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ABSTRACT. In this paper, we conduct a comprehensive exploration of the dy-
namical characteristics of a higher-order non-symmetric system of difference
equations. Our investigation covers various fundamental aspects, including the
existence of equilibria, persistence, periodic points, boundedness, local behavior
at equilibria, convergence rate, and global dynamics. Our results significantly
extend and improve upon existing findings in the literature. Finally, theoretical
findings are illustrated numerically.

1. INTRODUCTION

1.1. Motivation and review of the literature

One of the fundamental concepts of mathematics is the concept of difference,
which are used to build a real-life mathematical model to demonstrate and analyze
the behaviors and characteristics of models at different times. Basically, difference
equations form discrete mathematics which describes changes quantitatively over
small-time intervals, helpful in understanding many fields such as biology, ecol-
ogy, economics, physics and their evolution. The history, meaning, and numerous
uses of difference equations are addressed in this introduction, along with their
fundamental implication in analyzing complex dynamical systems.

During the 17th century many mathematicians used difference equations to ex-
plore different dynamical systems. Two notables are Sir Isaac Newton and Pierre
de Fermat who studied and used them first. Yet, the basis for present-day differ-
ence equations was laid out by the significant research of the French mathematician
Abraham de Moivre in the 18th century. De Moivre studied recursive sequences,
which are important in probability. His work helped us to understand how systems
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behave when recurring occurs. Later, other mathematicians like George Boole,
George Polya, and George Udny Yule used difference equations based on his ideas
and developed the new theory of difference equations. This made it easier to use
these ideas in many fields. The study of difference equations includes many math-
ematical concepts, from simple first-order equations to more complicated ones.

Higher-order difference equations are very important for modeling complex
problems that involve non-linearity and feedback. These higher-order difference
equations help to understand how different variables interact and change over time,
offering a better view of system behavior than lower-order equations. This shows
the significance of how advanced mathematical techniques are essential for solving
real-world problems more accurately [21]. Difference equations are used in many
scientific fields because they provide unique ways to model and analyze situations.
In biology and ecology, these are easy and important for studying how populations
change and its impact, how species interact, and how diseases spread over time. By
modeling these factors like birth rates, death rates, and migration, difference equa-
tions help us to predict population growth, risks of extinction, and disease spread,
which aids in making better decisions for conservation of people’s lives.

In medical sciences, problems related to drug pharmacokinetics, physiologi-
cal processes, and disease progression are prescribed by using difference equa-
tions, which interprets the procedure of drugs behavior in the diseased body, and
how diseases progress and its required control. These manufactured mathematical
models help us to improve many factors like healthcare plans, medicines dosing,
and patient cure by analyzing the treatments and interventions. One can predict
and analyze the disease outbreaks, how patients respond to treatment and evaluate
how healthcare resources are beneficial for the patient through these models. The
healthcare system has become more efficient and effective by studying the predic-
tion and analysis, leading to better patient treatments and overall health facilities
for the population.

In engineering, many phenomena are calculated by using difference equations,
that is, modeling dynamic systems of engineering, signal processing and control
theory. For improving and redesigning the complex structures like electrical cir-
cuits, machines, and communication networks, engineers have been using mathe-
matical models. Through these models, engineers ensure reliable final structure of
their projects by simulating how these systems work in different inputs, they can
predict how their design will behave in different circumstances depending upon
necessary factors. They bring required changes to ensure the reliable work.

Considering the field of economy, difference equations are very important due
to discrete behavior in many models, predicting financial trends and analyzing ex-
isting policies for development in economics. These modeled equations can help
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economists deal with many key economic factors, forecast future changes by con-
sidering GDP growth, inflation, and unemployment. Policy-makers by using dif-
ference equations make decisions for stability in the economy through interpreting
the main factors such as adjusting interest rates or spending.

Similarly, in physics especially in quantum mechanics and computational physics,
difference equations help to model many dynamic systems. Continuous mathemat-
ical models are converted into discrete form, so that these models make it easier
to run simulations, analyze theories, and predict experimental results. Other than
this these models are studied for simulating how fluid moves over time, different
particles interact, gravity, and modeling quantum systems. Difference equations
basically provide a flexible, trusted, and easy way to find the laws of nature and
produce understanding of the universe’s mysteries [5, 29].

In conclusion, many scientific fields study the behavior of dynamic systems by
using difference equations as a very powerful mathematical tool. Complex real-
life problems have been solved from ancient time to modern era by these discrete
dynamical models, that encourage us to understand and get remarkable and mind-
blowing development in many fields specifically science, engineering, and eco-
nomics. By connecting these theories with practical work, these discrete models
enable policy-makers, researchers, and engineers to deal with real-life problems by
taking smart decisions and using them improve society. That is why, many scien-
tists have been exploring different aspects of difference equations, that is, bound-
edness, bifurcation analysis, persistence, periodic solutions, two-period solutions,
stability and many more. For instance, Elsayed [8] explored the behavior of the
difference equation in the following form:

βn+1 =B1+
B2βn−1 +B3βn−m

B4βn−1 +B5βn−m
, (1.1)

where Bυ (υ = 1,2, · · · ,5) and βυ (υ =−m, · · · ,0) are positive. Khan and El-
Metwally [14] studied the behavior of the difference equation:

