

T 2 (0,y) =

(
0,

yd

(1+d)2 (d + y)− y

)
,

...

T n (0,y) =
(

0,
yd

(1+d)n (d + y)− y

)
.
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So, lim
n→∞

T n (0,y) = (0,0) which implies that the y-axis is a stable manifold for
equilibrium E0. Similarly,

T (x,0) =
(

K (1+ r)x
K + rx

,0
)
,

T 2 (x,0) =

 K (1+ r)2 x

K +
(
(1+ r)2 −1

)
x
,0

 ,

...

T n (x,0) =

 K (1+ r)2n−1
x

K +
(
(1+ r)2n−1 −1

)
x
,0

 .

Hence, lim
n→∞

T n (x,0) = (K,0) which implies that the x-axis is an unstable manifold
for the equilibrium point E0.
This completes the proof of the following Lemma.

Lemma 2.2. Consider System (1.7) with positive initial conditions. The equilib-
rium point E0 is a saddle point, with the x-axis and y-axis representing the unstable
and stable manifolds, respectively.

For visual ilustration see Figure 1.

The Jacobian matrix at equilibrium E1 is JT (E1) =

[ 1
1+r − Kα

1+r

0 1+Kγ

1+d

]
. The corre-

sponding eigenvalues are λ1 =
1

1+r < 1 and

λ2 =
Kγ+1
d +1

 < 1 for Kγ < d,
= 1 for Kγ = d,
> 1 for Kγ > d.

For Kγ = d, we will determine conditions for local semi-stability of the non-
hyperbolic equilibrium point E1 using center manifold theory. First, we shift the
equilibrium point E1 of system (1.7) to the origin by letting un = xn −K, vn = yn.
So, we have the following system

un+1 =
un −αKvn

1+ r
K un + r+αvn

,

vn+1 =
(1+ d

K un +d)vn

1+d + vn
,

(2.3)

which has (0,0) as an equilibrium point. The Jacobian matrix J0 at the zero equilib-

rium is J0 =

[
1

1+r − αK
1+r

0 1

]
. The corresponding eigenvalues are λ1 =

1
1+r , λ2 = 1,
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and corresponding eigenvectors v1 =
[

1 0
]T , v2 =

[
−αK

r 0
]T . System (2.3)

can be written as [
un+1
vn+1

]
= J0

[
un
vn

]
+

[
ξ(un,vn)
η(un,vn)

]
(2.4)

where

ξ(un,vn) = − r
K(1+ r)2 u2

n +
(r−1)α
(1+ r)2 unvn +

Kα2

(1+ r)2 v2
n,

η(un,vn) =
d

(1+d)K
unvn −

1
1+d

v2
n.

(2.5)

Let [
un
vn

]
= P

[
tn
sn

]
, (2.6)

where P is the matrix that diagonolizes J0 defined by P =

[
1 −Kα

r
0 1

]
. The in-

verse matrix of P is P−1 =

[
1 Kα

r
0 1

]
and P−1J0P =

[
1

r+1 0
0 1

]
. By (2.6) we

have
un = tn − K

r αsn,

vn = sn,
(2.7)

and substituting (2.7) into (2.5) we have

ξ(un,vn) = ξ1(tn,sn) =
α

r+1
sntn −

r

K (r+1)2 t2
n ,

η(un,vn) = η1(tn,sn) =
d

(1+d)K
sntn −

r+dα

r (d +1)
s2

n.
(2.8)

Thus (2.4) can be written as

P
[

tn+1
sn+1

]
= J0P

[
tn
sn

]
+

[
ξ1(tn,sn)
η1(tn,sn)

]
,

or [
tn+1
sn+1

]
= P−1J0P

[
tn
sn

]
+P−1

[
ξ1(tn,sn)
η1(tn,sn)

]
,

i.e., [
tn+1
sn+1

]
=

[ 1
r+1

0

0 1

][
tn
sn

]
+

[
ξ2(tn,sn)
η2(tn,sn)

]
,
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where

ξ2(tn,sn) = −Kα(r+dα)

r2 (d +1)
s2

n +
(d + r+2dr)α

r (r+1)(d +1)
sntn −

r

K (r+1)2 t2
n ,

η2(tn,sn) = − r+dα

r (d +1)
s2

n +
d

K(d +1)
sntn.

