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A GENERALIZATION OF CANTOR'S THEOREM

GIULIO FELLIN

ABSTRACT. One of the most important results in basic set theory is auith
doubt Cantor’'s Theorem which states that the power set ofat) is strictly
bigger thanX itself. Specker once stated, without providing a prooft thgen-
eralization is possible: for any natural exponentthere is a natural numbét
for which if X has at leasl distinct elements, then the power setofs strictly
bigger thanX™. The aim of this paper is to formalize and prove Speckersrcla
and to provide a way to compute the valuedNdr which the theorem holds.

1. CANTOR AND SPECKER

We state Cantor’s theorem the following way [1]:
Theorem 1.1. (Cantor). Let X be a set. There is no injective napx) — X.
This theorem is related to the Generalized Continuum Hygx$h(GCH):

Hypothesis 1. Let X and Y be infinite sets. If there are two injective maps X
and Y — P (X), then there is a bijection either XY or Y — P(X).

In his 1954 article [10], Ernst Specker proves that GCH iegplihe Axiom of
Choice (AC), in the form that for any nonempty $étthere exists a functiorf :
M — UM such thatf (x) € x. The core of the proof lies in the following result:

Theorem 1.2. (Specker). Let X be a set. If X has at least five distinct el&anen
then there is no injective map(X) — X2.

One should note that Specker’s theorem is a “modified vetrsibrCantor’s
theorem withX? instead ofX and a restriction on the number of elementsXof
In the same article, Specker claims that this theorem careberglised from the
case of exponent 2 to arbitrary finite exponemisvithout providing a proof of his
claim®.

2010Mathematics Subject ClassificatioQ3E99.
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IHe says: “Ein entsprechender Satz gilt fr beliebige endliExponenten”; we translate this as:
“An analogous theorem holds for arbitrary finite exponents”
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Our aim is to find a functiorF : N — N that allows us to state and prove the
following:

Theorem 1.3. (Generalized Cantor). Let X be a set. For anyenN, if X has at
least F(m) distinct elements, then there is no injective nX) — X™. Moreover,

if F (m) > 1and X has exactly Fm) — 1 distinct elements, then there is an injective
map? (X) — XM

Notice that by Cantor's and Specker’s Theorems we must Rat¢ = 0 and
F(2) =5.

After this brief introduction and some preliminaries, wdldefine the function
F in section 3 in order to prove the main theorem in section 4terAthat, we
will provide an algorithm to computE (section 5) and will conclude giving some
numerical data (section 6). Throughout this paper we workdémmelo-Fraenkel
Set Theory.

2. PRELIMINARIES

Given two setX andY, as usual we writeX <Y to claim the existence of an
injective mapX — Y, andX 22 to claim the existence of a bijective mXp— Y. It
is well-known that= is a non-strict total order, whil& is an equivalence relation.

Proposition 2.1. Let X be a well-ordered infinite set, and letyr0. Then X" X.

Proof. We already know thisfor m= 2. Suppose thah = 2" for somen € N and
prove the theorem in this particular case by inductiomon

e n=0: X=X =x% ,

en—nt L X = (X¥) 2 x? =X,
Trivially, if m< m we getX™ =< X™. Thus, giverm, we can chooset > msuch

thatm' = 2" for somen € N. ThenX < X™ < X2' 2 X. We deduce our goal from
the Cantor-Schroder-Bernstein theorem. O

As usual, denote by the class of all sets and tiyn the class of ordinafs The
function
H:V—0nX—{aeOn:a=<X}
is calledHartogs function The function# is well-defined, in particulagf(X) is
a set wheneveX is a set.

2If one assumes the Axiom of Choice, a very simple proof of Tespl.3 can be given. K is
infinite, the thesis easily follows by proposition 2.1, Zetois well-ordering theorem and Cantor’s
theorem; while ifX is finite the thesis is a direct consequence of lemma 3.3.

