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ABSTRACT. This study examines stability in variable-order fractional discrete neural net-
works modeled via the generalized proportional Caputo fractional difference operator. By
employing the Krasnoselskii fixed-point theorem, we establish solution existence under
Lipschitz continuity, and we prove Ulam–Hyers stability. Numerical simulations validate
that balancing network parameters and fractional orders ensure robustness.

1. INTRODUCTION

Fractional calculus has secured considerable attention due to its ability to capture mem-
ory and hereditary characteristics inherent in numerous physical, biological, and computa-
tional systems. Traditional integer-order differential models often fall short in representing
systems with long-term memory and nonlocal interactions. In this context, fractional-order
neural networks have become a focal point in both theoretical and applied mathematics.
The pioneering work of Podlubny [26] introduced a robust framework for fractional differ-
ential equations, while Kilbas et al. [19] developed a comprehensive theory encompassing
various definitions of fractional operators and their applications. Within the discrete pro-
portional framework, an important step was made in [16], while our recent contribution [9]
introduced the theory of discrete generalized proportional derivatives. These two works
constitute the base of the present article, where we extend the stability and solvability anal-
ysis to DGPCFD (discrete generalized proportional Caputo fractional derivative) neural
networks.

In addition to the above, several authors have contributed to the development. For in-
stance, Machado et al. [22] analyzed memory-dependent systems and emphasized the rel-
evance of fractional models in dynamic networks. Li and Chen [20] explored synchro-
nization and control in fractional-order chaotic neural networks, showing improved con-
vergence and dynamic behavior. Yang et al. [29] further applied fractional neural models
to emulate brain dynamics and signal propagation, highlighting their biological relevance.
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A notable recent development is the generalized proportional Caputo (GPC) fractional
derivative proposed by Atangana and Baleanu [6], introducing a flexible proportionality
factor to model weighted memory. This operator has since been adapted to various fields,
including control theory [13], epidemiological models [17], and neural modeling [27]. Its
discrete counterpart enables digital simulation and analysis, crucial for computational neu-
roscience and artificial intelligence applications.

Discrete fractional calculus provides tools for modeling systems in digital or sampled-
data environments. Abdeljawad [1] formalized definitions of discrete fractional differences,
laying the groundwork for discrete-time analysis. Goodrich and Peterson [15] advanced
the theoretical framework, while Baleanu and Fernández [7] provided a survey of the latest
developments. Applications in digital control systems were demonstrated by Lin et al.
[21, 24] and Yu et al. [30], including discrete modeling of neural learning and synaptic
dynamics.

The solvability of discrete-time fractional neural networks is essential for ensuring model
predictability and consistency. Various fixed-point techniques have been used to establish
existence and uniqueness, particularly in Banach space settings. Agarwal et al. [2] used the
Schauder and Banach fixed-point theorems to solve boundary value problems, while Zhou
et al. [32] extended these results to impulsive and multi-delay fractional systems. Zhang
et al. [31] and Ali et al. [4] provided solvability conditions of discrete neural networks
described with fractional operator of time-varying delays.

A vital concern in modeling is stability, which guarantees the system’s robustness un-
der small perturbations. Ulam–Hyers stability, in particular, has found prominence in the
analysis of fractional systems. Jung [18] introduced the classical concept, while Ahmad et
al. [3,12] and Araci et al. [5] extended it to fractional difference equations. Wang et al. [28]
applied it in neural networks with impulsive and delay effects. Recent contributions by
Mandal and Singh [23] and Cai et al. [11] provide generalized Ulam-type stability results
for discrete and hybrid systems.

Despite the advances in both discrete-time fractional models and neural dynamics, there
remains a gap in the literature regarding a unified analysis of solvability and Ulam-type
stability in discrete generalized proportional Caputo fractional neural networks. While
several studies have separately explored discrete fractional operators or stability analysis [8,
14,25], the integration of these concepts under the DGPCFD framework in neural network
dynamics is relatively uncharted.