βn+1 =Bn+
β

p
n

β
p
n−1

, (1.2)

with positive βυ (υ =−1,0). Li & Li [18] explored the dynamics of the difference
equation:

βn+1 =
B1+B2βn

1+B3βn−m
, (1.3)
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where Bυ (υ = 1, · · · ,3) and βυ(υ=−m, · · · ,0) are positive. Khan & Qureshi [15]
explored the behavior of difference equation systems of the form:

βn+1 =
B1βn−m

B2+B3γ2
n−m+1

,γn+1 =
B4,γn−m

B5+B6β2
n−m+1

,

βn+1 =
B7γn−m

B8+B9β2
n−m+1

,γn+1 =
B10βn−m

B11+B12γ2
n−m+1

,

(1.4)

with positive Bυ (υ = 1, · · · ,12) and βυ,γυ (υ =−m, · · · ,0). Oğul et al. [24] ex-
amined the dynamics of difference equation of the type:

βn+1 =
βn−17

±1±βn−2βn−5βn−8βn−11βn−14βn−17
, (1.5)

with positive βυ (υ =−17, · · · ,0). Taşdemir [31] examined the dynamics of a
second-order system of the form:

βn+1 = βn−1γn −1,γn+1 = γn−1βn −1, (1.6)

where initial conditions are considered to be positive. Bešo et al. [3] examined the
dynamics of a second-order difference equation:

βn+1 =B1+B2
βn

β2
n−1

, (1.7)

with positive Bυ (υ = 1,2) and βυ (υ =−1,0). Taşdemir [33] and Taşdemir et al.
[34] explored the behavior of the following difference equation, which is a natural
extension of the work of Bešo et al. [3]:

βn+1 =B1+B2
βn

β2
n−m

, (1.8)

and

βn+1 =B1+B2
βn−m

β2
n

, (1.9)

with positive Bυ (υ = 1,2) and βυ (υ =−m, · · · ,0). Furthermore, Taşdemir [35]
reported the global stability of following system, which is an extension of the work
of Bešo et al. [3] for two-species:

βn+1 =B1+B2
γn

γ2
n−1

, γn+1 =B3+B4
βn

β2
n−1

, (1.10)

with positive Bυ (υ = 1, · · · ,4) and βυ,γυ (υ =−1,0). For more interesting results
regarding dynamical characteristics of difference equations and their high-order
systems, we refer the reader to [1, 4, 6, 7, 9, 10, 19, 20, 27, 28, 30, 32, 36]. How-
ever, in the past few years, many mathematicians have explored the dynamical
characteristics of discrete and continuous mathematical models described by sys-
tems of difference and differential equations in mathematical biology. For instance,
Naik [22] explored the global dynamics of a SIR epidemic model with a Holling
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type-II treatment rate and a Crowley-Martin type functional response. Ghori et
al. [13] analyzed the bifurcation and global dynamics of a fractional-order SEIR
epidemic model with a saturation incidence rate. Naik et al. [23] examined the
behavior of a SIR epidemic model in discrete form. Farman et al. [11] studied a
Hepatitis B model using an evolutionary approach. Alshaikh et al. [2] investigated
the dynamics of a discrete infection model. M.Kulenović et al. [16] investigated
asymptotic behavior of a discrete-time density-dependent SI epidemic model with
constant recruitment. A fractional model’s mathematical modelling and dynamics
were examined by Saadeh et al. [26].

Also, from a numerical point of view, the rate of convergence of solutions of
difference equations and systems of difference equations is important, [12] and
[17].

1.2. Main findings

Motivated by the aforementioned studies, the aim of this paper is to ex-
plore the global dynamics of the following difference equation system, which is a
natural extension of the work of Taşdemir [35] to higher-order systems. Specifi-
cally, the (m+ 1)-order difference equation system of the following form will be
investigated:

βn+1 =B1+B2
γn

γ2
n−m

, γn+1 =B3+B4
βn

β2
n−m

. (1.11)

Alternatively, (1.11) takes the following form:

xn+1 = 1+∆1
yn

y2
n−m

, yn+1 = 1+∆2
xn

x2
n−m

, (1.12)

by taking xn =
βn
B1

, yn =
γn
B3

where ∆1 =
B2

B1B3
> 0, ∆2 =

B4

B1B3
> 0. By replacing,

x by β and y by γ, (1.12) can also be written as:

βn+1 = 1+∆1
γn

γ2
n−m

, γn+1 = 1+∆2
βn

β2
n−m

. (1.13)

Specifically, the following are our primary results in this paper:

• Persistence and boundedness of the positive solution of higher-order dis-
crete system (1.13),

• Local dynamics at equilibria of higher-order discrete system (1.13),
• Existence of periodic points,
• Global dynamics and rate of convergence of higher-order discrete system

(1.13),
• Validation of theoretical results numerically.
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1.3. Paper layout

The rest of the paper is organized as follows: Section 2 explores the lin-
earized form and existence of equilibria for system (1.13). In Section 3, the per-
sistence and boundedness of positive solutions for the discrete system (1.13) will
be examined. Periodic points, global analysis, and convergence rate are discussed
in Sections 4 and 5, respectively. Section 6 presents numerical simulations by us-
ing Wolfram Mathematica to verify the theoretical results. The paper is finally
concluded and future work is outlined in Section 7.