3Theorem 15.11 in Ageron [1]: LeX be an infinite and well-ordered set. ThEm X + 1 =
2X =2 X2. Tarski further proved [12] that AC is equivalent to a forauitn of this theorem without
the assumption tha¢ is well-ordered.

“4For an introduction to ordinals, see for example Ageronlggson 17.

SObservations 17.2 in Ageron [1]
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Given two setX andY, denote by InjX,Y) the set of injective map¥ — Y.

3. THE MINIMAL VALUES FUNCTION

For the analytical notions needed in this section, we ref@avidson & Donsig
[3]. Consider the function:
X

In2
Inx

f:le+oo[— R,x+—

Clearly, f is continuous. Its derivative is:

f/(x) = X150 s x> e
(Inx)?

Thusf is increasing within all its domain. Its infimum and its suptem are easily
calculated:

inff="f(e)=eln2

(x) = lim X = 400

supf = =
x—+ |0gy X

lim f
X—r+00
Sincef is continuous and increasing, it is invertible. Therefdhe following is
well-defined:

A:[eIn2,4oo] — [€ 400, X+ f1(x)
Observe thaéln2 =~ 1.88. Next, the following is well-defined:
1+[A(m] m>1
F:N—Nm— <0 m=1,
1 m=20
where
'] :R— N,x— max{neN:n<x}
is thefloor function also known assauss’ parentheses

FIGURE 1. Graph ofF up to 50.
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Similarly, there is theeiling function
[[]:R— N,x—min{ne N:n>x},

that will be useful later.
We claim thatF is the function we are looking for. To prove so, we need some
intermediate results.

Lemma 3.1. For any me N~ 1 we have that & A(m) is the minimum value that
satisfies

X € Ja, oo = 2¥ > x™.

Proof. Fixedm> 1, we want to find the minimum value< R that satisfies the
desired property. Let’s solve the equatidn=2x". Observe tha#\ (m) is a solution:
x=A(m) = m= f(x)
= X" = exp(minx) = exp(f(x)Inx) = exp(xIn2) = 2*.
Now we just need to show that> A(m) implies 2 > x™. SinceA is increasing

andeln2 < 2 < mwe get thaie = A(eln2) < A(m). Moreover,A(m) < a because
2AM % (A(m))™. We can thus consider> A(m) and obtain:

f(X).

Since f is continuous and increasing far> e andx = A(m) > eis a solution, it
follows that

2> X" = m< =
log, x

Vx> A(m): f(x) > f(A(m)) =m,
that is equivalent to say that
Vx> A(m):2¢>x" O

Lemma3.2. Given me N1, the equatior?* = x™ has exactly one solution(B)
in ]1,e[. Moreover, Bm) satisfies Am) — B(m) > 2.
Proof. Considerx € |1,€[. Sincex > 0 we can write
X
Inx
Consider the following function which, apart from its domgais defined as:
X
Inx

Let's studyg analogously as we studied Clearly,g is continuous, and its deriva-
tive is:

2X=x" «—= m= In2.

g:]11,¢ = R,x— In2.

B Inx—1

g (x) = (inx)? IN2<0 < x<e
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Thusg is decreasing within its domain. Its infimum and supremum are

infg =limg(x) = lim - X_ _en2,

X—e ngx

. . X
supg= lim g(x) = lim = +00
Pd x—>1+g( ) x—1+ |0(_:]2X

Sinceg is continuous and decreasing, it is invertible. Thereftwe following is
well-defined:

B:leln2,+oo[ — |1,€[,x—g 1(x).
As before,B is continuous and decreasing. It follows, asdor A(m), thatB(m)
is a solution of the starting equation and that it is uniquélir[. We want an
estimate ofA(m) — B(m):

A(m)—B(m) > min A(m)— max B(m)=A(2)—-B(2).

meN-1 meN-,
Let'’s verify that 4= A(2) and 2= B(2):
4¢€le+ool, 2*=16=4%
2¢]1,€, 2=4=22

In conclusion:
A(m—B(m)>A(2)—B(2)=4—-2=2.