Let t = κ(s) = Ω(s) +O(s4), where Ω(s) = As2 +Bs3, A, B ∈ R is the central
manifold, and where map κ(s) must satisfy the center manifold equation

κ(λ2s+η2(κ(s),s))−λ1κ(s)−ξ2(κ(s),s) = 0. (2.9)

From (2.9) we obtain the following system

B
r+1

−B+
2A(r+dα)

r (d +1)
+

αA(d + r+2dr)
r (d +1)(r+1)

= 0,

A− A
r+1

+
Kα(r+dα)

r2 (d +1)
= 0,

with the solution

A =−Kα(r+1)(r+dα)

r3 (d +1)
,

B =−
Kα(r+1)

(
2r2 + r (α+4dα+2)+3dα

)
(r+dα)

r5 (d +1)2 .

Finally, we obtain that the dynamics of the system (1.7) is reduced to the dynamics
of the following one-dimensional map

G(s) = s+η2(Ω(s),s) = s− r+dα

r (d +1)
s2 − αd (r+dα)(r+1)

r3 (d +1)2 s3.

Since
d
ds

G(0)= 1 and
d2

ds2 G(0)=−2(r+dα)

r (d +1)
< 0, from Theorem 1.6 of [16], the

equilibrium E1 of (1.7) is an unstable fixed point, that is semi-stable from above.
Recall the fact that limn→∞ T n(x,0) = (K,0).
This completes the proof of the following Lemma.

Lemma 2.3. Consider System (1.7) with positive initial conditions and γ0 = d
K .

The equilibrium point E1 is LAS for γ < γ0, a non-hyperbolic point of semi-stable
type (stable from above) for γ = γ0 and a saddle point for γ > γ0 with the x-axis as
a stable manifold.

For visual representation see Figure 1.
InordertodeterminethestabilityofthepositiveequilibriumE+ =

(
K(r+αd)
r+Kαγ

, r(Kγ−d)
r+Kαγ

)
for Kγ > d we will use the following Lemma which can be easily proved by apply-
ing the relations between roots and coefficients of the quadratic equation, see [4,6].
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Lemma 2.4. Assume that Φ(λ) = λ2 −TrJT λ+DetJT is a polynomial associated
to the characteristic equation. Suppose that Φ(1) > 0 and λ1 and λ2 are the two
roots of Φ(λ) = 0. Then

a) |λ1|< 1 and |λ2|< 1 iff Φ(−1)> 0 and Φ(0)< 1.
b) |λ1|> 1 and |λ2|> 1 iff Φ(−1)> 0 and Φ(0)> 1.
c) |λ1|< 1 and |λ2|> 1 (or |λ1|> 1 and |λ2|< 1) iff Φ(−1)< 0.
d) λ1 and λ2 are complex and |λ1| = |λ2| = 1 iff (TrJT )

2 − 4DetJT < 0 and
DetJT = 1.

e) λ1 =−1 and λ2 ̸=−1 iff Φ(−1) = 0 and TrJT ̸=−2,
f) λ1 = λ2 =−1 iff Φ(−1) = 0 and TrJT =−2.

The Jacobian matrix of equilibrium E+ = (x,y), by applying the equilibrium rela-
tions

rx+αyK = rK,
d + y = xγ,

(2.10)

has the form

JT (E+) =


αy+1
r+1

− αx
r+1

γy
γx+1

d +1
γx+1

 .
Further, the characteristic polynomial of the Jacobian matrix J(E+) is given by

Φ(λ) = λ
2 −
(

αy+1
r+1

+
d +1
γx+1

)
λ+

(d +1)(yα+1)+αγxy
(r+1)(γx+1)

. (2.11)

First, let us check if Φ(1) > 0 in E+. To facilitate easier calculation, let us in-
troduce a change β = r (Kγ−d) > 0 from which K = β+rd

rγ
, x = (β+dr)(r+dα)

γ(αβ+r2+drα)
and

y = βr
αβ+r2+drα

. Now,

Φ(1) =
rβ(r+dα)

(r+1)(r2 (d +1)+ r (αd2 +αd +β)+αβ(d +1))
> 0,

and λ1 ̸= 1, λ2 ̸= 1 in E+.
Further, for

ϕ0 (β) = β
2
α
(
3r2 + r (4α+5dα+2)+4α(d +1)

)
+βr

(
r2 + r (6α+7dα+2)+8α(d +1)

)
(r+dα)

+2r2 (r+2)(d +1)(r+dα)2 ,

we have

Φ(−1) =
ϕ0 (β)

(r+1)(r2 +drα+αβ)(r2 (d +1)+ r (αd2 +αd +β)+αβ(d +1))
,

and Φ(−1)> 0. So, λ1 ̸=−1, λ2 ̸=−1 in E+.
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Let us calculate Φ(0)−1 = λ1λ2 −1 in E+. For

ϕ1 (β) = β
2
α(dα−1)−βr (r+α+1)(r+dα)− r2 (d +1)(r+dα)2 ,

we obtain

λ1λ2 −1 =
rϕ1 (β)

(r+1)(r2 +drα+αβ)(r2 (d +1)+ r (αd2 +αd +β)+αβ(d +1))
.