2. LINEARIZED FORM AND EXISTENCE OF EQUILIBRIA

Theorem 2.1. The higher-order discrete system (1.13) has equilibria

Γ1 =
(

1+∆1−∆2+Ψ

2 , 1−∆1+∆2+Ψ

2

)
and Γ2 =

(
1+∆1−∆2−Ψ

2 , 1−∆1+∆2−Ψ

2

)
,

where Ψ =

√
4∆2 +(1+∆1 −∆2)

2.

Proof. If the higher-order discrete system (1.13) has equilibrium Γ = (β̄, γ̄) then

β̄ = 1+∆1
γ̄

γ̄2 , γ̄ = 1+∆2
β̄

β̄2
, (2.1)

which further takes the following form:

γ̄ =
∆1

β̄−1
, (2.2)

and

β̄ =
∆2

γ̄−1
. (2.3)

Now using (2.2) into (2.3), one gets:

β̄ =
∆2

∆1
β̄−1

−1
, (2.4)

which further takes the following form:

β̄
2 − (1+∆1 −∆2) β̄−∆2 = 0, (2.5)

whose roots are:

β̄ =
1+∆1 −∆2 +Ψ

2
, (2.6)

and

β̄ =
1+∆1 −∆2 −Ψ

2
. (2.7)



GLOBAL BEHAVIOR OF A HIGHER-ORDER SYSTEM OF DIFFERENCE EQUATIONS 217

Now using (2.6) into (2.2), one gets:

γ̄ =
∆1

1+∆1−∆2+Ψ

2 −1
. (2.8)

After some simplifications, from (2.8) one gets:

γ̄ =
1−∆1 +∆2 +Ψ

2
. (2.9)

So, from (2.6) and (2.9), the one equilibrium solution of higher-order discrete sys-
tem (1.13) is Γ1 =

(
1+∆1−∆2+Ψ

2 , 1−∆1+∆2+Ψ

2

)
. Similarly, substituting (2.7) into

(2.2), after doing routine calculations the desired second equilibrium point of higher-
order discrete system (1.13) is Γ2 =

(
1+∆1−∆2−Ψ

2 , 1−∆1+∆2−Ψ

2

)
. □

Next, the linearized form of a system of difference equation (1.13) about Γ = (β̄, γ̄)
under the map (βn+1,βn,βn−1, · · · ,βn−m+1,γn+1,γn, · · · ,γn−m+1) 7→ ( f1, f2, · · · ,
fn−m,g1,g2, · · · ,gn−m) is

ϖn+1 := JΓϖn, (2.10)
where:

ϖn =



βn
βn−1

...
βn−m

γn
γn−1

...
γn−m


, (2.11)

JΓ =



0 0 . . . 0 0 ∆1
γ̄2 0 . . . 0 −2∆1

γ̄2

1 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 1 0 0 0 . . . 0 0
∆2
β̄2 0 . . . 0 −2∆2

β̄2 0 0 . . . 0 0
0 0 . . . 0 0 1 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 0 0 0 0 . . . 1 0


, (2.12)

and

f1 = 1+∆1
γn

γ2
n−m

, f2 = βn, · · · , fn−m = βn−m+1,

g1 = 1+∆2
βn

β2
n−m

,g2 = γn, · · · ,gn−m = γn−m+1.
(2.13)
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3. BOUNDEDNESS AND PERSISTENCE

Theorem 3.1. Solution {(βn,γn)}∞
n=−m of a higher-order system (1.13) is bounded

and persisted if
∆1∆2 < 1. (3.1)

Proof. If the higher-order system (1.13) has a solution of the form {(βn,γn)}∞
n=−m

then
βn ≥ 1, γn ≥ 1. (3.2)

Further, from (1.13) and (3.2), we have:

βn+1 ≤ 1+∆1 +∆1∆2βn−1,γn+1 ≤ 1+∆2 +∆1∆2γn−1. (3.3)

From the first inequality of (3.3), one has:

un+1 = 1+∆1 +∆1∆2un−1, (3.4)

whose solution is:

un =
1+∆1

1−∆1∆2
+ c1 (∆1∆2)

n
2 + c2(−1)n (∆1∆2)

n
2 , (3.5)

where cυ(υ = 1,2) depends on uυ(υ =−1,0). Now, the second inequality of (3.3)
yields:

vn+1 = 1+∆2 +∆1∆2vn−1, (3.6)

whose solution is:

vn =
1+∆2

1−∆1∆2
+ c3 (∆1∆2)

n
2 + c4(−1)n (∆1∆2)

n
2 , (3.7)

where cυ(υ = 3,4) depends on vυ(υ =−1,0). Now, if one consider the solution in
which u−1 = β−1, u0 = β0, v−1 = γ−1, v0 = γ0 and additionally, if ∆1∆2 < 1 then
from (3.3), (3.5) and (3.7), we have:

βn ≤
1+∆1

1−∆1∆2
, γn ≤

1+∆2

1−∆1∆2
. (3.8)

Finally, from (3.2) and (3.8), one has the following:

1 ≤ βn ≤
1+∆1

1−∆1∆2
,1 ≤ γn ≤

1+∆2

1−∆1∆2
. (3.9)

□

Theorem 3.2. The invariant rectangle for the higher-order system (1.13) is[
1,

1+∆1

1−∆1∆2

]
×
[

1,
1+∆2

1−∆1∆2

]
.
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Proof. If higher-order system (1.13) has a solution of the form: {(βn,γn)}∞
n=−m

with β−m, · · · ,β0 ∈
[

1, 1+∆1
1−∆1∆2

]
and γ−m, · · · ,γ0 ∈

[
1, 1+∆2

1−∆1∆2

]
, then

1 ≤ β1 = 1+∆1
γ0

γ2
−m

≤ 1+∆1

1−∆1∆2
,

1 ≤ γ1 = 1+∆2
β0

β2
−m

≤ 1+∆2

1−∆1∆2
.

