
SARAJEVO JOURNAL OF MATHEMATICS DOI: 10.5644/SJM.21.02.07
Vol.21 (34), No.2 (2025), 297–324

STABILITY AND BIFURCATION ANALYSIS OF A
NON–LINEAR GINZBURG–TANEYHILL

POPULATION MODEL WITH MINIMAL MATERNAL
QUALITY
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ABSTRACT. In this paper, we investigate the stability and Neimark-Sacker bi-
furcation of a Ginzburg–Taneyhill model under the assumption of minimal ma-
ternal quality. The analysis begins with an examination of the existence and
classification of equilibrium points, followed by a detailed study of their local
stability. We show that the system undergoes a Neimark–Sacker bifurcation un-
der certain parameter conditions, leading to the emergence of an invariant closed
curve. Numerical simulations are presented to illustrate and confirm the theoret-
ical results.

1. INTRODUCTION

In this paper, we investigate the following system of difference equations: xt+1 =
1

R(R−1) +
(Mxt)

β

1+Rxt yt
,

yt+1 = Rxtyt ,
(1.1)

where xt is the average quality of the individuals (maternal effect) and yt represents
population size at t generation and M,R > 1 with 0 < β ̸= 1.

The study of biological models and the mathematical description of relation-
ships between generations of certain species began roughly a century ago. Most of
these studies are based on the theory of discrete dynamical systems, which provides
a framework for describing the interactions between two or more species.

In their work [4], Ginzburg and Taneyhill also introduced a two-dimensional
system of interactions. However, this model does not represent a classical exam-
ple of interspecific interaction; instead, it describes the relationship between two
characteristics within a single population. One of these characteristics represents
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the population ratio between two successive generations, while the other dimen-
sion reflects the average quality of individuals within the population – a concept
associated with the maternal effect. The maternal effect refers to female fecundity
and the ability of offspring to survive from birth to adulthood. This ability is influ-
enced by several factors, including food availability, environmental conditions, and
genetic predispositions. In essence, the quality of the offspring is directly linked
to the quality of the mother – i.e., the maternal effect. These assumptions can be
represented by the following system of equations:

{
xt+1 = ϕ(xt ,Nt+1) ,
Nt+1 = Nt f (xt) ,

(1.2)

where f is a monotonically increasing function of xt that describes the net repro-
ductive rate of an individual of quality x, and ϕ(xt ,Nt+1) is an increasing function
of x (representing the maternal effect) and a decreasing function of Nt+1. As the
population increases within a given area, the resources required for survival be-
come limited. This leads to stronger competition among individuals, which can
reduce reproductive success and overall population size. In ecological terms, such
density-dependent effects play a crucial role in regulating population dynamics,
preventing unlimited growth and maintaining ecological balance within the habitat.
Note that the argument N of the first equation is evaluated at the same generation
as x on the left side. This follows from the assumption that individual quality is
affected by the population density in the current generation — a mathematically
crucial assumption of the model.

In the same paper, the authors proposed a specific example with parametrization:{
xt+1 = xt

M
1+Nt+1

,

Nt+1 = NtR xt
1+xt

,

where parameter R represents the maximum reproductive rate given any quality x,
and M is the maximum possible increase in average quality. This model has been
designed to explain population behavior of some forest insects (Lepidopera) and
biologically speaking it has to be valid R,M > 1. The authors proposed this model
and gave some graphical explanation of the behavior without detailed mathematical
analysis. In [5], the authors evaluated the fixed points and the Jacobian matrix,
showing that the interior point is elliptic and that the model is area-preserving in
logarithmic coordinates, suggesting that KAM theory could be applied. However, a
detailed analysis was not conducted. In [13], the following system was considered:{

xn+1 = xng(yn+1),
yn+1 = yn f (xn) ,
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which actually represents one class of the Ginzburg–Taneyhill model, where

ϕ(xt ,Nt+1) = xng(yn+1) and yn+1 = Nt+1.

In that paper, the authors performed a KAM analysis of this general model for an
interior point and provided results used in the special case when

f (xn) =
Rxn

1+ xn
= R

(
1− 1

1+ xn

)
and g(yn+1) =

M
1+ yn+1

which represents a completion of the analysis of the interior equilibrium stability,
extending the work previously initiated by [5] on the Ginzburg–Taneyhill model.

In the aforementioned studies, the maternal effect was assumed to be linear and
that the system itself is conservative, with the stability of the interior equilibrium
analyzed using KAM theory (also see [1]). In paper [4], the authors also proposed
a model in which maternal effect is non-linear and minimum quality x exists and
it is incorporated explicitly into a differentiable form of ϕ(x,N). An example is
given by

ϕ(xt ,Nt+1) = k+
(Mxt)

β

1+Nt+1
,

where k is a small number representing the minimum quality. They have made the
assumption that k is equal to the equilibrium quality divided by the maximum rate
of numerical increase R, meaning that species with higher potential growth rates
have a smaller minimum quality. Accordingly, they set k = 1

R(R−1) and this, it turns
out, is a convenient form mathematically concerning the bifurcation behavior of
the model. They stated that Hopf-type bifurcation will arise with the emergence of
stable cycles in the form of an invariant Hopf curve. Thus, both the non-linearity
and growth parameters can control the bifurcation behavior of the model. Hence,
ϕ(xt ,Nt+1) takes the form

ϕ(xt ,Nt+1) =
1

R(R−1)
+

(Mxt)
β

1+Nt+1
,

and System (1.2) becomes xt+1 =
1

R(R−1) +
(Mxt)

β

1+Nt+1
,

Nt+1 = Nt f (xt) .
(1.3)

In this paper, we will focus on a detailed analysis of System (1.3) under the as-
sumption that f (xt) is a linear function, namely f (xt)=Rxt . Using this assumption
and introducing the notation Nt = yt System (1.3) takes the form (1.1).

The paper is structured to provide a systematic overview of the conditions under
which the considered system exhibits the existence of equilibrium points. For the
identified points, a comprehensive analysis of local stability has been conducted,
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both for the boundary and the interior equilibrium points. We establish the exis-
tence of the Neimark-Sacker bifurcation, with a complete mathematical procedure
illustrating the emergence of the invariant curve. We follow the algorithm from
Theorem 1 and Corollary 1 in [7, 9] (see also [2, 3, 6, 10–12]). Finally, numerical
simulations (see [8]) and graphical representations serve as illustrative confirma-
tions of the obtained theoretical results, providing a visual insight into the complex
dynamics of the analyzed models and linking the theoretical considerations with
observations obtained through computational experiments.