Notice that

ϕ1(β) = 0 ⇔ β = β± =
r (r+dα)(r+α+1±Ψ)

2α(dα−1)
,

where

Ψ =

√
r2 +2r (α+1)+(α+2dα−1)2. (2.12)

For dα−1> 0 we have β− < 0, r(Kγ−d) = β+ or γ= d
K + β+

rK = γc. We distinguish
the following two cases .

1.) If dα− 1 ≤ 0, then λ1λ2 − 1 < 0, i.e., λ1λ2 < 1 and by using Lemma 2.4
we obtain |λ1,2|< 1.

2.) If dα−1 > 0, then
a) λ1λ2 = 1 for γ = γc,
b) λ1λ2 < 1 for γ < γc ,
c) λ1λ2 > 1 for γ > γc,

where

γc =
d
K
+

(r+dα)(r+α+1+Ψ)

2α(dα−1)K
. (2.13)

Hence, if dα ≤ 1 or (dα > 1 and γ < γc), we obtain Φ(0) = λ1λ2 < 1, i.e., E+ is
LAS. Further, if dα > 1 and γ > γc, we get Φ(0) = λ1λ2 > 1, i.e., E+ is a repeller.
Since,

ϕ2 (β) = β
2
α(r+1)+βr (r+dα)(2r+α+dα+1)+ r2 (d +1)(r+dα)2 > 0,

we have

λ1 +λ2 −2 =
−rϕ2 (β)

(r+1)(r2 +drα+αβ)(β(r+α(d +1))+ r (d +1)(r+dα))
< 0.

For dα > 1 and γ = γc, DetJT = Φ(0) = λ1λ2 = 1 holds, which implies

(TrJT )
2 −4DetJT = (λ1 +λ2)

2 −4λ1λ2 < 22 −4 ·1 = 0.

So, by Lemma 2.4, equilibrium E+ is a non-hyperbolic point with complex-conjugate
eigenvalues |λ1,2|= 1.

Thus, we have proved the following Theorem:

Theorem 2.1. Let α,γ,r,d,K be positive parameters such that γ > d
K and γc is

given by (2.13). The unique positive equilibrium point E+ of the System (1.7) is:
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(1) locally asymptotically stable if

dα ≤ 1 and γ >
d
K
,

or

dα > 1 and
d
K

< γ < γc,

(2) non-hyperbolic with complex conjugate eigenvalues if

dα > 1 and γ = γc,

(3) a repeller if
dα > 1 and γ > γc.

3. BIFURCATIONS IN THE SYSTEM

In this section, we prove that system exhibits two type of bifurcations: transcrit-
ical and Neimark-Sacker bifurcation.

Theorem 3.1. If γ = d
K , then E1 = E+ and System (1.7) undergoes a transcritical

bifurcation.

Proof. According to the theorems in [2, 22, 23], one interior equilibrium point
branches off from E1 when γ passes the threshold γ0 =

d
K .

Recall that the Jacobian matrix of map T at equilibrium E1 for γ = γ0 =
d
K is

JTγ(E1,γ0) = JT (K,0) |
γ0=

d
K
=

 1
1+ r

− Kα

1+ r
0 1

 .
Let the eigenvectors v = [−Kα

r ,1]T and w = [0,1]T indicate the eigenvectors corre-
sponding to λ2 = 1 of JTγ(E1,γ0) and JT Tγ(E1,γ0), respectively. We can get

T ′
γ =

 0
xy

1+d + y

⇒ T ′
γ (E1,γ0) =

[
0

0

]
,

and

JT ′
γ =

 0 0
y

1+d + y
x(1+d)

(1+d + y)2

⇒ JT ′
γ (E1,γ0) =

 0 0

0
K

1+d

 ,
i.e.,

JT ′
γ (E1,γ0)v =

 0 0

0
K

1+d

 −Kα

r
1

=

 0
K

1+d

 .
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(A) (B)

(C)

FIGURE 1. Phase portraits for K = 1,d = 4,α = 2,r = 6 and
(A) γ = 1.5 < γ0, (B) γ = 4 = γ0, (C) γ = 4.5 > γ0.

Further,

J2Tγ(v,v) =


∂2 f
∂x2 v2

1 +2
∂2 f
∂x∂y

v1v2 +
∂2 f
∂y2 v2

2

∂2g
∂x2 v2

1 +2
∂2g
∂x∂y

v1v2 +
∂2g
∂y2 v2

2

 ,

J2Tγ(E1,γ0)(v,v) =

[
0

−2 r+dα

r(d+1)

]
.
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Therefore,
Ψ1 = wT T ′

γ (E1,γ0) = 0,

Ψ2 = wT J
(
T ′

γ

)
(E1,γ0)v =

K
1+d

> 0,

Ψ3 = wT J2Tγ (E1,γ0)(v,v) =−2
r+dα

r (d +1)
< 0.