(3.10)

From (3.10), it can be concluded that β1 ∈
[

1, 1+∆1
1−∆1∆2

]
and γ1 ∈

[
1, 1+∆2

1−∆1∆2

]
.

Additionally, it can be deduced by induction that βk+1 ∈
[

1, 1+∆1
1−∆1∆2

]
and γk+1 ∈[

1, 1+∆2
1−∆1∆2

]
if βk ∈

[
1, 1+∆1

1−∆1∆2

]
and γk ∈

[
1, 1+∆2

1−∆1∆2

]
. □

4. GLOBAL DYNAMIC BEHAVIOR AND PERIODIC POINTS

Theorem 4.1. The equilibrium point Γ1 of system (1.13) is stable if

8∆1

(1−∆1 +∆2 +Ψ)2 −4∆1
< 1,

8∆2

(1+∆1 −∆2 +Ψ)2 −4∆2
< 1. (4.1)

Proof. From Γ1, (2.10) gives

ϖn+1 := J|Γ1ϖn, (4.2)

where from (2.12), one has:

J|Γ1 =



0 0 . . . 0 0 4∆1
(1−∆1+∆2+Ψ)2 0 . . . 0 −8∆1

(1−∆1+∆2+Ψ)2

1 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 1 0 0 0 . . . 0 0

4∆2
(1+∆1−∆2+Ψ)2 0 . . . 0 −8∆2

(1+∆1−∆2+Ψ)2 0 0 . . . 0 0

0 0 . . . 0 0 1 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 0 0 0 0 . . . 1 0


. (4.3)

If the eigenvalues of J|Γ1 are λl (l = 1, · · · ,2m+2) and

P = diag(ζ1,ζ2, · · · ,ζm+1,ζm+2, · · · ,ζ2m+2)

is a diagonal matrix where:

ζ1 = ζm+2 = 1,

ζk+1 = ζm+2+k = 1− kε,1 ≤ k ≤ m where 0 < ε < 1,
(4.4)
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and

0 < ε < min
{

1
m

(
1− 8∆1

(1−∆1+∆2+Ψ)2−4∆1

)
, 1

m

(
1− 8∆2

(1+∆1−∆2+Ψ)2−4∆2

)}
, (4.5)

then

Λ =



0 0 . . . 0 0
4∆1ζ1ζ

−1
m+2

(1−∆1+∆2+Ψ)2 0 . . . 0
−8∆1ζ1ζ

−1
2m+2

(1−∆1+∆2+Ψ)2

ζ2ζ
−1
1 0 . . . 0 0 0 0 . . . 0 0

...
...

. . .
...

...
...

. . .
...

...
...

0 0 . . . ζm+1ζ−1
m 0 0 0 . . . 0 0

4∆2ζm+2ζ
−1
1

(1+∆1−∆2+Ψ)2 0 . . . 0
−8∆2ζm+2ζ

−1
m+1

(1+∆1−∆2+Ψ)2 0 0 . . . 0 0

0 0 . . . 0 0 ζm+3ζ
−1
m+2 0 . . . 0 0

...
...

. . .
...

...
...

. . .
...

...
...

0 0 . . . 0 0 0 0 . . . ζ2m+2ζ
−1
2m+1 0


,

(4.6)
where Λ = PJ|Γ1P−1. Also,

0 < ζm+1 < · · ·< ζ2 < ζ1,

0 < ζ2m+2 < · · ·< ζm+2.
(4.7)

From (4.7), one gets:

ζ2ζ
−1
1 < 1, · · · ,ζm+1ζ

−1
m and ζm+3ζ

−1
m+2 < 1, · · · ,ζ2m+2ζ

−1
2m+1 < 1. (4.8)

Equations (4.4) and (4.5) yield:

4∆1ζ1ζ
−1
m+2

(1−∆1+∆2+Ψ)2 +
8∆1ζ1ζ

−1
2m+2

(1−∆1+∆2+Ψ)2 =
4∆1

(1−∆1+∆2+Ψ)2

(
1+ 2

1−mε

)
< 1,

4∆2ζm+2ζ
−1
1

(1+∆1−∆2+Ψ)2 +
8∆2ζm+2ζ

−1
m+1

(1+∆1−∆2+Ψ)2 =
4∆2

(1+∆1−∆2−Ψ)2

(
1+ 2

1−mε

)
< 1.