2. THE EQUILIBRIUM POINTS

Because of the biological interpretation, we consider only non-negative equi-
librium points. The equilibrium points (x,y) of System (1.1) satisfy the following
system of algebraic equations{

x = 1
R(R−1) +

(Mx)β

1+Rxy ,

y = Rxy.
(2.1)

We consider two cases: y = 0 and y ̸= 0.

If y= 0, we examine the existence of boundary equilibria of the form Ex =(x,0).
From the first equation of system (2.1) we have

x− (Mx)β − 1
R(R−1)

= 0. (2.2)

Denote by

h(x) = x− (Mx)β − 1
R(R−1)

.

To find possible boundary equilibrium points, it is necessary to find the zeros of
the function h(x) for x > 0. Notice h(0) =− 1

R(R−1) < 0 since R > 1. Furthermore,

h′(x) = 1−βMβxβ−1, h′′(x) =−β(β−1)Mβxβ−2, and the stationary point xs of the

function h(x) satisfies the equality Mβxβ−1
s = 1

β
, i.e., xs =

(
βMβ

) 1
1−β > 0.

The following lemma specifies the number of boundary equilibrium points ac-
cording to the value of the positive parameter β.

Lemma 2.1. Let R,M > 1, and xs =
(

1
βMβ

) 1
β−1

.

(i) If β > 1 and Mβ > 1
β

(
(β−1)R(R−1)

β

)β−1
, then System (1.1) has no boundary

equilibrium points.

(ii) If 0 < β < 1 or
(

β > 1 and Mβ = 1
β

(
(β−1)R(R−1)

β

)β−1
)
, then System (1.1)

has one boundary equilibrium.
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(iii) If β > 1 and Mβ < 1
β

(
(β−1)R(R−1)

β

)β−1
, then System (1.1) has two bound-

ary equilibrium points Ex1 = (x1,0) and Ex2 = (x2,0) , such that x1 < xs <
x2, and

x1,2 ∈ I =
(

1
R(R−1)

,M
−β

β−1

)
⊂ (0,1) . (2.3)

Proof. If 0< β< 1, then h′′(x)> 0. Since h(0)< 0, by the convexity and continuity
of the function h(x), we conclude that function h(x) has exactly one zero, i.e., there
exists one boundary equilibrium.

If β > 1, then h′′(x) < 0. Since h(0) < 0, by the concavity and continuity of
the function h(x) , and given that it has one positive stationary point, three cases
are possible: h(xs)> 0, h(xs) = 0, or h(xs)< 0, corresponding to two, one, or no
boundary equilibrium points, respectively. Notice

h(xs)

 >
=
<

0 ⇐⇒ Mβ

 <
=
>

 1
β

(
(β−1)R(R−1)

β

)β−1

.

From (2.2) we conclude that

(Mx)β = x− 1
R(R−1)

> 0,

i.e.,

x >
1

R(R−1)
.

Also from (2.2), we conclude that x− (Mx)β > 0, hence

Mβxβ < x =⇒ xβ−1 < M−β =⇒ x < M
−β

β−1 .

Since M
−β

β−1 < 1, (2.3) is satisfied. □

Example 2.1. For M = 2, R = 5 and β = 0.5, and from (2.2) we obtain one bound-
ary equilibrium Ex = (2.0988,0) .

Example 2.2. For M = 1.2, R = 3.5, and β = 2, we have Mβ = 1.44 < 2.1875 =

1
β

(
(β−1)R(R−1)

β

)β−1
, and hence there are two boundary equilibrium points. Fur-

thermore, from (2.2) we obtain that the boundary equilibrium points are Ex1 =
(0.144,0) and Ex2 = (0.552,0) .

Example 2.3. For M =
√

3, R= 4, and β= 2, we have Mβ = 1
β

(
(β−1)R(R−1)

β

)β−1
=

3, and hence there is one boundary equilibrium. Furthermore, from (2.2) we have
Ex =

(1
6 ,0
)
.
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Example 2.4. For M = 1.2, R = 2.5, and β = 2, we have Mβ = 1.44 > 0.9375 =

1
β

(
(β−1)R(R−1)

β

)β−1
, and there are no boundary equlibrium points.

If y ̸= 0, then System (1.1) has an interior equilibrium E+=
(

1
R ,
(M

R

)β R(R−1)
R−2 −1

)
for (

M
R

)β R(R−1)
R−2

> 1. (2.4)

Notice that (2.4) implies R(R−1)
R−2 > 0, which, together with R> 1, implies that R> 2.

The following lemma describes the conditions for the existence of an interior
equilibrium point.

Lemma 2.2. System (1.1) has an interior equilibrium E+ =
(

1
R ,
(M

R

)β R(R−1)
R−2 −1

)
if

(i) M ≥ R > 2 and β > 0;

(ii) 1 < M < R and β < βc =
ln R(R−1)

R−2
ln R

M
.

Proof. (i) From (2.4) we obtain M
R >

(
R−2

R(R−1)

) 1
β . Since, R−2

R(R−1) < 1, condition (2.4)
is true whenever M ≥ R.

(ii) If 1 < M < R and R > 2, then 0 < M
R < 1, hence from (2.4) by taking the

logarithm of the last equality we obtain β ln
(M

R

)
>− ln R−2

R(R−1) , and from 0< M
R < 1

the statement follows. □

3. LOCAL STABILITY OF EQUILIBRIUM POINTS

The map associated with System (1.1) has the following form

T
(

x
y

)
=

 1
R(R−1) +

(Mx)β

1+Rxy

Rxy

 . (3.1)

Notice that T
(

0
y

)
=

( 1
R(R−1)

0

)
for y ≥ 0 and n ≥ 1, and that the y-axis is an

invariant set under the mapping T .
The Jacobian marix of the map T defined by (3.1) is:

JT (x,y) =

 Mβ βxβ−1(1+Rxy)−Rxβy
(1+Rxy)2

−RMβxβ+1

(1+Rxy)2

Ry Rx

 .
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3.1. Local stability of boundary equilibrium points

The Jacobian of the map T at the boundary equilibrium points Ex = (x,0) is
given by

J (x,0) =

(
βMβxβ−1 −RMβxβ+1

0 Rx

)
,

whose eigenvalues are

λ1 = Rx and λ2 = βMβxβ−1.

Notice that λ1,λ2 > 0.

Case 0 < β < 1 :

For β ∈ (0,1), we have λ1 > 1 and λ2 < 1, hence the boundary equilibrium is
unstable (a saddle point). Indeed, from (2.2), i.e.,

x− (Mx)β =
1

R(R−1)
,

since R > 1, we conclude
x− (Mx)β > 0,

so
x > (Mx)β =⇒ x1−β > Mβ =⇒ x > M

β

1−β .