Motivated by this, the present study aims to formulate a DGPCFD neural network model
that captures memory effects and nonlocality in a discrete-time setting. It establishes solv-
ability through fixed-point theory under appropriate Lipschitz and compactness conditions.
Furthermore, the study analyzes Ulam–Hyers stability and its variants to ensure solution ro-
bustness and convergence. The theoretical outcomes are validated through numerical simu-
lations, providing practical insights into time-delay systems and adaptive neural processes.
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This research contributes to advancing the theoretical framework of fractional neural sys-
tems and offers practical utility in modeling memory-dependent processes in AI, biology,
and computational engineering.

We organize the paper as follows. In Section 2, preliminaries on discrete fractional
calculus are given. In Section 3, a governing equation of discrete fractional neural networks
with variable order is introduced. In Section 4, using Krasnosel′skiı̆’s fixed-point theorem,
we establish the existence of solutions under Lipschitz continuity. In Section 5, we derive
Ulam–Hyers stability criteria, proving that perturbations decay exponentially when M < 1.
In Section 6, numerical simulations of two-dimensional and three-dimensional networks
validate the theoretical results. Finally, in the last section, some conculsions are given.

2. PRELIMINARIES

The following definitions of discrete generalized proportional fractional sum-difference
are recalled. For n ∈ N0, we use the notation Nn = N∩ [n,∞).

Definition 2.1 (See [9, Definition 3.9]). For ρ ∈ (0,1] and α ∈ (0,1), the left generalized
proportional fractional sum of f : Na → R is defined as

(aIα,ρ f )(t) =
t−α

∑
s=a

ρ
t−s−αhα−1(t,s+1) f (s) for t ∈ Na+α, (2.1)

where the αth discrete Taylor monomials are defined as

hα(t,s) =
Γ(t − s+1)

Γ(t − s+1−α)Γ(α+1)
(2.2)

whenever the right-hand side is well defined.

Lemma 2.1 (See [15, Theorem 2.27 (ii)]). Let t ∈ Na. Then

∆hα(t,a) = hα−1(t,a), (2.3)

whenever these expressions make sense.

Definition 2.2 (See [9, Definition 4.1]). For ρ ∈ (0,1] and α ∈ (0,1), we define the left
generalized proportional fractional difference of Caputo type starting at a as

(c
aDα,ρ f )(t) = aI1−α,ρ

(
D1,ρ f

)
(t) for t ∈ Na+1−α, (2.4)

where
(D1,ρ f )(t) = f (t +1)−ρ f (t).

Remark 2.1. If ρ = 1, then the generalized proportional Caputo fractional difference is
reduced to the classical Caputo fractional difference.

Lemma 2.2 (See [9, Theorem 4.3]). For any ρ ∈ (0,1], α ∈ (0,1), we have

a+1−αIα,ρ (c
aDα,ρ f )(t) = f (t)−ρ

t−a f (a) for t ∈ Na+1. (2.5)
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Lemma 2.3 (See [10, Theorem 1, Krasnosel′skiı̆’s Fixed-Point Theorem]). Let E be a
Banach space, let Ω ⊂ E be closed, convex, and nonempty, and let S,T : Ω → E be two
operators satisfying

1. S is a contraction,
2. T is continuous and T (Ω) is contained in a compact set,
3. Sx+Ty ∈ Ω for all x,y ∈ Ω.

Then, there exists x ∈ Ω with Sx+T x = x.

3. VARIABLE-ORDER DGPCFD NEURAL NETWORK

Discrete-time fractional-order neural networks provide a powerful framework for model-
ing the dynamics of discrete nonlinear systems characterized by fractional-order behavior.
These networks are highly effective due to their ability to capture the intricate dynamics of
complex systems with high precision. As a result, they present a promising approach for
developing generic, parametric, and nonlinear models applicable to a broad class of dis-
crete nonlinear systems exhibiting fractional orders. In this study, we investigate a specific
variant of discrete fractional neural networks described with a variable-order mechanism.
The model is defined on T := N0 ∩ [0,mℓ], where m, ℓ ∈ N, so

0 ≤ t ≤ mℓ for all t ∈ T . (3.1)