From Sotomayor’s theorem in [23], System (1.7) undergoes a transcritical bifurca-
tion at E1 = (K,0) when γ = γ0 =

d
K . □

Hence, when the prey population reaches its maximum growth rate at a specific
boundary of γ = d

K , a transcritical bifurcation occurs. This boundary also serves
as the invasion boundary for prey populations. Once this boundary is reached,
predator populations begin to invade, causing the exclusion equilibrium to lose
stability and a locally stable interior equilibrium to emerge. In general, the physical
interpretation of a local transcritical bifurcation reflects a change in the system’s
dynamics in terms of stability. Specifically, a critical population threshold appears,
beyond which alternative system states arise. This phenomenon is also referred
to as an exchange of stability, as two equilibrium points interchange their stability
properties during the bifurcation process (see [19]).
Now, we prove that the system undergoes a Neimark-Sacker bifurcation when γ =
γc. In order to check the first and the second degeneracy conditions, we will rewrite
the eignevalues in the polar form λ =

√
λ1λ2e±iθ(γ). Recall that r (Kγ−d) = β > 0

and dα−1 = A > 0. So,

|λ(γ)|=
√

λ1λ2 =

√
(d +1)(yα+1)+αγxy

(r+1)(γx+1)
. (3.1)

Further, we obtain

d (|λ(γc)|)
dγ

=
1

2
√

λ1λ2|γ=γc

(r+dα)Kr
(
a0A2 +a1A+a2

)
(r+Kαγc)

2 (r+1)(r+(r+α+dα)Kγc)
2 > 0,

since

a0 =
2α(β+dr)2

r2 > 0,

a1 = α(4r+3(α+1))d2 + r (r+4α)d + r2

+
β2α(2r+3(α+1))+2βrα(3d (r+α+1)+2r)

r2 > 0,

a2 =
α(β(r+α+1)+ r ((r+α+1)d + r))2

r2 > 0.
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The condition λ1λ2|γ=γc = 1 is equivalent to

d − r+ γx(αy− r−1)+αy(d +1)|γ=γc = 0. (3.2)

Notice that tan(θ0) =

√
4λ1λ2−(λ1+λ2)2

λ1+λ2
> 0, so ekiθ0 ̸= 1, i.e., λk(γc) ̸= 1 for k =

1,2,3,4. It implies that the second degeneracy condition is satisfied (see [8], The-
orem 15.31). Hence, there is a Neimark–Sacker bifurcation at γ = γc. In order to
determine the criticality of the bifurcation and obtain the normal form of System
(3.3), when γ = γc, we first translate the equilibrium point E+ = (x,y) to the origin
using the substitution:

un = xn − x,
vn = yn − y,

so we get

un+1 =
(1+ r)(un + x)

1+ r+
r
K

un +αvn

− x

vn+1 =
(1+ γ(un + x))(vn + y)

1+ vn + γx
− y.

(3.3)

Let us define the function

F
(

u
v

)
=


(1+ r)(u+ x)

1+ r+
r
K

u+αv
− x

(1+ γ(u+ x))(v+ y)
1+ v+ γx

− y

 . (3.4)

Then F(u,v) has the unique fixed point (0,0). Rewrite the System (3.3) in the
following form [

un+1
vn+1

]
= JF(0,0)

[
un
vn

]
+

[
H1(un,vn)
H2(un,vn)

]
, (3.5)

where

JF(0,0) = JT (E+) =


αy+1
r+1

− αx
r+1

γy
γx+1

d +1
γx+1

 ,
H1(un,vn) =−αy+1

r+1
un +

αx
r+1

vn +
(1+ r)(un + x)

1+ r+ r
K un +αvn

− x,

H2(un,vn) =− γy
γx+1

un −
d +1
γx+1

vn +
(1+ γ(u+ x))(v+ y)

1+ v+ γx
− y.
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System (3.3) has complex eigenvalues, let us denote them with λ = s+ it and λ =
s− it. From the corresponding characteristic equation for (2.11) we get

s =
1
2
(λ+λ) =

1
2

(
αy+1
r+1

+
d +1
xγ+1

)
and t2|γ=γc = 1− s2. (3.6)