Also, since β

1−β
> 0, it follows that M

β

1−β > 1 because M > 1, and thus we conclude

that x > M
β

1−β > 1. Therefore, λ1 = Rx > 1.
Consider the second eigenvalue λ2,

λ2 = βMβxβ−1 =
β

x
(Mx)β =

β

x

(
x− 1

R(R−1)

)
= β− β

x
1

R(R−1)
.

To prove that λ2 < 1, assume the contrary, i.e., that λ2 > 1. Now

β− β

x
1

R(R−1)
> 1 ⇐⇒ β−1 >

β

x
1

R(R−1)
,

which is impossible since β− 1 < 0 and β

x
1

R(R−1) > 0. Thus, we have shown that
the boundary equilibrium is a saddle point.

Case β > 1 :

In the following analysis, we consider the cases of one and two boundary equi-
librium points.

1) First, assume that h(xs) = 0.
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Then there exists one boundary equilibrium Ex = (x,0) = (xs,0) with x = xs =(
1

βMβ

) 1
β−1 such that

1
R(R−1)

< x < M
−β

β−1 .

The Jacobian of the map T at this equilibrium has eigenvalues λ1 = Rx and λ2 =

βMβxβ−1
s = 1. This implies that Ex is non-hyperbolic. It is obvious that Ex is

unstable if λ1 > 1. If λ1 < 1, or equivalently 1−Rx > 0, note that the eigenspace
Es is in the direction of the eigenvector(

Rx2

β(1−Rx)
, 1

)
.

Also, the positive x-axis is invariant under the map T and it is in the same direction
as the eigenspace Ec. Thus, the positive x-axis is a center manifold W c, so the
boundary equilibrium Ex of the map T is stable, but not asymptotically stable.

If we make the substitution (β−1)R(R−1)
β

= t, then we have

h(xs) = 0 ⇐⇒ Mβ =
1
β

(
(β−1)R(R−1)

β

)β−1

⇐⇒ Mβ =
1
β

tβ−1

⇐⇒ βMβ = tβ−1,

i.e.,
1

βMβ
=

1
tβ−1 = t−(β−1). (3.2)

Now, by (3.2) we have

λ1 < 1 ⇐⇒ xsR =

(
1

βMβ

) 1
β−1

R < 1

⇐⇒
(

t−(β−1)
) 1

β−1
R < 1 ⇐⇒ t−1R < 1 ⇐⇒ R < t.

That is, we get

λ1 < 1 ⇐⇒ 1 <
t
R
=

(β−1)(R−1)
β

⇐⇒ R >
2β−1
β−1

.

So for β > 1 conditions R > 2β−1
β−1 and Mβ = 1

β

(
(β−1)R(R−1)

β

)β−1
imply λ1 < 1.

Example 3.1. If β = 2, then R > 3, so let R = 3.5, M =
√

2.1875. Then xs =(
1

βMβ

) 1
β−1

= 0.2285714286, h(xs) =
β−1

β
xs − 1

R(R−1) = 0 and xsR = 0.8 < 1.
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If λ1 = λ2 = 1, i.e., if x satisfies the following three equalities:

Rx = 1, βMβxβ−1 = 1, x− (Mx)β =
1

R(R−1)
(3.3)

the equilibrium Ex = (x,0) is a 1-1 resonant fixed point of T . From the reasoning

above if Rx= 1, then R= 2β−1
β−1 , i.e., β= R−1

R−2 . Also, from Mβ = 1
β

(
(β−1)R(R−1)

β

)β−1

we obtain

M =

(
R−2
R−1

) R−2
R−1

R
1

R−1
.

Example 3.2. If we take R = 3, then β = 2, M =
(

1
2 (3)

1
) 1

2
=
√

3
2 ≈ 1.225, and

x = xs =
1
3 . The Jacobian matrix at the boundary equilibrium point Ex is

J (x,0) =

(
1 − R−2

R(R−1)

0 1

)
=

(
1 −1

6

0 1

)
,

with eigenvalues λ1,2 = 1.

2) Now, assume that h(xs)> 0.
In this case System (1.1) has two equilibrium points Ex1 = (x1,0) and Ex2 =

(x2,0) such that x1 < xs < x2, i.e., Mβ < 1
β

(
(β−1)R(R−1)

β

)β−1
= a(R,β).

Using βMβxβ−1
s = 1, i.e., (Mxs)

β = xs
β

we get

h(xs)> 0 ⇐⇒ xs − (Mxs)
β − 1

R(R−1)
> 0

⇐⇒ xs −
xs

β
>

1
R(R−1)

⇐⇒ xs >
β

β−1
1

R(R−1)
.

The eigenvalues of the equilibrium points Exi , i = 1,2 are λ1,2(xi), where λ1 (xi) =

Rxi and λ2 (xi)= βMβxβ−1
i = β

Mβxβ

i
xi

= β

xi

(
xi − 1

R(R−1)

)
, i.e., λ2 (xi)= β

(
1− 1

xiR(R−1)

)
.

λ2 (xi) is a strictly increasing functions of xi ( λ2(xi)
dxi

= β

x2
i

1
R(R−1) > 0), and

λ2(xs) = βMβxβ−1
s = βMβ

((
1

βMβ

) 1
β−1
)β−1

= 1.

Now, from x2 > xs it follows that λ2(x2) > λ2(xs), i.e., λ2(x2) > 1. Similarly,
x1 < xs implies λ2(x1)< λ2(xs), i.e., λ2(x1) ∈ (0,1).
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Further stability depends on λ1(xi) and classification depends on h( 1
R) which

determines where 1
R lies.

h
(

1
R

)
=

1
R
−
(

M
1
R

)β

− 1
R(R−1)

=
R−2

R(R−1)
−
(

M
R

)β

=
1

Rβ

(
Rβ−1 R−2

(R−1)
−Mβ

)
.

Let us define the threshold value b(R,β) by

b(R,β) =
{

Rβ−1 R−2
R−1 , R > 2,

non-positive, 1 < R ≤ 2,

and observe that b(R,β)> 0 for R > 2, whereas for 1 < R ≤ 2 we have b(R,β)≤ 0.
The order of points x1 < xs is satisfied since x1 is the unique zero of function
h(x) on the interval (0,xs). If h( 1

R) > 0, then x1 <
1
R or equivalently λ1(x1) < 1.

Indeed, since h(x) is an increasing function on the interval (0,xs) and since x1 is
the unique zero of h(x) on (0,xs) that means that if h

( 1
R

)
> 0, then the value 1

R is
on the right side of x1, i.e., x1 <

1
R , i.e.,

h
(

1
R

)
> 0 ⇐⇒ Mβ < b(R,β).