Lemma3.3. For any m> 1, for any n> F (m) we have
2" >n"™
while
2FM-L < (F(m)—1)™.
Proof. Fix m> 1. We have:
F(m) =1+ [A(m)] > 1+A(m) —1=A(m).
ThenF (m) € JA(m),+o[ and for anyn > F (m) we getn € |A(m),+o[. By
lemma 3.1 we get> n™. Then, by lemma 3.2
B(m<AM-2<AM—-1<F(mM—-1<A(m).
We have two cases:
(1) F(m)—1 € [e,A(m)]: for x € [e,A(m)] (which is in the domain off) we
can write
<K = m> f(x).
Since f is continuous and increasing far> e andx = A(m) > eis a
solution of Z = X, it follows that

f(F(m)—1) < f(A(m) =m,
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- FM-1 < (F (m)— )™,
(2) F(m)—1€]B(m),€[: for x €]B(m), e[ we get
< X" <= m>g(x)
(equality is excluded by lemma 3.2). Singés continuous and decreasing
for x < eandx = B(m) < eis a solution of 2= x", it follows that

g(F(m—1) <g(B(m)=m,

2FM=1  (F (m)—1)™. O
4. A PROOF OFTHEOREM 1.3

We first prove separately the case= 0 of theorem 1.3, verifying thdt(0) = 1.
Formally:

Proposition 4.1. A set X is nonempty if and only if there is no injective map
P (X) — {0}.

Proof. The direction =" is easily proved by contraposition sin@0) = {0}. To
prove ‘=", observe that there is an injective map{0} — X. Suppose that there is
an injective majp: ?(X) — {0}. Then there would be an injecti@vb: P(X) —
X, contradicting Cantor’s theorem. O

Lemma 4.2. Let X be a set, let ¥ N and let v. 2(X) — X™ be an injection.
Then for any ordinabr > F(m), there is a map y: Inj (a, X) — X such that for
anyie Inj(a,X) thereis (i) ¢i(a).

Proof. Givenm, leta be an ordinal such that > F(m). Fixi € Inj(a,X) and set
| =i(a). Let's build explicitlyug (i) € X\ | fromi.
(1) Suppose that is finite. Sincea is a finite ordinal, we can identify it with

a natural numben > F(m). Theni induces a bijectiom — |; whencel
contains exactly elements and’ (1) contains exactly 2elements, as it is
well-known. Sincev is injective,v(? (1)) has 2 elements too. By lemma
3.3weget?(l)]=2">nm=|I™|. It follows that there iA € P (I) such
thatv(A) ¢ I™. We can writev(A) = (X1, ...,Xm). Define:

Ug (1) := X,
wherek=min{j:x; ¢ IM}.
(2) Suppose that is infinite. Sincea is an infinite ordinal| is infinite and
well-ordered. Then there is a bijectiégn | — I™ (proposition 2.1). Define
vi(c) cev(e(l))

h: 1M — 2P(1).c )
=2, H{(I) otherwise
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ConsiderA:= {x €l :x¢ hok(x)}. Suppose thaf = hok(x) for some
x € l. In this casex € A <= x ¢ A, contradiction. Them\ ¢ hok(l) =
h(1™M). It follows thatv(A) ¢ I™, since otherwise the definition bfwould
imply h(v(A)) = A. Then we can write(A) = (X, ...,Xm) and define

Ug (1) 1= Xk
wherek=min{j:x; ¢ I™M}.
We thus definedy for any ordinala > F(m). O

Proof of theorem 1.3Casem = 1 is Cantor’'s theorem, whilen = 0 is proposi-
tion 4.1. Letm> 1. By lemma 3.3 for anyn > F(m) we have 2 > n™. Sup-
pose thaX has at leasF (m) distinct elements and that there is an injective map
f: P (X)— XM Then there is an injective majg , : F(m) — X. Define by
transfinite inductiof jo : o — X:

e Fora = F(m) we already havgr .