Further, let [
un
vn

]
= P

[
zn
wn

]
,

where zn and wn are new variables and

P =

[ − αx
r+1 0

d+r−γx(αy+1)−αy+dr
2(xγ+1)(r+1) −t

]
, P−1 =

[
− r+1

αx 0

−d+r−γx(αy+1)−αy+dr
2txα(xγ+1) −1

t

]

are such that P−1JF(0,0)P =

[
s −t
t s

]
with

∣∣∣∣ s −t
t s

∣∣∣∣= 1. Hence, from System

(3.5) we obtain[
zn+1
wn+1

]
= P−1JF(0,0)P

[
zn
wn

]
+P−1

[
H1 (zn,wn)
H2 (zn,wn)

]
i.e., [

zn+1
wn+1

]
=

[
s −t
t s

][
zn
wn

]
+P−1

[
H1 (zn,wn)
H2 (zn,wn)

]
. (3.7)

Considering the fact that p21 in P and P−1 can be equal or not equal to zero, we
will distinguish two cases:

Case 1: d + r− γcx(αy+1)−αy+dr = 0,
Case 2: d + r− γcx(αy+1)−αy+dr ̸= 0.

Consider Case 1. In order to prove the existance of a Neimark-Sacker bifurcation,
(2.10) and (3.2) must hold, i.e.,:

d + r− x(αy+1)γc −αy+dr = 0,
d − r+ x(αy− r−1)γc +αy(d +1) = 0,

rx+αyK − rK = 0,
d + y− xγc = 0.

(3.8)

The positive solution of system (3.8) is:
(a) for r = 3α

(x,y,d,γc) =

(
K
3
,2,

3α+2
α

,
3(5α+2)

αK

)
,

(b) for r ̸= 3α

(x,y,d,γc) =

(
(α+3r+3−Γ)K

2r
,
−α− r−3+Γ

2α
,
r+2

α
,
α+2r+3+Γ

αK

)
,
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where

Γ =

√
5r2 +2r (3α+7)+(α+3)2.

Case 1 (a)
The corresponding characteristic equation for (2.11) is now of the form

λ
2 − 2(2α+1)

3α+1
λ+1 = 0, (3.9)

with eigenvalues

λ =
2α+1+ i

√
α(5α+2)

3α+1
, λ =

2α+1− i
√

α(5α+2)
3α+1

.

Further,

P =

 − αK
3(3α+1)

0

0 −t

 and P−1 =

 −3(3α+1)
αK

0

0 −1
t

 ,
where, from (3.6), t =

√
α(5α+2)
3α+1 . The Jacobian matrix of F(u,v) at the equilibrium

point is given by

JF(0,0) =


2α+1
3α+1

− αK
3(3α+1)

3(5α+2)
K (3α+1)

2α+1
3α+1

 ,
and in (3.7) the functions H1(un,vn) and H2(un,vn) have the following form:

H1 (zn,wn) =
(2α+1)Kα

3(3α+1)2 zn +
αKt

3(3α+1)wn +
αK((2α+1)zn−wn(3α+1)t)

3(3α+1)(αtwn−(3α+1))+3α2zn
,

H2 (zn,wn) =
α(5α+2)
(3α+1)2 zn +

(2α+1)t
3α+1 wn +

twn(2(2α+1)(3α+1)−α(5α+2)zn)+2α(5α+2)zn
(3α+1)(αtwn−2(3α+1)) .

Further, [
f (zn,wn)
g(zn,wn)

]
= P−1

[
H1 (zn,wn)
H2 (zn,wn)

]
,

i.e.,

f (z,w) =
−α((2α+1)z−w(3wα+1)t)(zα+(3α+1)tw)
(3α+1)(3(3α+1)(αtw− (3α+1))+3α2z)

,

g(z,w) =
wα(2α+1)((5α+2)z− (3α+1)tw)

(3α+1)2 (twα−2(3α+1))
.



BIFURCATIONS OF A TWO-DIMENSIONAL DISCRETE-TIME PREDATOR-PREY MODEL 341

Now, for f (x,y) we get

∂2 f (0,0)
∂z2 =

2α2 (2α+1)

(3α+1)3 ,
∂2 f (0,0)

∂w2 =−2α2 5α+2

(3α+1)3 ,

∂2 f (0,0)
∂z∂w

=
α(α+1)

√
α(5α+2)

(3α+1)3 ,
∂3 f (0,0)

∂z3 =
6α4 (2α+1)

(3α+1)5 ,

∂3 f (0,0)
∂w3 =−

6α3 (5α+2)
√

α(5α+2)

(3α+1)5 ,
∂3 f (0,0)

∂z∂w2 =
2α3 (5α+2)

(3α+1)5 ,

∂3 f (0,0)
∂z2∂w

=
2α3 (3α+2)

√
α(5α+2)

(3α+1)5 ,

and for g(x,y)

∂2g(0,0)
∂z∂w

=−α(2α+1)(5α+2)

2(3α+1)3 ,
∂2g(0,0)

∂z2 = 0,

∂2g(0,0)
∂w2 =

(2α+1)α
√

α(5α+2)

(3α+1)3 ,
∂3g(z,w)

∂z2∂w
= 0,

∂3g(0,0)
∂w3 =

3α3 (2α+1)(5α+2)

2(3α+1)5 ,
∂3g(0,0)

∂z3 = 0,

∂3g(0,0)
∂z∂w2 =−

α2 (2α+1)(5α+2)
√

α(5α+2)

2(3α+1)5 .