Stability of the smaller root x1 can be analyzed in two cases.
In the case R > 2 (threshold b(R,β) exists) if Mβ < min{a(R,β),b(R,β)}, then

λ1(x1)< 1 and λ2(x1)< 1. Consequently, the equilibrium (x1,0) is locally asymp-
totically stable. Note that since M > 1 then b(R,β)> 1 must hold. If Mβ = b(R,β),
then for one of xi we have xi =

1
R i.e., λ1(xi) = 1. Moreover if R< 2β−1

β−1 , then 1
R < xs

and the equilibrium with x = 1
R is the smaller root x1. But if R > 2β−1

β−1 , then 1
R > xs

and the equilibrium with x = 1
R is the larger root x2. If 0 < b(R,β)< Mβ < a(R,β),

then h
( 1

R

)
< 0 which implies x1 >

1
R i.e., λ1(x1)> 1 and λ2(x1)< 1, and (x1,0) is

a saddle point.
In the case 1 < R ≤ 2, we have b(R,β)≤ 0, and consequently h

( 1
R

)
< 0, which

implies x1 >
1
R . Hence, λ1(x1) > 1 and λ2(x1) < 1, so the equilibrium (x1,0) is a

saddle point.
For the larger root x2, λ2(x2)> 1 always holds and generically λ1(x2)=Rx2 > 1.

Hence (x2,0) is always unstable. But λ2(x2) can be equal to 1, i.e., Rx2 = 1 if
Mβ = b(R,β) and R > 2β−1

β−1 , and (x2,0) becomes non-hyperbolic.
The previous consideration proves the following lemma.

Lemma 3.1. Let R > 1,M > 1,

xs =

(
1

βMβ

) 1
β−1

, a(R,β) =
1
β

(
(β−1)R(R−1)

β

)β−1

and b(R,β) = Rβ−1 R−2
R−1

.
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The following statements hold:

(1) If 0 < β < 1, then there exists a boundary equilibrium Ex = (x,0) , which
is a saddle.

(2) If β > 1 and Mβ > a(R,β), then there is no boundary equilibrium points.
(3) If β > 1 and Mβ = a(R,β), then there exists a boundary equilibrium Ex =

(x,0) = (xs,0), which is non-hyperbolic with one eigenvalue equal to 1.
(i): If R > 2β−1

β−1 , then Exs is stable.

(ii): If R = 2β−1
β−1 , then Exs is a 1-1 resonant fixed point.

(iii): If R < 2β−1
β−1 , then Exs is unstable.

(4) If β > 1 and Mβ < a(R,β), then there are two boundary equilibrium points
Ex1 = (x1,0) and Ex2 = (x2,0), where x1 < xs < x2.

(i): If R > 2 and Mβ < min{a(R,β),b(R,β)}, then
λ1(x1)< 1 and λ2(x1)< 1 and point the Ex1 = (x1,0) is a sink,
λ1(x2)> 1 and λ2(x2)> 1 and point the Ex2 = (x2,0) is unstable.

(ii): If R > 2 and Mβ = b(R,β) and R < 2β−1
β−1 , then

λ1(x1)= 1 and λ2(x1)< 1 and the point Ex1 =(x1,0) is non-hyperbolic,
λ1(x2)> 1 and λ2(x2)> 1 and the point Ex2 = (x2,0) is unstable.

(iii): If R > 2 and Mβ = b(R,β) and R > 2β−1
β−1 , then

λ1(x1)< 1 and λ2(x1)< 1 and the point Ex1 = (x1,0) is a sink,
λ1(x2)= 1 and λ2(x2)> 1 and the point Ex2 =(x2,0) is non-hyperbolic.

(iv): If R > 2 and 0 < b(R,β)< Mβ < a(R,β), then
λ1(x1)> 1 and λ2(x1)< 1 and the point Ex1 = (x1,0) is a saddle,
λ1(x2)> 1 and λ2(x2)> 1 and the point Ex2 = (x2,0) is unstable.

(v): If 1 < R ≤ 2 and Mβ < a(R,β), then
λ1(x1)> 1 and λ2(x1)< 1 and the point Ex1 = (x1,0) is a saddle,
λ1(x2)> 1 and λ2(x2)> 1 and the point Ex2 = (x2,0) is unstable.

Example 3.3. If R= 4 and β= 3, then a(R,β)= 1
β

(
(β−1)R(R−1)

β

)β−1
= 64

3 , b(R,β)=

Rβ−1 R−2
R−1 = 32

3 , and Mβ < 32
3 ⇒ M < 3

√
32
3 ≈ 2.20285. For M = 2.2 < b(R,β) the

equilibrium points are (0.105,0) and (0.251,0) with λ1(x1) = 0.3656, λ2(x1) =
0.2674, λ1(x2) = 1.00117 and λ2(x2) = 2.00117.

3.2. Local stability of interior equilibrium points

From the point of view of application, the investigation of local and global sta-
bility of the interior equilibrium E+ is particularly important. The Jacobian matrix
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of the map T at positive the equilibrium point E+ is

JT (E+) =

 Mβ

Rβ
R β(1+y)−y

(1+y)2 −Mβ

Rβ

1
(1+y)2

Ry 1

 ,

where y =
(M

R

)β R(R−1)
R−2 − 1. If we make the substitution 1 + y = A, then A =(M

R

)β R(R−1)
R−2 , and A > 1 holds. Now the Jacobian matrix of the map T at the posi-

tive equilibrium point E+ becomes

JT (E+) =

(
R−2
R−1

(
β−1+ 1

A

)
− 1

A
R−2

R(R−1)

R(A−1) 1

)
. (3.4)

The characteristic polynomial of the matrix (3.4) is

P(λ) = λ
2 − trJT (E+)λ+detJT (E+) ,

where

trJT (E+) = 1+
R−2
R−1

(
β−1+

1
A

)
and

detJT (E+) = β
R−2
R−1

.

The eigenvalues of JT (E+) are

λ± =
1
2

1+
R−2
R−1

(
β−1+

1
A

)
±

√(
1+

R−2
R−1

(
β−1+

1
A

))2

−4β
R−2
R−1

 .

Lemma 3.2. If R > 2 and β > 0, then System (1.1) has a unique positive equilib-
rium point E+ =

(
1
R ,
(M

R

)β R(R−1)
R−2 −1

)
, which is:

(1) locally asymptotically stable if β < β0,
(2) a repeller if β > β0,
(3) non–hyperbolic with conjugate complex eigenvalues if β = β0,

where

β0 =
R−1
R−2

(= βcritical) .