On each Tk := T ∩ [kℓ,(k+ 1)ℓ− 1], k ∈ N0 ∩ [0,m− 1], the model is governed by a DG-
PCFD of order αk ∈ (0,1). The matrix A = diag(−a1, . . . ,−ap) ∈ Rp×p with ai > 0 rep-
resents resetting the neuron potentials to the resting states when disconnected from the
network, B ∈ Rp×p represents the connection weights, and f : T ×Rp → Rp denotes a
nonlinear activation function. We therefore consider the problem

c
kℓD

αk,ρ x(t +1−αk) = B f (t,x(t))−Ax(t) for t ∈ Tk, 0 ≤ k ≤ m−1, (3.2)

i.e., 
c
0Dα0,ρ x(t +1−α0) = B f (t,x(t))−Ax(t) for t ∈ T0,
c
ℓD

α1,ρ x(t +1−α1) = B f (t,x(t))−Ax(t) for t ∈ T1,
...

c
(m−1)ℓD

αm−1,ρ x(t +1−αm−1) = B f (t,x(t))−Ax(t) for t ∈ Tm−1.

(3.3)

Lemma 3.1. For ρ ∈ (0,1] and α0,α1, . . . ,αm−1 ∈ (0,1), the solution x of (3.2) satisfies
the sum equation

x(t) = ρ
tx(0)+

m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−shαn−1−1(nℓ−1+αn−1,s+1)[B f (s,x(s))−Ax(s)]

+
t−1

∑
s=(m−1)ℓ

ρ
t−1−shαm−1−1(t −1+αm−1,s+1)[B f (s,x(s))−Ax(s)] for t ∈ T .

(3.4)
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Proof. Assume that x solves (3.2). For 0 ≤ k ≤ m− 1, t ∈ T ∩ [kℓ+ 1,(k+ 1)ℓ], putting
g = c

kℓD
αk,ρ x, we find

x(t)
(2.5)
= ρ

t−kℓx(kℓ)+ kℓ+1−αk I
αk,ρ( c

kℓD
αk,ρ x)(t)

= ρ
t−kℓx(kℓ)+(kℓ+1−αk I

αk,ρg)(t)

(2.1)
= ρ

t−kℓx(kℓ)+
t−αk

∑
s=kℓ+1−αk

ρ
t−s−αk hαk−1(t,s+1)g(s)

= ρ
t−kℓx(kℓ)+

t−1

∑
s=kℓ

ρ
t−1−shαk−1(t,s+2−αk)g(s+1−αk)

(3.2)
= ρ

t−kℓx(kℓ)+
t−1

∑
s=kℓ

ρ
t−1−shαk−1(t,s+2−αk)[B f (s,x(s))−Ax(s)]

(2.2)
= ρ

t−kℓx(kℓ)+
t−1

∑
s=kℓ

ρ
t−1−shαk−1(t −1+αk,s+1)[B f (s,x(s))−Ax(s)],

i.e.,

x(t) = ρ
t−kℓx(kℓ)+

t−1

∑
s=kℓ

ρ
t−1−shαk−1(t −1+αk,s+1)[B f (s,x(s))−Ax(s)]

for t ∈ T ∩ [kℓ+1,(k+1)ℓ].

(3.5)

For k = 0, we get from (3.5) that

x(t) = ρ
tx(0)+

t−1

∑
s=0

ρ
t−1−shα0−1(t −1+α0,s+1)[B f (s,x(s))−Ax(s)] (3.6)

is true for t ∈ T ∩ [1, ℓ], but (3.6) is also true fot t = 0 trivially, so (3.6) is true for t ∈ [0, ℓ].
Thus, plugging ℓ into (3.6), we get

x(ℓ) = ρ
ℓx(0)+

ℓ−1

∑
s=0

ρ
ℓ−1−shα0−1(ℓ−1+α0,s+1)[B f (s,x(s))−Ax(s)]. (3.7)

For k = 1 in (3.5), we get

x(t) = ρ
t−ℓx(ℓ)+

t−1

∑
s=ℓ

ρ
t−1−shα1−1(t −1+α1,s+1)[B f (s,x(s))−Ax(s)]

for t ∈ T ∩ [ℓ+1,2ℓ].

(3.8)
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Substituting (3.7) in (3.8), we get

x(t)
(3.7)
= ρ

tx(0)+
ℓ−1

∑
s=0

ρ
t−1−shα0−1(ℓ−1+α0,s+1)[B f (s,x(s))−Ax(s)]

+
t−1

∑
s=ℓ

ρ
t−1−shα1−1(t −1+α1,s+1)[B f (s,x(s))−Ax(s)] for t ∈ T ∩ [ℓ+1,2ℓ].