Now, we have

ξ20 =
1
8
{( fzz − fww +2gzw)+ i(gzz −gww −2 fzw)}

=
1
8

(
α
(
4α2 −3α−2

)
(3α+1)3 + i

(
−

α(4α+3)
√

α(5α+2)

(3α+1)3

))
,

ξ11 =
1
4
{( fzz + fww)+ i(gzz +gww)}

=
1
4

(
− 2α2

(3α+1)2 +
(2α+1)α

√
α(5α+2)

(3α+1)3 i

)
,

|ξ11|2 =

(
− 2α2

4(3α+1)2

)2

+

(
(2α+1)α

√
α(5α+2)

4(3α+1)3

)2

=
α3
(
17α+52α2 +56α3 +2

)
16(3α+1)6 ,
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ξ02 =
1
8
{( fzz − fww −2gzw)+ i(gzz −gww +2 fzw)}

= α
24α2 +15α+2

8(3α+1)3 +α

√
2α+5α2

8(3α+1)3 i,

|ξ02|2 =
α2
(
96α3 +88α2 +25α+2

)
32(3α+1)5 ,

ξ21 =
1

16
{( fzzz + fzww +gzzw +gwww)+ i(gzzz +gzww − fzzw − fwww)}

=
1

16

(
α3
(
59α+54α2 +14

)
2(3α+1)5 + i

α2
(
38α2 +7α−2

)√
2α+5α2

2(3α+1)5

)
,

Re
{

λξ21

}
=

α3
(
298α3 +283α2 +91α+10

)
32(3α+1)6 .

Finally, it is necessary to calculate the following coefficient

a(γc) =−Re

{
(1−2λ)λ

2

1−λ
ξ11ξ20

}
− 1

2
|ξ11|2 −|ξ02|2 +Re

{
λξ21

}
, (3.10)

which in our case is

a(γc) =−
α3 (5α+2)(2α+1)

(
37α2 +25α+4

)
32(3α+1)7 < 0.

So we proved the following theorem.

Theorem 3.2. System (1.7) undergoes a supercritical Neimark–Sacker bifurcation
at E+ =

(K
3 ,2
)

when r = 3α, d = 3α+2
α

, γ = γc =
3(5α+2)

αK . There exists δ > 0
such that a unique stable closed invariant curve bifurcates from the coexistence
equilibrium and exists for γc < γ < γc +δ.

The difference in the dynamics predicted between the model introduced here and
the analogous continuous model is that there is a supercritical Neimark–Sacker
bifurcation at the parameter γ = γc. Consequently, the coexistence equilibrium
remains positive, but loses its local stability and orbits are attracted to a closed
curve even for large γc.
In Figure 2, one-parameter bifurcation diagrams show how the stability of the
equilibrium points depends on the parameter γ > 0 with respect to (A) Xn compo-
nent and (B) Yn component. A transcritical bifurcation occurs when γ = d

K where
E1 = E+ and a Neimark-Sacker bifurcation occurs when γ = 3(5α+2)

αK .
In Figure 3 the phase portrait depicts how a smooth invariant cycle bifurcates from
the fixed point E+ by changing the value of the parameters.
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The bifurcation diagrams and phase portraits were generated by Dynamica, (see
[16]).

(A) (B)

FIGURE 2. Bifurcation diagrams were produced using the param-
eter values: K = 1,d = 4,α = 2,r = 6,γc = 18 and γ ∈ (0,30).

Case 1 (b)
The corresponding characteristic equation for (2.11) is now of the form

λ
2 +

r+α+1−Γ

r+1
λ+1 = 0 (3.11)

with eigenvalues

λ =
−r−α−1+Γ+ i

√
(3r+α+3−Γ)(r−α+1+Γ)

2(r+1)
,

λ =
−r−α−1+Γ− i

√
(3r+α+3−Γ)(r−α+1+Γ)

2(r+1)
.