Proof. (1) The equilibrium point E+ is locally asymptotically stable if the next
three conditions are met

(i) 1− trJT (E+)+DetJT (E+)> 0,
(ii) 1+ trJT (E+)+DetJT (E+)> 0,
(iii) 1−DetJT (E+)> 0.



ANALYSIS OF POPULATION MODEL WITH MINIMAL MATERNAL QUALITY 309

The condition (i) is equivalent to

1−
(

1+
R−2
R−1

(
β−1+

1
A

))
+β

R−2
R−1

> 0

⇐⇒ R−2
R−1

(
A−1

A

)
> 0,

which is true since R > 2 and A > 1.
Let us now consider condition (ii):

1+
(

1+
R−2
R−1

(
β−1+

1
A

))
+β

R−2
R−1

> 0

⇐⇒ 2+
R−2
R−1

(
2β+

1
A
−1
)
> 0.

Since R−2
R−1 = c > 0 we get

c
(

2β+
1
A
−1
)
>−2

⇐⇒ 2β+
1
A
−1 >−2

c

⇐⇒ 1
A
>−2

R−1
R−2

+1−2β

⇐⇒ 1
A
>− R

R−2
−2β.

The last inequality is true because 1
A > 0, R > 2, and β ≥ 0.

From the condition (iii) 1− β
R−2
R−1 > 0 must hold which implies β < R−1

R−2 . So,
this part of the lemma holds.

(2) If β > R−1
R−2 , then detJT (E+)> 1 is satisfied. Also, since 1+DetJT (E+)> 0,

the other conditions for the repeller coincide with the first two conditions from (1),
and it has been shown that they are satisfied.

(3) Let now β = R−1
R−2 . Notice β = R−2+1

R−2 = 1+ 1
R−2 > 1 for R > 2. Then

TrJT (E+) = 2− 1
β

(
A−1

A

)
and

DetJT (E+) = 1.

The eigenvalues of JT (E+) are

λ± = 1− A−1
2Aβ

± i

√
(A−1)(4Aβ− (A−1))

2Aβ
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and

|λ±|2 =
(

1− A−1
2Aβ

)2

+
(A−1)(4Aβ− (A−1))

(2Aβ)2

= 1− A−1
Aβ

+

(
A−1
2Aβ

)2

+
(A−1)(4Aβ− (A−1))

(2Aβ)2

= 1− A−1
Aβ

+

(
A−1
2Aβ

)2

+
A−1

Aβ
−
(

A−1
2Aβ

)2

= 1,

so E+ is non-hyperbolic equilibrium point. Also, (A− 1)(4Aβ− (A−1)) > 0 for
A > 1 and β > 1. Indeed,

4Aβ− (A−1) = A(4β−1)+1 > 0

because β > 1. This leads us to the conclusion that in the non-hyperbolic case the
eigenvalues are always conjugate complex numbers. □

FIGURE 1. Parametric spaces of local dynamics of the interior
equilibrium E+ for M = 2 in the Rβ-plane.

Figure 1 shows areas of local stability of the interior equilibrium point E+ in
the Rβ-plane for M = 2, R > 2, and β > 0. In the blue area the equilibrium is a
repeller, in the green area the equilibrium is locally asymptotically stable and on the
red curve that separates them, the equilibrium is non-hyperbolic with eigenvalues
that are complex conjugate numbers. Figure 2 shows the equilibrium points (the
interior equilibrium E+ or the boundary equilibrium points Ex) that exist in the
corresponding regions for the same parameter values, i.e., M = 2, R> 2, and β> 0.
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FIGURE 2. Existence of the interior equilibrium and the boundary
equilibrium points for M = 2 in the Rβ-plane.

Let us define

Ψ = {(β,R,M) : h(xs) = 0∧β > 1∧R > 2∧M > 1} ,
Φ = {(β,R,M) : β = βcritical ∧β > 1∧R > 2∧M > 1} ,

Ω =

{
(β,R,M) :

(
M
R

)β R(R−1)
R−2

−1 = 0∧β > 1∧R > 2∧M > 1

}
.

Let us note that for M = 2, Ψ, Φ, and Ω correspond to the orange, red, and blue
curves, respectively, as shown in Figures 1 and 2. From (3.3) and the discussion
immediately below (3.3), it follows that Ψ and Φ intersect at the 1–1 resonant fixed

points. Furthermore, by substituting β = βcritical into R =
(
βMβ

) 1
β−1 , we obtain:

R =

(
R−1
R−2

M
R−1
R−2

) 1
R−1
R−2 −1

⇐⇒ R =

(
R−1
R−2

M
R−1
R−2

)R−2

=⇒ R =

(
R−1
R−2

)R−2

MR−1,

since β,M > 1, and R > 2. On the other hand, by substituting β = βcritical into(M
R

)β R(R−1)
R−2 −1 = 0, we obtain:(

M
R

)β R(R−1)
R−2

−1 = 0 ⇐⇒
(

M
R

) R−1
R−2 R(R−1)

R−2
−1 = 0

⇐⇒
(

M
R

) R−1
R−2

=
R−2

R(R−1)
⇐⇒ R−1

R−2
M

R−1
R−2 = R

R−1
R−2−1
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⇐⇒ R−1
R−2

M
R−1
R−2 = R

1
R−2 =⇒ R =

(
R−1
R−2

)R−2

MR−1,

since β,M > 1, and R > 2. This implies that Ψ, Φ, and Ω intersect at the 1–1
resonant fixed points.

4. NEIMARK–SACKER BIFURCATION

In this section, we prove that the system exhibits Neimark-Sacker bifurcation.
We discuss the existence of Neimark-Sacker bifurcation for the unique positive
equilibrium and compute asymptotic approximation of the invariant curve near the
positive equilibrium point E+ of the System (1.1).

First we need to shift the positive equilibrium point to the origin. By change of
variable ut = xt − x and vt = yt − y the point (x,y) will be shifted to (0,0) and the
transformed system is given by{

ut+1 =
1

R(R−1) +
Mβ(ut+x)β

1+R(ut+x)(vt+y) − x,

vt+1 = R(ut + x)(vt + y)− y.
(4.1)

The corresponding map for this system is given by

K

(
u

v

)
=

(
1

R(R−1) +
Mβ(u+x)β

1+R(u+x)(v+y) − x

R(u+ x)(v+ y)− y

)
(4.2)

and the Jacobian marix of the map K at (u,v) is

JK (u,v) =

 Mβ β(u+x)β−1(1+R(u+x)(v+y))−(u+x)βR(v+y)
(1+R(u+x)(v+y))2 − MβR(u+x)β+1

(1+R(u+x)(v+y))2

R(v+ y) R(u+ x)

 .