e If jq is defined, define:

: Ja 0<
o1 (€)= {L((?) o

whereuy is the function defined in lemma 4.2. Singg(jq) ¢ jo (a), we
have the injectivity ofjq. 1.
e If Ais a limit ordinal andjy is defined for everyn < A, definej, (§) :=
ja (§) where€ < a < A (sucha exists andjy, does not depend on it). Since
all jo’s are injective,j, is injective too.
We obtained that every ordinal is subpotent toX, thus # (X) = On but, since

H(X) is a set, this contradicts the Burali-Forti theorerfor the second statement,
observe that iX has exactlyr (m) — 1 elements then

P (X)[ =25 < (F (m) - 1) = [X"].

It follows that? (X) < X™. O

The following result will be useful:
Proposition 4.3. F(3) = 10.
Proof. We have:

f(9) ~ 2.8392< 3 < 3.0103~ f(10).
Sincef is increasing,
9< f13)=A@3) < 10

In conclusionF (3) = |A(3)] + 1= 10. O

6Principle of transfinite induction, 17.8 in Ageron [1]: Cathsr a clasdd C On satisfying: (1)

0eH;(2QaeH=0+1lcH;B)A=suppA(acA=aeH)=AecH. ThenH =On.
Theorem 17.5(b) in Ageron [1]: The claém is not a set.
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5. AN ALGORITHM FOR THE FUNCTION

In this section we want to find an algorithm to compEteObserve that
2=xX" <= x=G(x),

where

G:R" - R",x— mln_x'
In2

Lemmab5.1. Let m> 0. The function Gx) is increasing within its domain. More-
over, for x> m/In2 we get|G'(x)| < 1.
Proof. ComputeG':
/ _ ﬂ -1
G (x) = inaX
Clearly, for anyx in the domain we havé/’(x) > 0. Also,

m. 1
X> — —X 1.
- In2 In2 <

Then 0< G'(x) < 1. In particular,|G'(x)| < 1. O

—

Lemma5.2. For any me N, m > 2 we get:

m
— < 6m-—8.
In2 <
Moreover, if m> 4, theném— 8 < A(m).

Proof. For the firs inequality:

m 8
m<6m—8 <— m>m~1.76.

For the second one, prove the following equivalent property
x> A(4) = h(x) :=6f(x) —x—8<0.
Computeh’:
W(x)=6f(X)—1=—

Inx)2 —6In2Inx+6In2
(Inx) > i <0
(Inx)
<= Inx<3In2—+/3In2(3In2—2) VInx > 3In2+/3In2(3In2—-2)
e 0<Xx< e3|n2—\/3|n2(3|n2—2) ~5.33VX > e3In2—l-\/3|n2(3|n2—2) ~ 1201

In particular, forx > A(4) = 16 we have thalh is decreasing. In additiom(16) =
6-4—16—8=0, thenx > 16=-h(x) < 0. O

By lemma 5.2, we have that, given> 4, the fixed-point method applied ®
starting inXo = 6m— 8 converges to the solution of 2 x™, i.e. tox* = A(m). In
particular, sincés is increasing, givel € [Xo, X[, we havex < G(X) < x*. We are
not interested in the exact valuexdf, but in the one of (m) = [x*| 4+ 1. To this
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end we could approximate and then computé& (m), but the following lemma
will allow us to build a simpler algorithm.

Lemmab.3. Letm> 1.

i) If A(m) ¢ N, then Km) = [A(m)].

i) If A(m) € N, then Km) = [A(m)] + 1.
Proof.

) [A(M)] = [A(m)] +1=F(m

i) [A(M)] = [A(M)] = [A(m)]
Define

).
+1=|A(m)|+1=F(m). O

G:R™ — N,x— [G(X)]

Algorithm 1. Let me N be given in input.

Case 1:Ifm=0, set N=1.
Case 2:Ifm=1, set N=0.
Case 3:If m> 1:
(a) Set§y :=6m-—8.
(b) Recursively, while N< G(N), set Ny1 := G(N). Denote by Nthe
last element in the sequence.
(c) If Np = mlog, X, set N= N+ 1, otherwise set N= N.