Now,

P =

 − αx
r+1

0

0 −t

 , P−1 =

 −r+1
αx

0

0 −1
t

 ,
where

t =

√
(3r+α+3−Γ)(r−α+1+Γ)

2(r+1)
.

Furthermore, we get

f (z,w) =−yα+1
r+1

z− tw− (r+1)2 (r+1−αz)K

α

(
K (r+1)2 − rxαz−Ktα(r+1)w

) +
r+1

α
,
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(A) (B)

(C) (D)

FIGURE 3. Phase portraits for K = 1,d = 4,α = 2,r = 6 and
(A) γ = 15 < γc = 18, (x0,y0) = (0.1,3.3),
(B) γ = γc = 18, (x0,y0) = (0.3,1.5),
(C) γ = 18.3 > yc, (x0,y0) = (0.35,1.9), (x0,y0) = (0.1,2.3),
(D) γ = 50 >> yc, (x0,y0) = (0.154,2.7), (x0,y0) = (0.5,20).

g(z,w) =− xyαγ

(xγ+1)(r+1) t
z− d +1

γx+1
w− (y− tw)((xγ+1)(r+1)− xαγz)

(r+1)(xγ+1− tw) t
+

y
t
.

Applying an analogous procedure like in Case 1 (a) results in highly complex
expressions. Therefore, we provide results for specific numerical values.
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Let us choose the following parameter values r = 5, α = 2 and K = 1. Now, we
obtain Γ =

√
280 = 2

√
2
√

35 and

M (x,y,d,γ) =

(
10−

√
2
√

35
5

,

√
2
√

35−5
2

,
7
2
,
2
√

2
√

35+15
2

)
.

The characteristic equations is

λ
2 +

4−
√

2
√

35
3

λ+1 = 0,

with the eigenvalue λ =
√

2
√

35−4
6 +

√
8
√

2
√

35−50
6 i, where t =

√
8
√

2
√

35−50
6 . So, one

can calculate

∂2 f (0,0)
∂z2

∣∣∣∣
M
=

2rxα(K +Kr− rx)

(r+1)3 K2

∣∣∣∣∣
M

=
7
√

7
√

10−55
27

,

∂2 f (0,0)
∂w2

∣∣∣∣
M
= − 2αt2

r+1

∣∣∣∣
M
=

25−4
√

2
√

35
27

,

∂2 f (0,0)
∂z∂w

∣∣∣∣
M
=

α(K +Kr−2rx) t

(r+1)2 K

∣∣∣∣∣
M

=

√
2
√

4
√

2
√

35−25
108

,

∂3 f (0,0)
∂z3

∣∣∣∣
M
=

6r2x2α2 (K +Kr− rx)

(r+1)5 K3

∣∣∣∣∣
M

=
125

√
2
√

35−1040
162

,

∂3 f (0,0)
∂w3

∣∣∣∣
M
= − 6α2t3

(r+1)2

∣∣∣∣∣
M

=−
√

2
√

11980
√

7
√

10−99625
162

,

∂3 f (0,0)
∂z∂w2

∣∣∣∣
M
=

2α2 (K +Kr−3rx) t2

(r+1)3 K

∣∣∣∣∣
M

=
160−19

√
2
√

35
54

,

∂3 f (0,0)
∂z2∂w

∣∣∣∣
M
=

2rxα2 (2K +2Kr−3rx) t

(r+1)4 K2

∣∣∣∣∣
M

=

√
2
√

4
√

2
√

35−25
(

8
√

2
√

35−65
)

162
.
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Similarly, for g(x,y)

∂2g(0,0)
∂z2

∣∣∣∣
M
= 0,

∂3g(0,0)
∂z3

∣∣∣∣
M
= 0,

∂3g(0,0)
∂z2∂w

∣∣∣∣
M
= 0,

∂2g(0,0)
∂w2

∣∣∣∣
M
=

2(xγ− y+1) t

(xγ+1)2

∣∣∣∣∣
M

=−

(
4
√

2
√

35−43
)√

2
√

4
√

2
√

35−25

243
,

∂2g(0,0)
∂z∂w

∣∣∣∣
M
=

x(y− xγ−1)αγ

(xγ+1)2 (r+1)

∣∣∣∣∣
M

=
194−35

√
2
√

35
486

,

∂3g(0,0)
∂w3

∣∣∣∣
M
=

6(xγ+1− y) t2

(xγ+1)3

∣∣∣∣∣
M

=
27820−3283

√
7
√

10
6561

,

∂3g(0,0)
∂z∂w2

∣∣∣∣
M
=

−2x(xγ− y+1)αγt

(xγ+1)3 (r+1)

∣∣∣∣∣
M

=

(
167

√
70−1613

)√
2
√

4
√

2
√

35−25
19683

.