(4.9)

Finally, equations (4.8) and (4.9) yield:

max
1≤k≤2m+2

|λk|=
∥∥PJ|Γ1P−1∥∥= max

{
ζ2ζ

−1
1 , · · · ,ζm+1ζ

−1
m ,

4∆1ζ1ζ
−1
m+2

(1−∆1 +∆2 +Ψ)2

+
8∆1ζ1ζ

−1
2m+2

(1−∆1 +∆2 +Ψ)2 ,ζm+3ζ
−1
m+2, · · · ,ζ2m+2ζ

−1
2m+1,

4∆2ζm+2ζ
−1
1

(1+∆1 −∆2 +Ψ)2 +
8∆2ζm+2ζ

−1
m+1

(1+∆1 −∆2 +Ψ)2

}
< 1.

(4.10)

□
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Theorem 4.2. Γ2 of system (1.13) is stable if

8∆1

(1−∆1 +∆2 −Ψ)2 −4∆1
< 1,

8∆2

(1+∆1 −∆2 −Ψ)2 −4∆2
< 1.

(4.11)

Proof. Using Γ2 in (2.10), one gets:

ϖn+1 := J|Γ2ϖn, (4.12)

where from (2.12), one has:

J|Γ2 =



0 0 . . . 0 0 4∆1
(1−∆1+∆2−Ψ)2 0 . . . 0 −8∆1

(1−∆1+∆2−Ψ)2

1 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 1 0 0 0 . . . 0 0

4∆2
(1+∆1−∆2−Ψ)2 0 . . . 0 −8∆2

(1+∆1−∆2−Ψ)2 0 0 . . . 0 0

0 0 . . . 0 0 1 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 0 0 0 0 . . . 1 0


. (4.13)

Now if the eigenvalues of J|Γ2 are λl (l = 1, · · · ,2m+2) and by considering the di-
agonal matrix P = diag(ζ1,ζ2, · · · ,ζm+1,ζm+2, · · · ,ζ2m+2) along with (4.4) holds.
Moreover,

0 < ε < min

{
1
m

(
1− 8∆1

(1−∆1 +∆2 −Ψ)2 −4∆1

)
,

1
m

(
1− 8∆2

(1+∆1 −∆2 −Ψ)2 −4∆2

)}
,

(4.14)

then

Λ̂ =



0 0 . . . 0 0
4∆1ζ1ζ

−1
m+2

(1−∆1+∆2−Ψ)2 0 . . . 0
−8∆1ζ1ζ

−1
2m+2

(1−∆1+∆2−Ψ)2

ζ2ζ
−1
1 0 . . . 0 0 0 0 . . . 0 0

...
...

. . .
...

...
...

. . .
...

...
...

0 0 . . . ζm+1ζ−1
m 0 0 0 . . . 0 0

4∆2ζm+2ζ
−1
1

(1+∆1−∆2−Ψ)2 0 . . . 0
−8∆2ζm+2ζ

−1
m+1

(1+∆1−∆2−Ψ)2 0 0 . . . 0 0

0 0 . . . 0 0 ζm+3ζ
−1
m+2 0 . . . 0 0

...
...

. . .
...

...
...

. . .
...

...
...

0 0 . . . 0 0 0 0 . . . ζ2m+2ζ
−1
2m+1 0


, (4.15)
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where Λ̂ = PJ|Γ2P−1. Now, if (4.8) and (4.14) hold, then:

4∆1ζ1ζ
−1
m+2

(1−∆1+∆2−Ψ)2 +
8∆1ζ1ζ

−1
2m+2

(1−∆1+∆2−Ψ)2 =
4∆1

(1−∆1+∆2−Ψ)2

(
1+

2
1−mε

)
< 1,

4∆2ζm+2ζ
−1
1

(1+∆1−∆2−Ψ)2 +
8∆2ζm+2ζ

−1
m+1

(1+∆1−∆2−]Ψ)2 =
4∆2

(1+∆1−∆2−Ψ)2

(
1+

2
1−mε

)
< 1.

(4.16)

From (4.8) and (4.16), we get:

max
1≤k≤2m+2

|λk|=
∥∥PJ|Γ2P−1∥∥= max

{
ζ2ζ

−1
1 , · · · ,ζm+1ζ

−1
m ,

4∆1ζ1ζ
−1
m+2

(1−∆1 +∆2 −Ψ)2+

8∆1ζ1ζ
−1
2m+2

(1−∆1 +∆2 −Ψ)2 ,ζm+3ζ
−1
m+2, · · · ,ζ2m+2ζ

−1
2m+1,

4∆2ζm+2ζ
−1
1

(1+∆1 −∆2 −Ψ)2 +
8∆2ζm+2ζ

−1
m+1

(1+∆1 −∆2 −Ψ)2

}
< 1.

(4.17)

□

Theorem 4.3. Γ1 of a higher-order system (1.13) is a global attractor if ∆1,∆2 ∈(
0, 1

2

)
.