For the point (0,0),

JK (0,0) =

 Mβ βxβ−1(1+Rxy)−xβRy
(1+Rxy)2 −MβRxβ+1

(1+Rxy)2

Ry Rx


=

 MβR1−β

(
β

1+y −
y

(1+y)2

)
−Mβ

Rβ

1
(1+y)2

Ry 1

 .

Using substitutions A = y+ 1 i.e., A = MβR1−β R−1
R−2 and A > 1, the above matrix

becomes

JK (0,0) =

(
R−2
R−1

(
β−1+ 1

A

)
− 1

A
R−2

R(R−1)

R(A−1) 1

)
(4.3)



ANALYSIS OF POPULATION MODEL WITH MINIMAL MATERNAL QUALITY 313

with the corresponding characteristic equation

λ
2 −
(

1+
R−2
R−1

(
β−1+

1
A

))
λ+β

R−2
R−1

= 0,

and eigenvalues

λ±=
βA(R−2)+R+A−2± i

√
4A2β(R−2)(R−1)− (βA(R−2)+R+A−2)2

2A(R−1)
.

Furthermore, we have

|λ(β)|2 = λ(β) ·λ(β) = β
R−2
R−1

, i.e., |λ(β)|=
√

β
R−2
R−1

. (4.4)

To study Neimark–Sacker bifurcation, we need the following lemma.

Lemma 4.1. Let A0 = Mβ0R1−β0 R−1
R−2 , R > 2, M > 1, and β0 =

R−1
R−2 .Then K has an

equilibrium point at (0,0) and the eigenvalues of the Jacobian matrix of K at (0,0)
are λ and λ, where

λ(β0) =
2β0A0 − (A0 −1)+ iΛ

2β0A0
,

and
Λ =

√
(A0 −1)(4β0A0 − (A0 −1)).

Moreover, λ(β0) satisfies the following:
(a) λk (β0) ̸= 1 for k = 1,2,3,4;
(b) d = d (β0) =

d
dβ

|λ(β)||β=β0
= R−2

2(R−1) > 0;
(c) The eigenvectors associated to λ(β0) are

q(β0) =
(

1 R(1−A0−iΛ)
2

)T

and
p(β0) =

(
4β0A0−(A0−1)+iΛ
2(4β0A0−(A0−1))

iΛ
R(A0−1)(4β0A0−(A0−1))

)
,

such that Sq(β0) = λq(β0) , p(β0)S = λp(β0) and p(β0)q(β0) = 1, where S =
JK (0,0)|

β=β0
.

Proof. Let A0 = Mβ0R1−β0 R−1
R−2 , R > 2 and β0 =

R−1
R−2 . Notice that A0 > 1 and β0 =

1+ 1
R−2 > 1. Then for β = β0 from (4.3) we obtain

S = JK (0,0)|
β=β0

=

(
1− 1

β0
+ 1

β0A0
− 1

β0A0R

R(A0 −1) 1

)
and the eigenvalues of the matrix S are

λ(β0) =
2β0A0 − (A0 −1)± iΛ

2β0A0
, (4.5)
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where
Λ =

√
(A0 −1)(4β0A0 − (A0 −1)).

From (4.4) we have

|λ(β0)|=
√

β0
R−2
R−1

=

√
R−1
R−2

R−2
R−1

= 1,

and notice that λ(β0) ̸= 1 since A0 > 1, R > 2 and β0 > 1. By straightforward
calculation for β = β0 we obtain

λ
2(β0) =

(A0 −1)2 +2β0A0(β0A0 −2A0 +2))
2β2

0A2
0

+ i
(2β0A0 −A0 +1))Λ

2β2
0A2

0
,

λ
3(β0) =

(2β0A0 −A0 +1)
(
(A0 −1)2 +β0A0 (β0A0 −4A0 +4))

)
2β3

0A3
0

+
iΛ(β0A0 −A0 +1)(3β0A0 −A0 +1)

2β3
0A3

0

λ
4(β0) = 1− (A0 −1)(A0 (2β0 −1)+1)2 (4β0A0 −A0 +1)

2β4
0A4

0

+ i
(2β0A0 −A0 +1))

(
(A0 −1)2 +2β0A0 (β0A0 −2A0 +2))

)
Λ

2β4
0A4

0
.

One can see that |λ(β0)| = 1 and λk (β0) ̸= 1 for k = 1,2,3,4. Indeed, assume
that the imaginary part of λ2 (β0) is equal to zero, i.e., 2β0A0 − A0 + 1 = 0 or
equivalently A0R+R−2

R−2 = 0. Then we get A0 = −R−2
R < 0 which is impossible, so

λ2 (β0) ̸= 1. Also, let us assume that the imaginary part of λ3 (β0) is equal to zero,
i.e β0A0 −A0 + 1 = 0 or 3β0A0 −A0 + 1 = 0. Using β0 =

R−1
R−2 then from the first

condition we get that A0
R−1
R−2 −A0 + 1 = 0, or equivalently A0 = −(R− 2). From

the second condition 3β0A0 −A0 + 1 = 0 we get that 3A0
R−1
R−2 −A0 + 1 = 0 i.e.,

A0 =− R−2
2R−1 . In both cases A0 < 0 which is impossible. So, λ3(β0) ̸= 1. And from

the previous conclusion, it follows that λ4(β0) ̸= 1 as well. From (4.4) we get

d
dβ

|λ(β)|= R−2
2(R−1)

√
R−1

β(R−2)

and
d

dβ
|λ(β)||β=β0

=
R−2

2(R−1)
.

Vectors

q(β0) =

(
1

R(1−A0−iΛ)
2

)
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and
p(β0) =

(
4β0A0−(A0−1)+iΛ
2(4β0A0−(A0−1))

iΛ
R(A0−1)(4β0A0−(A0−1))

)
,

where
Λ =

√
(A0 −1)(4β0A0 − (A0 −1)),

satisfy pS = λp, Sq = λq, and pq = 1, which is easy to verify. □

Let β = β0 +η, where η is a sufficiently small positive parameter and dβ = dη.
From Lemma 4.1, we can transform System (4.1) into the normal form

K (β,x) = K (β,x)+O
(
∥x∥5

)
,

and there are smooth functions a(β), b(β) and ω(β) so that in polar coordinates,
the function K (β,x) is given by(

r

θ

)
=

(
|λ(β)|−a(β)r3

θ+ω(β)+b(β)r2

)
.

