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A GENERALIZATION OF CANTOR’S THEOREM

GIULIO FELLIN

ABSTRACT. One of the most important results in basic set theory is without
doubt Cantor’s Theorem which states that the power set of anysetX is strictly
bigger thanX itself. Specker once stated, without providing a proof, that a gen-
eralization is possible: for any natural exponentm, there is a natural numberN
for which if X has at leastN distinct elements, then the power set ofX is strictly
bigger thanXm. The aim of this paper is to formalize and prove Specker’s claim
and to provide a way to compute the values ofN for which the theorem holds.

1. CANTOR AND SPECKER

We state Cantor’s theorem the following way [1]:

Theorem 1.1. (Cantor). Let X be a set. There is no injective mapP (X)→ X.

This theorem is related to the Generalized Continuum Hypothesis (GCH):

Hypothesis 1. Let X and Y be infinite sets. If there are two injective maps X→Y
and Y→ P (X), then there is a bijection either X→Y or Y→ P (X).

In his 1954 article [10], Ernst Specker proves that GCH implies the Axiom of
Choice (AC), in the form that for any nonempty setM there exists a functionf :
M →⋃

M such thatf (x) ∈ x. The core of the proof lies in the following result:

Theorem 1.2. (Specker). Let X be a set. If X has at least five distinct elements,
then there is no injective mapP (X)→ X2.

One should note that Specker’s theorem is a “modified version” of Cantor’s
theorem withX2 instead ofX and a restriction on the number of elements ofX.
In the same article, Specker claims that this theorem can be generalised from the
case of exponent 2 to arbitrary finite exponentsm, without providing a proof of his
claim1.

2010Mathematics Subject Classification.03E99.
Key words and phrases.Power set, Cantor’s Theorem.
1He says: “Ein entsprechender Satz gilt fr beliebige endliche Exponenten”; we translate this as:

“An analogous theorem holds for arbitrary finite exponents”.
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Our aim is to find a functionF : N→N that allows us to state and prove the
following:

Theorem 1.3. (Generalized Cantor). Let X be a set. For any m∈N, if X has at
least F(m) distinct elements, then there is no injective mapP (X)→Xm. Moreover,
if F (m)> 1 and X has exactly F(m)−1 distinct elements, then there is an injective
mapP (X)→ Xm.

Notice that by Cantor’s and Specker’s Theorems we must haveF(1) = 0 and
F(2) = 5.

After this brief introduction and some preliminaries, we will define the function
F in section 3 in order to prove the main theorem in section 4. After that, we
will provide an algorithm to computeF (section 5) and will conclude giving some
numerical data (section 6). Throughout this paper we work inZermelo-Fraenkel
Set Theory2.

2. PRELIMINARIES

Given two setsX andY, as usual we writeX �Y to claim the existence of an
injective mapX →Y, andX ∼=Y to claim the existence of a bijective mapX →Y. It
is well-known that� is a non-strict total order, while∼= is an equivalence relation.

Proposition 2.1. Let X be a well-ordered infinite set, and let m> 0. Then Xm∼= X.

Proof. We already know this3 for m= 2. Suppose thatm= 2n for somen∈N and
prove the theorem in this particular case by induction onn.

• n= 0: X ∼= X1 = X20
.

• n→ n+1: X2n+1
=
(

X2n)2 ∼= X2n ∼= X.

Trivially, if m6 m′ we getXm � Xm′
. Thus, givenm, we can choosem′ > m such

thatm′ = 2n for somen∈N. ThenX � Xm � X2n ∼= X. We deduce our goal from
the Cantor-Schröder-Bernstein theorem. �

As usual, denote byV the class of all sets and byOn the class of ordinals4. The
function

H : V →On,X 7→ {α ∈On : α � X}
is calledHartogs function. The functionH is well-defined, in particularH (X) is
a set wheneverX is a set5.

2If one assumes the Axiom of Choice, a very simple proof of Theorem 1.3 can be given. IfX is
infinite, the thesis easily follows by proposition 2.1, Zermelo’s well-ordering theorem and Cantor’s
theorem; while ifX is finite the thesis is a direct consequence of lemma 3.3.