Proof. If higher-order system (1.13) has a solution {(βn,γn)}∞
n=−m such that

lim
n→∞

infβn = L1, lim
n→∞

infγn = L2, lim
n→∞

supβn =B1, and lim
n→∞

supγn =B2, then:

1 < L1 = lim
n→∞

infβn, 1 < L2 = lim
n→∞

infγn,

B1 = lim
n→∞

supβn < ∞, B2 = lim
n→∞

supγn < ∞.
(4.18)

From (1.13) and (4.18), we have:

B1 ≤ 1+∆1
B2

L2
2 , L1 ≥ 1+∆1

L2

B2
2 , (4.19)

and

B2 ≤ 1+∆2
B1

L1
2 , L2 ≥ 1+∆2

L1

B1
2 . (4.20)

The first and second inequalities of (4.19) and (4.20) yield:

B1+∆2
L1

B1
≤B1L2 ≤ L2+∆1

B2

L2
. (4.21)

Similarly, the second and first inequalities of (4.19) and (4.20) yield:

B2+∆1
L2

B2
≤B2L1 ≤ L1+∆2

B1

L1
. (4.22)
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From (4.21) and (4.22), one gets:

B1+∆2
L1

B1
+B2+∆1

L2

B2
≤ L1+∆2

B1

L1
+L2+∆1

B2

L2
, (4.23)

which implies that:

(B1−L1)

(
1−∆2

(
1
L1

+
1
B1

))
+(B2−L2)

(
1−∆1

(
1
B2

+
1
L2

))
≤ 0. (4.24)

If ∆1,∆2 ∈
(
0, 1

2

)
then from (4.24), one can observe the following:

1−∆2

(
1
B1

+
1
L1

)
> 0, 1−∆1

(
1
B2

+
1
L2

)
> 0, (4.25)

and finally, from (4.24) one gets B1 = L1 and B2 = L2. □

Hereafter, it is shown that Γ1,2 of (1.13) are periodic points of period-1,2, · · · ,n.

Theorem 4.4. Γ1 and Γ2 of (1.13) are periodic points of period-1,2, · · · ,n.

Proof. From (1.13), we denote:

Ψ := ( f1, f2) , (4.26)

with f1 and f2 as defined in (2.13). From (4.26), one obtains:

Ψ|Γ1 = Γ1,

Ψ
2 =

(
1+∆1

f2

f 2
2
,1+∆2

f1

f 2
1

)
⇒ Ψ

2|Γ1 = Γ1,

Ψ
3 =

(
1+∆1

f 2
2

( f 2
2 )

2 ,1+∆2
f 2
1

( f 2
1 )

2

)
⇒ Ψ

3|Γ1 = Γ1,

...
...

Ψ
n =

(
1+∆1

f n−1
2(

f 2
2

)n−1 ,1+∆2
f n−1
1(

f 2
1

)n−1

)
⇒ Ψ

n|Γ1 = Γ1.

(4.27)

So, from (4.27) one can obtain that Γ1 is a periodic point of period-1,2, · · · ,n.
Moreover, the first equation of (4.27) implies that Γ1 of (1.13) is a periodic point
of prime period-1. By a similar procedure one can prove that Γ2 is also a periodic
point of period-1,2, · · · ,n. □
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5. RATE OF CONVERGENCE

Theorem 5.1. If {(βn,γn)}∞
n=−m is the solution of a higher-order system (1.13)

such that lim
n→∞

βn = β̄ and lim
n→∞

γn = γ̄ then:

ϕn =



ϕ1
n

ϕ1
n−1
...

ϕ1
n−m
ϕ2

n
ϕ2

n−1
...

ϕ2
n−m


, (5.1)

satisfying

lim
n→∞

n
√

||ϕn||= |λJ|Γ| , lim
n→∞

||ϕn+1||
||ϕn||

= |λJ|Γ| , (5.2)

where the norm of ϕn is defined by

||ϕn||=
√
(ϕ1

n)
2 + · · ·+

(
ϕ1

n−m
)2

+(ϕ2
n)

2 · · ·+
(
ϕ2

n−m
)2
.

Proof. If lim
n→∞

βn = β̄ and lim
n→∞

γn = γ̄ then:

βn+1 − β̄ = ∆1
γn

γ2
n−m

−∆1
1
γ̄
,

=
∆1

γ2
n−m

(γn − γ̄)− ∆1 (γn−m + γ̄)

γ̄γ2
n−m

(γn−m − γ̄) ,

γn+1 − γ̄ = ∆2
βn

β2
n−m

−∆2
1
β̄
,

=
∆2

β2
n−m

(
βn − β̄

)
−

∆2
(
βn−m + β̄

)
β̄β2

n−m

(
βn−m − β̄

)
.

(5.3)

After taking:
ϕ

1
n = βn − β̄, ϕ

2
n = γn − γ̄. (5.4)

From (5.4) and (5.3), one has:

ϕ
1
n+1 = α11ϕ

2
n +α12ϕ

2
n−m,

ϕ
2
n+1 = α21ϕ

1
n +α22ϕ

1
n−m,

(5.5)

where

α11 =
∆1

γ2
n−m

, α12 =−∆1 (γn−m + γ̄)

γ̄γ2
n−m

, α21 =
∆2

β2
n−m

, α22 =−
∆2
(
βn−m + β̄

)
β̄β2

n−m
. (5.6)
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From (5.6), one gets:

lim
n→∞

α11 =
∆1

γ̄2 , lim
n→∞

α12 =−2∆1
γ̄2 , lim

n→∞
α21 =

∆2

β̄2
, lim

n→∞
α22 =−2∆2

β̄2
, (5.7)

that is:

α11 =
∆1

γ̄2 +σ11, α12 =−2∆1

γ̄2 +σ12, α21 =
∆2

β̄2
+σ21, α22 =−2∆2

β̄2
+σ22, (5.8)

where σ11,σ12,σ21,σ22 → 0 as n → ∞. From existing literature [25], one obtains

ϕn+1 = (A+Bn)ϕn, (5.9)

where

A =



0 0 . . . 0 0 ∆1
γ̄2 0 . . . 0 −2∆1

γ̄2

1 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 1 0 0 0 . . . 0 0
∆2
β̄2 0 . . . 0 −2∆2

β̄2 0 0 . . . 0 0
0 0 . . . 0 0 1 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 0 0 0 0 . . . 1 0


, (5.10)

and

Bn =



0 0 . . . 0 0 σ11 0 . . . 0 σ12
1 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 1 0 0 0 . . . 0 0

σ21 0 . . . 0 σ22 0 0 . . . 0 0
0 0 . . . 0 0 1 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 0 0 0 0 . . . 1 0


. (5.11)

Therefore, about Γ, one has:

ϕ1
n+1
ϕ1

n
...

ϕ1
n−m+1
ϕ2

n+1
ϕ2

n
...

ϕ2
n−m+1


=



0 0 . . . 0 0 ∆1
γ̄2 0 . . . 0 −2∆1

γ̄2

1 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 1 0 0 0 . . . 0 0
∆2
β̄2 0 . . . 0 −2∆2

β̄2 0 0 . . . 0 0
0 0 . . . 0 0 1 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 0 0 0 0 . . . 1 0





ϕ1
n

ϕ1
n−1
...

ϕ1
n−m
ϕ2

n
...

ϕ2
n−1

ϕ2
n−m


, (5.12)
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which is same as JΓ at Γ. Particularly, about Γ1 and Γ2, (5.12) becomes:

ϕn+1 =



0 0 . . . 0 0 4∆1
(1−∆1+∆2+Ψ)2 0 . . . 0 −8∆1

(1−∆1+∆2+Ψ)2

1 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 1 0 0 0 . . . 0 0

4∆2
(1+∆1−∆2+Ψ)2 0 . . . 0 −8∆2

(1+∆1−∆2+Ψ)2 0 0 . . . 0 0

0 0 . . . 0 0 1 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 0 0 0 0 . . . 1 0


ϕn, (5.13)

ϕn+1 =



0 0 . . . 0 0 4∆1
(1−∆1+∆2−Ψ)2 0 . . . 0 −8∆1

(1−∆1+∆2Ψ)2

1 0 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 1 0 0 0 . . . 0 0

4∆2
(1+∆1−∆2−Ψ)2 0 . . . 0 −8∆2

(1+∆1−∆2−Ψ)2 0 0 . . . 0 0

0 0 . . . 0 0 1 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 0 0 0 0 . . . 1 0


ϕn, (5.14)

which are the same as J|Γ1 and J|Γ2 about Γ1 and Γ2, respectively. □

6. NUMERICAL SIMULATIONS

Case a: If m = 2 and ∆1 = 0.41,∆2 = 0.43 ∈
(
0, 1

2

)
, then from (3.1) one gets

∆1∆2 = 0.17629999999999998 < 1, and consequently, from (3.9), the conditions
for occurrence of a bounded solution, that is, 1< βn <

1+∆1
1−∆1∆2

= 1.71178827242928
23 and 1 < γn < 1+∆2

1−∆1∆2
= 1.7360689571445913 hold. Furthermore, paramet-

ric conditions, as shown in (4.1), which determine the equilibrium point Γ1 =(
1+∆1−∆2+Ψ

2 , 1−∆1+∆2+Ψ

2

)
= (1.3085963596303125,1.3285963596303128) of the

higher-order discrete system (1.13) is a sink also hold, i.e., 8∆1
(1−∆1+∆2Ψ)2−4∆1

=

0.6050909012359067 < 1 and 8∆2
(1+∆1−∆2+Ψ)2−4∆2

= 0.6706048155720664 < 1. So,

Figure 1 (A), (B) implies that Γ1 = (1.3085963596303125,1.3285963596303128)
of a third-order system (1.13) is stable whereas Figure 1 (C) indicates that the equi-
librium is an attractor globally. So, the simulation agrees with the results achieved
in Theorems 4.1 and 4.3.

Case b: If m = 4 and ∆1 = 0.31,∆2 = 0.33 ∈
(
0, 1

2

)
, then from (3.1) one gets

∆1∆2 = 0.10231, and therefore, from (3.9), the conditions for the existence of a
boundedness solution, i.e., 1 < βn <

1+∆1
1−∆1∆2

= 1.4592848390330848 and 1 < γn <
1+∆2

1−∆1∆2
= 1.4815639968809182 hold. Additionally, parametric conditions (4.1) un-

der which the positive fixed point Γ1 =
(

1+∆1−∆2+Ψ

2 , 1−∆1+∆2+Ψ

2

)
=(1.2450496672
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FIGURE 1. Behavior of higher-order sys-
tem (1.13) with βυ,γυ(υ = −4, · · · ,0) are
0.9,0.7,0.9,0.7,0.9,0.4,0.4,0.4,0.4,0.7, respectively.