(3.9)
Note that (3.9) is also true for t ∈ T ∩ [0, ℓ]. Repeating the above step, we obtain (3.4). This
completes the proof. □

4. EXISTENCE OF THE SOLUTION

To establish existence of a solution for the proposed variable-order discrete fractional
neural network, we define P = S+T , where the operators S and T are given by

Sx(t) =
m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−shαn−1−1(nℓ−1+αn−1,s+1)[B f (s,x(s))−Ax(s)],

T x(t) = ρ
tx(0)+

t−1

∑
s=(m−1)ℓ

ρ
t−1−shαm−1−1(t −1+αm−1,s+1)[B f (s,x(s))−Ax(s)],

t ∈ T . Because of Lemma 3.1, the function x is a solution of (3.2) if and only if x is a fixed
point of the operator P. Also, observe

(Sx)(0) = 0 and (T x)(0) = x(0). (4.1)

Lemma 4.1. For any t ∈ T , we have

m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−s

∣∣hαn−1−1 (nℓ−1+αn−1,s+1)
∣∣

+
t−1

∑
s=(m−1)ℓ

ρ
t−1−s

∣∣hαm−1−1 (t −1+αm−1,s+1)
∣∣≤ d, (4.2)

where

d :=

{
1−ρmℓ

1−ρ
for ρ ̸= 1,

mℓ for ρ = 1.

Proof. We have
m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−s

∣∣hαn−1−1 (nℓ−1+αn−1, s+1)
∣∣

+
t−1

∑
s=(m−1)ℓ

ρ
t−1−s

∣∣hαm−1−1 (t −1+αm−1, s+1)
∣∣
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=
m−1

∑
n=1

ℓ

∑
s=1

ρ
t−s−(n−1)ℓ ∣∣hαn−1−1 (nℓ−1+αn−1,s+(n−1)ℓ)

∣∣
+

t−(m−1)ℓ

∑
s=1

ρ
t+s−(m−1)ℓ ∣∣hαm−1−1 (t −1+αm−1,s+(m−1)ℓ)

∣∣
=

m−1

∑
n=1

ℓ

∑
s=1

ρ
t+s−1−nℓ

∣∣hαn−1−1 (nℓ−1+αn−1, ℓ− s+1+(n−1)ℓ)
∣∣

+
t−(m−1)ℓ

∑
s=1

ρ
t+s−1−mℓ

∣∣hαm−1−1 (t −1+αm−1, ℓ− s+1+(m−1)ℓ)
∣∣

(2.2)
=

m−1

∑
n=1

ℓ

∑
s=1

ρ
t+s−1−nℓhαn−1−1 (s,2−αn−1)

+
t−(m−1)ℓ

∑
s=1

ρ
t+s−1−mℓhαm−1−1 (s+ t −mℓ,2−αm−1)

(2.3)
≤

m−1

∑
n=1

ℓ

∑
s=1

ρ
t+s−1−nℓhαn−1−1 (1,2−αn−1)+

t−(m−1)ℓ

∑
s=1

ρ
t+s−1−mℓhαm−1−1 (1,2−αm−1)

(2.2)
=

m−1

∑
n=1

ℓ

∑
s=1

ρ
t+s−1−nℓ+

t−(m−1)ℓ

∑
s=1

ρ
t+s−1−mℓ

(3.1)
≤

m−1

∑
n=1

ℓ

∑
s=1

ρ
t+s−1−nℓ+

ℓ

∑
s=1

ρ
t+s−1−mℓ =

m

∑
n=1

ℓ

∑
s=1

ρ
t+s−1−nℓ = ρ

t−1
m

∑
n=1

(
1
ρℓ

)n ℓ

∑
s=1

ρ
s.

For ρ = 1, this last expression is equal to mℓ, while for 0 < ρ < 1, it is equal to

ρ
t−1

1
ρℓ

1− 1
ρℓ

(
1−

(
1
ρℓ

)m)
ρ

1−ρ

(
1−ρ

ℓ
)
=

ρt
(
ρ−ℓm −1

)
1−ρ

(3.1)
≤ 1−ρℓm

1−ρ
.