Hence,

ξ20 =
1
8

64
√

2
√

35−526
243

+

(
16

√
35−95

√
2
)√

4
√

2
√

35−25

486
i

 ,

ξ11 =
1
4

√
70−10

9
−

(
4
√

2
√

35−43
)√

2
√

4
√

2
√

35−25

243
i

 ,

|ξ11|2 =
6593

√
2
√

35
236196

− 27145
118098

,

ξ02 =
1
8

134
√

2
√

35−914
243

+

(
16
√

35−77
√

2
)√

4
√

2
√

35−25

486
i

 ,

ξ21 =
1

16

5140−529
√

70
6561

−

(
638

√
35−3247

√
2
)√

4
√

2
√

35−25

19683
i

 ,

Re
{

λξ21

}
=

1
16

(
31847

√
70−256880

59049

)
,

and

Re

{
(1−2λ)λ

2

1−λ
ξ11ξ20

}
=

1031917
√

2
√

35
5668704

− 4313177
2834352

.

Finally, we obtain

a(γc) =
20207875
22674816

− 303425
√

2
√

35
2834352

,
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a(γc)≈−4.4636×10−3 < 0
which confirms the existence of the supercritical Neimark-Sacker bifurcation under
the above stated assumptions. So the following proposition holds.

Proposition 3.1. System (1.7) undergoes a supercritical Neimark–Sacker bifurca-
tion at E+ =

(
10−

√
2
√

35
5 ,

√
2
√

35−5
2

)
when r = 5, K = 1, α = 2, d = 7

2 , γ = γc =

2
√

2
√

35+15
2 . Then, there exists δ > 0 such that a unique stable closed invariant

curve bifurcates from the coexistence equilibrium and exists for γc < γ < γc +δ.

Remark 3.1. In Case 2 all expresions become extremely complicated. Let us in-
troduce some part of that tedious calculation. For instance, System (3.8) becomes

d − r− xγc + yα+dyα− rxγc + xyαγc = 0,
rx+αKy− rK = 0,

d + y− γcx = 0.

Its solution is in the following form:
(x,y,γ) =

(
(r+α+2dα−1−Ψ)K

2r , r−α−2dα+1+Ψ

2α
, r2+r(α+dα+1)+dα(α+2dα−1)+(r+dα)Ψ

2α(dα−1)K

)
where Ψ is given with relation (2.12). The characteristic equation is now

λ
2 +

r2 + r (α−dα+3)+dα(2dα+α−5)+4− (r+dα)Ψ

2(dα−1)(r+1)
λ+1 = 0 (3.12)

with the eigenvalue

λ =
−r2 − r (α−dα+3)−dα(2dα+α−5)−4+(r+dα)Ψ+

√
Φ

4(dα−1)(r+1)
,

where
Φ = (r+dα)(r+α+2dα−1−Ψ) ·

[
r2 + r (α−5dα+7)

+2d2α2 +dα2 −9dα+8− (r+dα)Ψ
]
.

Notice that for r = 3α and p21 = 0 equation (3.12) becomes (3.9), and for r ̸= 3α

and p21 = 0 equation (3.12) becomes (3.11). Consequently, the application of
analogous methodological procedures, albeit involving substantially more intricate
analytical expressions, allows the formulation of the Neimark–Sacker theorem.

Theorem 3.3. System (1.7) undergoes a supercritical Neimark–Sacker bifurcation
at E+ =

(
(r+α+2dα−1−Ψ)K

2r , r−α−2dα+1+Ψ

2α

)
when dα > 1 and

γ = γc =
d
K
+

(r+dα)(r+α+1+Ψ)

2α(dα−1)K
,

Ψ=

√
r2 +2r (α+1)+(α+2dα−1)2. Then, there exists δ> 0 such that a unique

stable closed invariant curve bifurcates from the coexistence equilibrium and exists
for γc < γ < γc +δ.
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(A) (B)

(C) (D)

FIGURE 4. Phase portraits for K = 1,d = 3,α = 2,r = 5 and
(A) γ = 13 < γc =

37+11
√

14
5 , (x0,y0) = (0.2,1.2),

(B) γ = γc =
37+11

√
14

5 , (x0,y0) = (0.45,1.4)

(C) γ = 40+11
√

14
5 > yc, (x0,y0) = (0.35,1.9), (x0,y0) = (0.1,2.3),

(D) γ = 100+11
√

14
5 >> yc, (x0,y0) = (0.2,2.3), (x0,y0) = (1,1).

In Figure 3, we present phase portraits analogous to those in Figure 2, but this
time for the parameter values stated in Theorem 3.3 such that r ̸= 3α and p21 ̸= 0.
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