405067,1.2650496672405067) of the discrete-time system (1.13) is stable also
hold, that is, 8∆1

(1−∆1+∆2+Ψ)2−4∆1
= 0.48048954360883683< 1 and 8∆2

(1+∆1−∆2+Ψ)2−4∆2

= 0.5409176882459323< 1. Hence, Figure 1 (A), (B) implies that Γ1 =(1.245049
6672405067,1.2650496672405067) of the fifth-order system (1.13) is stable whe-
reas Figure 1 (C) shows that the equilibrium is an attractor globally. So, the simu-
lation agrees with the results achieved in Theorems 4.1 and 4.3.

Case c: If m = 6 and ∆1 = 0.21,∆2 = 0.43 ∈
(
0, 1

2

)
, then from (3.1) we get

∆1∆2 = 0.0903, and therefore from (3.9), the conditions for the existence of bound-
edness solution, i.e., 1 < βn <

1+∆1
1−∆1∆2

= 1.3301088270858525 and 1 < γn <
1+∆2

1−∆1∆2
= 1.5719467956469166 hold. Additionally, parametric conditions (4.1) under
which the unique positive fixed point Γ1 =

(
1+∆1−∆2+Ψ

2 , 1−∆1+∆2+Ψ

2

)
=(1.1529547

824084991,1.3729547824084989) of (1.13) is stable are also true, i.e.,

8∆1
(1−∆1+∆2+Ψ)2−4∆1

= 0.25074554493196555 < 1
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FIGURE 2. Behavior of higher-order system (1.13) with
βυ,γυ(υ =−6, · · · ,0) are 0.9, 0.7, 0.9, 0.7, 0.9, 0.7, 0.9, 0.4, 0.4,
0.4, 0.4, 0.4, 0.4, 0.7, respectively.

and 8∆2
(1+∆1−∆2+Ψ)2−4∆2

= 0.9562943138679455 < 1. Hence, Figure 2 (A), (B) im-

plies that Γ1 = (1.1529547824084991,1.3729547824084989) of the seventh-order
system (1.13) is stable whereas Figure 2 (C) shows that the equilibrium is a global
attractor. So, the simulation agrees with the results achieved in Theorems 4.1 and
4.3.

Case d: If m = 2 and ∆1 = 1.4,∆2 = 1.5, then Figure 3 shows the fact that the
positive fixed point Γ1 =

(
1+∆1−∆2+Ψ

2 , 1−∆1+∆2+Ψ

2

)
=(1.7547988350699888,1.85

4798835069989) of the discrete system (1.13) is unstable.

7. CONCLUSION

This work investigates the dynamics of a non-symmetric system of higher-
order difference equations, extending Taşdemir’s work [35] to a more complex
framework. We focused on exploring the intricate behavior of the system (1.13),
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FIGURE 3. Behavior of higher-order system (1.13) with
βυ,γυ(υ =−2, · · · ,0) are 5.0,4.0,0.6,1.7,0.4,2.0, respectively.

analyzing its fixed points, local stability, boundedness, persistence, periodic points,
global dynamics, and convergence rate.

Initially, we examined the fixed points of the higher-order system (1.13) and
identified all possible fixed points, classifying their stability using linear stability
theory. This analysis revealed various stability behaviors of the fixed points de-
pending on parameter values. A key finding of this work is that at every positive
solution of the system is bounded and persistent, meaning that the system won’t
grow or shrink without limit. The system stays within a realistic range, making it
more useful in practical situations due to this boundedness.

We have periodic points, which are cycles or repeating patterns in which we
looked at how the system evolves. Additionally, we studied the overall behavior
of the system over time, explaining how solutions behave beyond just their nearest
stable points. By these significant outcomes, one can say that the higher-order sys-
tem (1.13) can exhibit numerous global behaviors, such as settling into repeating
cycles or fixed points, underlining the dynamics complexities.

Likewise, in what way solutions converge to equilibria are studied. Our results
suggest that this speed is affected by the system’s parameters and initial conditions,
giving us a clearer idea of how quickly the system stabilizes.

The main strength of this study is its thorough approach to analyzing the dynam-
ics of a non-symmetric higher-order difference equations system. By building on
Taşdemir’s work [35], we have expanded the range of models that can be applied
and provided a strong framework for studying these systems. Our results extend
and improve upon existing literature, offering new insights and methodologies.

Finally, the theoretical discussions are supported by numerical simulations, which
visually and empirically validate our findings. These simulations demonstrate var-
ious dynamic behaviors, including stability, periodicity, and chaos, bridging theory
and practice.
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In conclusion, this study makes a significant contribution to the field of discrete
dynamical systems by exploring the dynamics of a non-symmetric higher-order
difference equations system (1.13). The findings enhance our understanding of
the system’s behavior and provide a foundation for future research, particularly in
applying higher-order difference equations to real-world problems.

7.1. Future work

Our next aim is to calculate the forbidden set and periodicity nature of the solu-
tion for a higher-order discrete system (1.13).
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[24] B. Oğul, D. Şimşek, A.S. Kurbanli, and H. öğünmez, Dynamical behavior of rational difference
equation xn+1 =

xn−15
±1±xn−3xn−7xn−11xn−15

, Differ. Equ. Dyn. Syst., 32 (2024), 519–534.
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