Note also that for α ∈ (0,1), (2.3) implies

∆hα−1(s,2−α) = hα−2(s,2−α) =
Γ(s−1+α)

Γ(s+1)Γ(α−1)
=

(α−1)Γ(s−1+α)

Γ(s+1)Γ(α)
< 0,

which means hα−1(s,2−α) is decreasing, and this fact was used in the calculation above
for the estimate that indicates that (2.3) was used. This completes the proof. □

Theorem 4.1. Assume

(A1) there exists L > 0 with

| f (t,x)− f (t,y)| ≤ L|x− y| and f (t,0) = 0

for all t ∈ T and all x,y ∈ Rp,



198 MARTIN BOHNER AND RAJRANI GUPTA

(A2) M ∈ (0,1), where

M = (MA +LMB)d with MA = ∥A∥∞, MB = ∥B∥∞.

Then (3.2) has at least one bounded solution.

Proof. Let r > 0 and define

Ω = {x : T → Rp : ∥x∥ ≤ r and |x(0)| ≤ r(1−M)} .
Then Ω is a closed, convex, and nonempty subset of the finite-dimensional Banach space
E = {x : T → Rp} equipped with the norm ∥x∥= maxt∈T |x(t)|. We now prove that S and
T satisfy all the required conditions of Lemma 2.3.

1. If x,y ∈ Ω, then, for all t ∈ T , we have

|(Sx)(t)− (Sy)(t)|

=

∣∣∣∣m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−shαn−1−1(nℓ−1+αn−1,s+1)

× [B( f (s,x(s))− f (s,y(s)))−A(x(s)− y(s))]
∣∣∣∣

≤ (MA +LMB)
m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

|hαn−1−1(nℓ−1+αn−1,s+1)|∥x− y∥

(4.2)
≤ (MA +LMB)d∥x− y∥= M∥x− y∥.

Hence ∥Sx−Sy∥ ≤ M∥x− y∥. By (A2), S is a contraction mapping.
2. If xn → x in Ω as n → ∞, then, for all t ∈ T , we have

|(T xn)(t)− (T x)(t)|
≤ ρ

t |xn(0)− x(0)|

+
t−1

∑
s=(m−1)ℓ

ρ
t−1−s|hαm−1−1(t −1+αm−1,s+1)|

× |B( f (s,xn(s))− f (s,x(s)))−A(xn(s)− x(s))|
≤ ρ

t∥xn − x∥+(MA +LMB)d∥xn − x∥ ≤ (1+M)∥xn − x∥,
and thus

0 ≤ ∥T xn −T x∥ ≤ (1+M)∥xn − x∥→ 0 as n → ∞.

Hence, T is continuous. If x ∈ Ω, then, for all t ∈ T , we have

|(T x)(t)|

≤ ρ
t |x(0)|+

t−1

∑
s=(m−1)ℓ

ρ
t−1−s|hαm−1−1(t −1+αm−1,s+1)||B f (s,x(s))−Ax(s)|
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(4.2)
≤ r(1−M)+(MA +LMB)d∥x∥
≤ r(1−M)+Mr = r.

Hence ∥T x∥ ≤ r. So T (Ω) is bounded. As a consequence, the closure T (Ω) is also
bounded. It is also closed, and as E is of finite dimension, therefore also compact. Since
T (Ω)⊂ T (Ω), it is now established that T (Ω) resides in a compact set.

3. If x,y ∈ Ω, then, for all t ∈ T , we have

|(Sx+Ty)(t)| ≤ |Sx(t)|+ |Ty(t)|

≤
m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−s

∣∣hαn−1−1(nℓ−1+αn−1,s+1)
∣∣ |B f (s,x(s))−Ax(s)|

+ |y(t0)|+
t−1

∑
s=(m−1)ℓ

ρ
t−1−s

∣∣hαm−1−1(t −1+αm−1,s+1)
∣∣ |B f (s,x(s))−Ax(s)|

(4.2)
≤ r(1−M)+(MA +LMB)d∥x∥= r(1−M)+M∥x∥ ≤ r(1−M)+Mr = r,

so ∥Sx+Ty∥ ≤ r. Also,

|(Sx)(0)+(Ty)(0)| ≤ |(Sx)(0)|+ |(Ty)(0)| (4.1)
= |y(0)| ≤ r(1−M).