Return N.

Proof. Cases 1 and 2 are Cantor’s theorem and proposition 4.1,ctespe I
m > 4, by lemma 5.2 we can apply the modified version of the fixeidtpoethod.
Casesn= 2 andm = 3 are easily checked by direct computation (ustig@) =5
andF(3) = 10). O

L
o 10 20 aa EL] 50

FIGURE 2. Graph ofF up to 50.
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6. SOME NUMERICAL DATA

Let’s implement algorithm 1 in Matlab/GNU Octave langufiged write it in
figure 3.

FIGURE 3. Matlab/GNU Octave code for algorithm 1.
function N = specker(m

if m==
N =1,
elseif m==
N = 0;
el se
g = @x) ceil(nflog2(x));
N=26m- 8
G=49(N;
while N< G
N=G
G=49(N;
end
if N==nrlog2(N
N=N+ 1;
end
end
end

The algorithm 1 isexact We want to observe numerically its complexity, via
the number of iterations and time elapsed. Choose a largevaitof values ofn,
for example from 0 to 2 = 1048576 and compute the minimum, the maximum
and the average values ®{number of iterations) and of (time elapsed).
mn(c) =0 max(c) =9 sum(c)/m = 7.77033
mn(t) = 1.1921e-05 max(t) = 6.4993e-04 sun(t)/m = 2.8193e-04

Notice that even for values of of the order of 10 the algorithm terminates in
less than ten iterations. Moreover, the elapsed time isvagolow, of the order of
10-%s(0.0001s).

Modify the original code in order to show all the iteratioie trace table can
be found in figure 1. Observe the following cases:

(1) Forme {0,1} we immediately get the final result.
(2) Forme {2,4,32,4096 we getN = N, + 1°.
(3) For all the other values of we getN = Np.

8All the codes in this section (and their respective resulex)e executed by softwaf@antor, an
interface for Octave.

91t can be shown thahis in this case if and only ifn= 22~k for somek € N.



A GENERALIZATION OF CANTOR’S THEOREM 23

Notice that, even though the number of iterations has anrapptendency to in-
crease withm, this isn't a strict rule.

TABLE 1. Trace table for some values of

m No N; N, N3 Ng Ng N

5 22 23 . . . . 23
6 28 29 30 : : : 30
7 34 36 37 : : : 37
8 40 43 44 . . . 44
9 46 50 51 52 : : 52
10 52 58 59 . . . 59
16 88 104 108 109 . . 109
20 112 137 142 143 144 : 144
32 184 241 254 256 . . 257
40 232 315 332 336 : : 336
64 376 548 583 588 589 : 589
100 | 592 921 985 995 996 997 997
1000| 5992 | 12549| 13616| 13734 | 13746| 13747| 13747
1024 | 6136 | 12886| 13982| 14102| 14115| 14116| 14116
4096 | 24568| 59739| 64989| 65487 | 65532| 65536| 65537

TABLE 2. Some values df computed by the algorithm.

112 ]3] 4]5[6]7]8]9]10
0 | 5 | 10|17 | 23| 30| 37 | 44 | 52 | 59
11 |12 | 13| 14 | 15| 16| 17| 18| 19| 20
67 | 75 | 83 | 92 | 100| 109| 117 | 126 135] 144
21| 22| 23| 24 | 25| 26| 27 | 28 | 29 | 30
153[ 162| 171|180 | 190| 199 208 | 218 | 227 | 237
31| 32| 33| 34| 35| 36| 37| 38| 39 | 40
247| 257 266 | 276 | 286 | 296 | 306 | 316 | 326 | 336
41| 42 | 43 | 44 | 45| 46 | 47 | 48 | 49 | 50
346|356 | 367 | 377 387 398 | 408 | 418 429 439

Z|3|z3|zZ3|Z3=23
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