Now, we compute a(β0) following the procedure in [9]. Notice that β = β0 if and
only if η = 0. First, we compute K20, K11 and K02 defined in [9]. For β = β0, we
have

K

(
u

v

)
= S

(
u

v

)
+H

(
u

v

)
,

where

H

(
u

v

)
=

 1
R(R−1) +

Mβ0 (u+x)β0

1+R(u+x)(v+y) − x+ 1
β0A0R v−

(
1− 1

β0
+ 1

β0A0

)
u

R(u+ x)(v+ y)− y− v−R(A0 −1)u

 .

System (4.1) is equivalent to

K

(
un

vn

)
= S

(
un

vn

)
+H

(
un

vn

)
.

Define the basis of R2 by Φ = (q,q), where q(β0) =
(

1 R(1−A0−iΛ)
2

)T
.

We can represent(
u

v

)
= Φ

(
z

z

)
= (q,q)

(
z

z

)
= qz+qz

=

(
1

R(1−A0−iΛ)
2

)
z+

(
1

R(1−A0+iΛ)
2

)
z

=

(
z+ z

R((1−A0−iΛ)z+(1−A0+iΛ)z)
2

)
.
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Let H

(
Φ

(
z

z

))
= 1

2

(
g20z2 +2g11zz+g2

02z
)
+O

(
|z|3
)

. We have

H

(
Φ

(
z

z

))
= H

(
z+ z

R((1−A0−iΛ)z+(1−A0+iΛ)z)
2

)
,

so

H

(
Φ

(
z

z

))
=

(
h1 (z,z)

h2 (z,z)

)
,

where

h1 (u,v) =
1

R(R−1)
+

Mβ0(z+ z+ 1
R)

β0

1+R
(

R((1−A0−iΛ)z+(1−A0+iΛ)z)
2 +A0 −1

)(
z+ z+ 1

R

)
− 1

R
+

1
β0A0R

(
R((1−A0 − iΛ)z+(1−A0 + iΛ)z)

2

)
−
(

1− 1
β0

+
1

β0A0

)
(z+ z) ,

and

h2 (u,v) = R
(

R((1−A0 − iΛ)z+(1−A0 + iΛ)z)
2

+A0 −1
)(

z+ z+
1
R

)
−(A0 −1)− R((1−A0 − iΛ)z+(1−A0 + iΛ)z)

2
−R(A0 −1)(z+ z) ,

Denote iΛ = ∆. Since

g20 =
∂2

∂z2 H
(

Φ

(
z
z

))∣∣∣∣
z=0

,

g11 =
∂2

∂z∂z
H
(

Φ

(
z
z

))∣∣∣∣
z=0

,

g02 =
∂2

∂z2 H
(

Φ

(
z
z

))∣∣∣∣
z=0

we get

g20 =

(
R(A0(A0((β0−4)β0+2)+β0(∆+3)−3)+∆+1)

A2
0β0

−R2 (A0 −1+∆)

)
,

g11 =

(
R(A0β2

0+A0−β0−1)
A0β0

(1−A0)R2

)
,

g02 =

(
R(A0(A0((β0−4)β0+2)−β0(∆−3)−3)−∆+1)

A2
0β0

R2(1−A0 +∆)

)
,
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and using
K20 =

(
λ2I −S

)−1 g20,

K11 = (I −S)−1 g11,

K02 =
(

λ
2
I −S

)−1
g02,

we obtain

K20 =

 R(A2
0(4β2

0+β0−1)−A0(2β2
0(∆+2)−3β0∆+∆−2)−β0(3∆+1)+∆−1)

2(A0−1)(A0(3β0−1)+1)

∆R2(A0(3β0−1)+β0+1)−R2(A0(A0β0(2β0(β0+2)−5)+A0+2β0(β0+2)−2)+β0+1)
A0(6β0−2)+2

 ,

K11 =

(
R

β0R2(A0β0 −1)

)
,

and

K02 =

 R(A2
0(4β2

0+β0−1)+A0(2β2
0(∆−2)−3β0∆+∆+2)+β0(3∆−1)−∆−1)

2(A0−1)(A0(3β0−1)+1)

−R2(∆(A0(3β0−1)+β0)+A0(A0β0(2β0(β0+2)−5)+A0+2β0(β0+2)−2)+β0+∆+1)
A0(6β0−2)+2

 .

By using K20, K11 and K02 and formula

g21 =
∂3

∂z2∂z
H

(
Φ

(
z

z

)
+

1
2
(
K20z2 +2K11zz+K02z2))∣∣∣∣∣

z=0

we get

q21 =

(
m1

m2

)
,

where

m1 =−∆R2(β0(2A2
0β3

0+5A2
0β2

0−7A2
0β0−A2

0−7A0β2
0+11A0β0−4β0+1)+(A0−1)2)

2A0β0(A0−1)(3Aβ0−A0+1)

−R2(4A2
0β4

0−5A2
0β3

0+3A2
0β2

0−3A2
0β0+9A0β3

0−23A0β2
0+10A0β0+(A0−1)2+4β2

0−7β0)
2A0β0(3A0β0−A0+1) ,

m2 =
R3(A2

0(β0−1)(β(14β0−3)−1)+A0(β2
0(3∆−1)−4β0∆+β0+∆−2)+(3β0−1)(∆−1))

A0(6β0−2)+2 .

Finally, we get

a(β0) =
1
2

Re(
(

pq21λ

)
)

=
1
4
(1−β0)β0R2

=−(R−1)R2

4(R−2)2 .
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If (x,y) is fixed point of T , then the invariant curve can be approximated by(
x1
x2

)
≈
(

x
y

)
+2ρ0ℜ

(
qeiθ

)
+ρ

2
0

(
ℜ

(
K20e2iθ

)
+K11

)
,

where
d = d

dβ
|λ(β)|

∣∣∣
β=β0

ρ0 =
√

−d
a η, θ ∈ R.

Therefore, we have proved the following result.