Therefore, Sx+ Ty ∈ Ω. By Lemma 2.3, P = S + T has a fixed point in Ω, which is a
solution of (3.2).

This completes the proof. □

5. ULAM–HYERS STABILITY

Definition 5.1 (Ulam–Hyers Stability [18]). We say (3.2) is Ulam–Hyers stable if there
exists C > 0 such that for arbitrary ε > 0, if y satisfies∣∣ c

kℓD
αk,ρ y(t +1−αk)+Ay(t)−B f (t,y(t))

∣∣≤ ε for t ∈ Tk, 0 ≤ k ≤ m−1, (5.1)

then there exists a solution x of (3.2) satisfying

∥x− y∥ ≤Cε.

First, we will prove following lemma.

Lemma 5.1. If y satisfies (5.1), then∣∣∣∣y(t)−ρ
ty(0)−

m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−shαn−1−1(nℓ−1+αn−1,s+1)[B f (s,y(s))−Ay(s)]

−
t−1

∑
s=(m−1)ℓ

ρ
t−1−shαm−1−1(t −1+αm−1,s+1)[B f (s,y(s))−Ay(s)]

∣∣∣∣≤ dε for t ∈ T ,

(5.2)
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where d is given in (A2).

Proof. If y satisfies (5.1), then there exists a function g satisfying ∥g∥ ≤ ε such that
c

kℓD
αk,ρ y(t +1−αk) = g(t)−Ay(t)+B f (t,y(t)) for t ∈ Tk, 0 ≤ k ≤ m−1.

Replacing x by y and B(·,x(·))−Ax in (3.4) by B(·,y(·))−Ay+g, we arrive at

y(t) =ρ
ty(0)+

m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−shαn−1−1(nℓ−1+αn−1,s+1)[B f (s,y(s))−Ay(s)+g(s)]

+
t−1

∑
s=(m−1)ℓ

ρ
t−1−shαm−1−1(t −1+αm−1,s+1)[B f (s,y(s))−Ay(s)+g(s)]

for t ∈ T . Rearranging and taking the norm, we have∣∣∣∣y(t)−ρ
ty(0)−

m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−shαn−1−1(nℓ−1+αn−1,s+1)[B f (s,y(s))−Ay(s)]

−
t−1

∑
s=(m−1)ℓ

ρ
t−1−shαm−1−1(t −1+αm−1,s+1)[B f (s,y(s))−Ay(s)]

∣∣∣∣
=

∣∣∣∣m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−shαn−1−1(nℓ−1+αn−1,s+1)g(s)

+
t−1

∑
s=(m−1)ℓ

ρ
t−1−shαm−1−1(t −1+αm−1,s+1)g(s)

∣∣∣∣
≤

m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−s

∣∣hαn−1−1(nℓ−1+αn−1,s+1)
∣∣∥g∥

+
t−1

∑
s=(m−1)ℓ

ρ
t−1−s

∣∣hαm−1−1(t −1+αm−1,s+1)
∣∣∥g∥

(4.2)
≤ d∥g∥ ≤ dε for t ∈ T .

This completes the proof. □

The following theorem proves the Ulam–Hyers stability of the variable-order fractional
discrete neural network (3.2).

Theorem 5.1. Under assumptions (A1) and (A2), (3.2) is Ulam–Hyers stable.

Proof. Let ε > 0 and suppose y satisfies (5.1). Let x be the solution of (3.2) with x(0) =
y(0). Then

|x(t)− y(t)|



STABILITY AND SOLVABILITY OF DGPCF NEURAL NETWORK MODELS 201

(3.4)
=

∣∣∣∣ρty(0)+
m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−shαn−1−1(nℓ−1+αn−1,s+1)[B f (s,x(s))−Ax(s)]

+
t−1

∑
s=(m−1)ℓ

ρ
t−1−shαm−1−1(t −1+αm−1,s+1)B f (s,x(s))−Ax(s)]− y(t)

∣∣∣∣
=

∣∣∣∣y(t)−ρ
ty(0)

−
m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−shαn−1−1(nℓ−1+αn−1,s+1)[B f (s,x(s))−Ax(s)]

−ρ
t−1

t−1

∑
s=(m−1)ℓ

hαm−1−1(t −1+αm−1,s+1)[B f (s,x(s))−Ax(s)]

−
m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−shαn−1−1(nℓ−1+αn−1,s+1)[B f (s,y(s))−Ay(s)]

−
t−1

∑
s=(m−1)ℓ

ρ
t−1−shαm−1−1(t −1+αm−1,s+1)[B f (s,y(s))−Ay(s)]

+
m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−shαn−1−1(nℓ−1+αn−1,s+1)[B f (s,y(s))−Ay(s)]

+
t−1

∑
s=(m−1)ℓ

ρ
t−1−shαm−1−1(t −1+αm−1,s+1)[B f (s,y(s))−Ay(s)]

∣∣∣∣
≤
∣∣∣∣y(t)−ρ

ty(0)−
m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−shαn−1−1(nℓ−1+αn−1,s+1)[B f (s,y(s))−Ay(s)]

−
t−1

∑
s=(m−1)ℓ

ρ
t−1−shαm−1−1(t −1+αm−1,s+1)[B f (s,y(s))−Ay(s)]

∣∣∣∣
+

∣∣∣∣m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

ρ
t−1−shαn−1−1(nℓ−1+αn−1,s+1)[B( f (s,x(s))− f (s,y(s)))

−A(x(s)− y(s))]
∣∣∣∣

+

∣∣∣∣ t−1

∑
s=(m−1)ℓ

ρ
t−1−shαm−1−1(t −1+αm−1,s+1)[B( f (s,x(s))− f (s,y(s)))

−A(x(s)− y(s))]
∣∣∣∣
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(5.2)
≤

∣∣∣∣m−1

∑
n=1

nℓ−1

∑
s=(n−1)ℓ

hαn−1−1(nℓ−1+αn−1,s+1)[B( f (s,x(s))− f (s,y(s)))−A(x(s)− y(s))]

+
t−1

∑
s=(m−1)ℓ

hαm−1−1(t −1+αm−1,s+1)[B( f (s,x(s)− f (s,y(s)))−A(x(s)− y(s))]
∣∣∣∣+dε

(A1)

≤ dε+d(MAL∥x− y∥+MB∥x− y∥) (A2)
= dε+M∥x− y∥

for t ∈ T . Taking the supremum on both sides of this last inequality results in

∥x− y∥ ≤ dε+M∥x− y∥,
and rearranging yields

∥x− y∥ ≤ d
1−M

ε.

Hence, (3.2) is Ulam–Hyers stable. □

6. NUMERICAL ANALYSIS

Example 6.1. Consider
c
0Dα0,ρ x(t +1−αkℓ) = B tanhx(t)−Ax(t) for t ∈ T0,
c
ℓD

α1,ρ x(t +1−α1) = B tanhx(t)−Ax(t) for t ∈ T1,
c

2ℓD
α2,ρ x(t +1−α2) = B tanhx(t)−Ax(t) for t ∈ T2

(6.1)

with

A =

0.02 0 0
0 0.02 0
0 0 0.02

 , B =

 0.002 −0.004 0.0015
−0.002 0.001 −0.002
−0.0025 0.0015 −0.003

 , x(0) =

0.9
0.6
0.3

 .

We see from Table 1 that the parameters satisfy assumptions (A1) and (A2) of Theorem 4.1,
which assures the existence of the solution. Also, we see that Theorem 5.1 holds, which
guarantees Ulam–Hyers stability of (6.1). This is shown in Figure 2.

TABLE 1. Parameters and their values.

Parameter Value Parameter Value Parameter Value

k 0,1,2 m 3 ℓ 15

t {0,1, . . . ,45} ρ 0.5 αk {0.05,0.1,0.15}
L 1 |x(0)| 0.9 MA 0.020

MB 0.0075 d 2 M 0.0550
d

1−M
2.1164 r >

|x(0)|
1−M

0.95238
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FIGURE 1. Three-neuron network for system (6.1).
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FIGURE 2. Discrete state evolution of (6.1) over time.

Example 6.2. Consider
c

kℓD
αk,ρ x(t +1−αk) = Bsinx(t)−Ax(t) for t ∈ Tk (6.2)

with

A =

[
0.046 0

0 0.046

]
, B =

[
0.0003 0
−0.0004 0.0002

]
, x(0) =

[
0.9
0.6

]
.