Theorem 4.1. Let R > 2, M > 1, A0 = Mβ0R1−β0 R−1
R−2 > 1, β0 = R−1

R−2 , and E+ =( 1
R ,M

βR1−β R−1
R−2 −1

)
. Then there is a neighborhood U of the equilibrium point

E+ and η > 0 such that for |β−β0| < η and (x−1,x0) ∈ U, the ω-limit set of the
solution of System (1.1), with initial condition (x−1,x0) is the equilibrium point E+

if β < β0 and it belongs to a closed invariant C1 curve Γ encircling the equilibrium
point E+ if β > β0. Furthermore, Γ(β0) = 0 and the invariant curve Γ(β) = 0 can
be approximated by(

x1

x2

)
≈

 2
√

2(β−β0)cos(t)
R + 1

R(M
R

)β R(R−1)
R−2 −1+

√
2(β−β0)((1−A0)cos(t)+Λsin(t))

β0
+ 2(A0β0−1)(β−β0)

β0



+

 β−β0
β2

0R

(
Λ(2A0β2

0+3β0−ϒ)sin(2t)
ϒ(A0−1) +

(A0(4β2
0+β0−1)+β0+1)cos(2t)

ϒA0
+2
)

β0−β

β2
0

(
(Λ(ϒ+β0))sin(2t)

ϒ
+ (A0(A0β0(2β0(β0+2)−5)+A0+2β0(β0+2)−2)+β0+1)cos(2t)

ϒ

)
 ,

where

Λ =
√

(A0 −1)(4β0A0 − (A0 −1)) and ϒ = A0(3β0 −1)+1.

The simulations in the following example confirm our results.

Example 4.1. For R = 3, M = 2, we obtain β0 = 2, E+ = (8/3,1/3), and a(β0) =
−9/2. Since a(β0) < 0, by changing the value of the parameter β from β < β0
to β > β0, supercritical Neimark-Sacker bifurcation occurs of the critical value.
Figure 3 shows the bifurcation diagrams ((A),(C), and (E)) and the corresponding
Lyapunov coefficients ((B),(D), and (F)) for the map T . We compute the numerical
calculation of Lyapunov exponents with 1000 iterations and (x0,y0) = (5.4,3.4).
If β = 2.01 > β0 a unique closed invariant curve Γ encircles the equilibrium point
(see Figure 8((C),(D)), which is a stable invariant curve (black). This means that
the average quality of the individuals and population size at t generation will even-
tually form a cycle.

Figure 8(A) shows trajectory with initial value (x0,y0) = (0.33,1.7) (blue) and
Figure 8(B) shows the trajectory with initial value (x0,y0) = (0.43,2.3) (red), and
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(A) (B)

(C) (D)

(E) (F)

FIGURE 3. Bifurcation diagrams in the (β,xn)-plane (left) and
corresponding Lyapunov coefficients (right) for the map T .

all for β = 2.01 > β0 = 2. Figure 8(E) shows the trajectory with initial value
(x0,y0) = (0.4,1.7) (blue) and β = 2.4 > β0, and Figure 8(E) shows the trajectory
with initial value (x0,y0) = (0.4,1.7) (green) and β = 1.95 < β0. Figure 4 shows
a family of attracting curves for β ∈ (2,2.1) that form a paraboloid.

The eigenvalues λ± at the fixed point (0,0) of the map K are of the form λ = eiθ

with θ = arccos βA(R−2)+R+A−2
2A(R−1) and 0 < θ < π

2 . Thus, in the case R = 3 and M = 2,

the eigenvalues are λ = eiθ with θ = arccos 6(2/3)β(β+1)+1
24(2/3)β

, and Figure 5 shows the
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FIGURE 4. Attracting curves for M = 2, R = 3, and β ∈
(2.00,2.02).

FIGURE 5. Minimal possible period for a periodic orbit in a
neighborhood of the fixed point (0,0) for the map K (R = 3 and
M = 2).

minimal possible period for a periodic orbit in a neighborhood of the fixed point
(0,0) for the map K .

Figures 6 and 7 show the times series plots of the components xn and yn for the
map T .
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(A) (B)

FIGURE 6. Time series plot of the components xn ((A)) and yn
((B)) for the map T , when R = 3, M = 2, β = 1.5, with initial
values (x0,y0) = (0.3,2.26)–red, (x0,y0) = (0.4,2.26)–green, and
(x0,y0)= (0.3,1.7)–blue, and eguuilibrium (xn,yn)= (x,y)=E+–
purple (sink).

(A) (B)

FIGURE 7. Time series plot of the components xn ((A)) and yn
((B)) for the map T , when R = 3, M = 2, β = 2.1, with initial
values (x0,y0) = (0.3,1.5)–red, (x0,y0) = (0.3,4.5)–green, and
(x0,y0) = (0.3,0.8)–blue, and eguuilibrium (xn,yn) = (x,y)) =
E+–purple (repeller).

5. CONCLUSION

In this paper, our analysis is based on two fundamental assumptions: that the
maternal effect is nonlinear and that it has a defined minimum value. The nonlin-
ear maternal effect plays a crucial role in shaping population dynamics, as even
small changes within the population can lead to substantial alterations in offspring
quality. This non-linearity can also give rise to multiple equilibrium points, which
may be either stable or unstable, thereby influencing the overall growth regime of
the population and increasing the likelihood of bifurcations.
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(A) (B)

(C) (D)

(E) (F)

FIGURE 8. Trajectories (a), (b), and (d) for M = 2, R = 3, and
β= 2.01, with initial values (x0,y0) = (0.33,1.7) (blue), (x0,y0) =
(0.43,2.3) (red), and (c) the stable curve Γ. Trajectories for (e)
M = 2, R = 3, and β = 2.4, with initial value (x0,y0) = (0.4,1.7)
(blue), and (f) M = 2, R = 3, and β = 1.95, with initial value
(x0,y0) = (0.4,1.7) (green).
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The minimum quality, in turn, sets a lower bound on offspring quality, ensuring
the persistent existence of individuals and reducing the risk of extinction. By pre-
venting extreme values that could drastically alter the system’s dynamics, it also
influences the occurrence of bifurcations. When combined with the nonlinear ma-
ternal effect, the minimum quality contributes to the formation of stable invariant
curves, supporting predictable and structured population dynamics. The existence
of an invariant curve means that the average quality of the individuals and popula-
tion size at t generation will eventually form a cycle.

To operationalize this concept within the model, an additional assumption was
introduced: the minimum quality k is defined as the quality at the equilibrium point
divided by the maximum rate of numerical increase R. This implies that species
with higher potential growth rates correspond to a lower minimum quality. Within
the model, k is thus replaced by the expression 1

R(R−1) , a convenient form that
facilitates the analysis of bifurcation behavior. Without this assumption, k would
need to be introduced as an additional parameter, increasing the complexity of the
system and potentially preventing the occurrence of certain bifurcations.
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[11] M. Nurkanović, Z. Nurkanović, Birkhoff Normal Forms, Kam Theory, Periodicity and Symme-
tries for Certain Rational Difference Equation With Cubic Terms. Sarajevo Journal of Mathe-
matics, Vol.12, no.2 (2016), 217–231. https://doi.org/10.5644/SJM.12.2.08.
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