We see from Table 2 that the parameters satisfy assumptions (A1) and (A2) of Theorem 4.1,
which assures the existence of the solution. Also, we see that Theorem 5.1 holds, which
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guarantees Ulam–Hyers stability of (6.2). This is shown in Figure 4.

Neuron 1
0.046

Neuron 2
0.0460.0003 0.0002

-0.0004

FIGURE 3. Two-neuron network for system (6.2).
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FIGURE 4. Discrete state evolution of (6.2) over time.

Example 6.3. Consider
c

kℓD
αk,ρ x(t +1−αk) = Bsinx(t)−Ax(t) for t ∈ Tk (6.3)

with

A =

[
0.015 0

0 0.015

]
, B =

[
−0.0003 0
−0.0004 0.0002

]
, x(0) =

[
−0.001
0.0009

]
.

We see from Table 3 that the parameters satisfy assumptions (A1) and (A2) of Theorem 4.1,
which assures the existence of the solution. Also, we see that Theorem 5.1 holds, which
guarantees Ulam–Hyers stability of (6.3). This is shown in Figure 6.
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TABLE 2. Parameters and their values.

Parameter Value Parameter Value Parameter Value

k 0,1,2,3 m 4 ℓ 15

t {0,1, . . . ,60} ρ 0.5 αk {0.5,0.4,0.3,0.2}
L 1 |x(0)| 0.9 MA 0.046

MB 0.0006 d 2 M 0.0932
d

1−M
2.205558 r >

|x(0)|
1−M

0.9925

Neuron 1
0.015

Neuron 2
0.015-0.0003 0.0002

-0.0004

FIGURE 5. Two-neuron network for system (6.3).
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FIGURE 6. Discrete state evolution of (6.3) over time.

Example 6.4. Consider
c

kℓD
αk,ρ x(t +1−α1) = Bsinx(t)−Ax(t) for t ∈ Tk (6.4)
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TABLE 3. Parameters and their values.

Parameter Value Parameter Value Parameter Value

k 0,1,2,3 m 4 ℓ 15

t {0,1, . . . ,60} ρ 0.5 αk {0.8,0.6,0.3,0.4}
L 1 |x(0)| 0.001 MA 0.015

MB 0.0006 d 2 M 0.0312
d

1−M
2.0644 r >

|x(0)|
1−M

0.00103

with

A =

[
0.01 0

0 0.01

]
, B =

[
−0.03 0.02
−0.01 0.06

]
, x(0) =

[
−0.1
0.1

]
.

We see from Table 4 that the parameters satisfy assumptions (A1) and (A2) of Theorem 4.1,
which assures the existence of the solution. Also, we see that Theorem 5.1 holds, which
guarantees Ulam–Hyers stability of 6.4. This is shown in Figure 8.

Neuron 1
0.01

Neuron 2
0.01-0.03 0.06

0.02

-0.01

FIGURE 7. Two-neuron network for system (6.4)

7. CONCLUSION

This study introduced a discrete neural network model based on the generalized pro-
portional Caputo fractional operator. Using Krasnosel′skiı̆’s fixed-point theorem, we es-
tablished the existence and Ulam–Hyers stability of the solutions. The results demonstrate
that the model is both mathematically well posed and robust under perturbations, offer-
ing a solid foundation for memory-based neural computation. Future work may explore
extensions with delays, impulses, and real-world applications.



STABILITY AND SOLVABILITY OF DGPCF NEURAL NETWORK MODELS 207

0 5 10 15 20 25 30 35 40 45 50 55 60

−5

0

5

·10−2

Time Step t

St
at

e
V

al
ue

s
x(

t) x1
x2

FIGURE 8. Discrete state evolution of (6.4) over time.

TABLE 4. Parameters and their values.

Parameter Value Parameter Value Parameter Value

k 0,1,2,3 m 4 ℓ 15

t {0,1, . . . ,60} ρ 0.5 αk {0.05,0.05,0.05,0.05}
L 1 |x(0)| 0.1 MA 0.01

MB 0.07 d 2 M 0.16
d

1−M
2.3809 r >

|x(0)|
1−M

0.11904
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