3Theorem 15.11 in Ageron [1]: LetX be an infinite and well-ordered set. ThenX ∼= X + 1 ∼=
2X ∼= X2. Tarski further proved [12] that AC is equivalent to a formulation of this theorem without
the assumption thatX is well-ordered.

4For an introduction to ordinals, see for example Ageron [1],lesson 17.
5Observations 17.2 in Ageron [1]
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Given two setsX andY, denote by Inj(X,Y) the set of injective mapsX →Y.

3. THE MINIMAL VALUES FUNCTION

For the analytical notions needed in this section, we refer to Davidson & Donsig
[3]. Consider the function:

f : [e,+∞[→R,x 7→ x
lnx

ln2

Clearly, f is continuous. Its derivative is:

f ′ (x) =
lnx−1

(lnx)2 ln2> 0 ⇐⇒ x> e

Thus f is increasing within all its domain. Its infimum and its supremum are easily
calculated:

inf f = f (e) = eln2

supf = lim
x→+∞

f (x) = lim
x→+∞

x
log2x

=+∞

Since f is continuous and increasing, it is invertible. Therefore,the following is
well-defined:

A : [eln2,+∞[→ [e,+∞[ ,x 7→ f−1(x)

Observe thateln2≈ 1.88. Next, the following is well-defined:

F :N→N,m 7→











1+ ⌊A(m)⌋ m> 1

0 m= 1

1 m= 0

,

where
⌊·⌋ :R→N,x 7→ max{n∈N : n6 x}

is thefloor function, also known asGauss’ parentheses.

FIGURE 1. Graph ofF up to 50.
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Similarly, there is theceiling function

⌈·⌉ :R→N,x 7→ min{n∈N : n> x},
that will be useful later.

We claim thatF is the function we are looking for. To prove so, we need some
intermediate results.

Lemma 3.1. For any m∈N>1 we have that a= A(m) is the minimum value that
satisfies

x∈ ]a,+∞[⇒ 2x > xm.

Proof. Fixedm> 1, we want to find the minimum valuea∈R that satisfies the
desired property. Let’s solve the equation 2x = xm. Observe thatA(m) is a solution:

x= A(m) ⇒ m= f (x)

⇒ xm = exp(mlnx) = exp( f (x) lnx) = exp(xln2) = 2x.

Now we just need to show thatx > A(m) implies 2x > xm. SinceA is increasing
andeln2< 26 m we get thate= A(eln2)< A(m). Moreover,A(m)6 a because
2A(m) 6> (A(m))m. We can thus considerx> A(m) and obtain:

2x > xm ⇐⇒ m<
x

log2x
= f (x) .

Since f is continuous and increasing forx > e andx= A(m) > e is a solution, it
follows that

∀x> A(m) : f (x)> f (A(m)) = m,

that is equivalent to say that

∀x> A(m) : 2x > xm. �

Lemma 3.2. Given m∈N>1, the equation2x = xm has exactly one solution B(m)
in ]1,e[. Moreover, B(m) satisfies A(m)−B(m)> 2.

Proof. Considerx∈ ]1,e[. Sincex> 0 we can write

2x = xm ⇐⇒ m=
x

lnx
ln2.

Consider the following function which, apart from its domain, is defined asf :

g : ]1,e[→R,x 7→ x
lnx

ln2.

Let’s studyg analogously as we studiedf . Clearly,g is continuous, and its deriva-
tive is:

g′ (x) =
lnx−1

(lnx)2 ln2< 0 ⇐⇒ x< e.
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Thusg is decreasing within its domain. Its infimum and supremum are:

inf g= lim
x→e

g(x) = lim
x→e

x
log2x

= eln2,

supg= lim
x→1+

g(x) = lim
x→1+

x
log2x

=+∞.

Sinceg is continuous and decreasing, it is invertible. Therefore the following is
well-defined:

B : ]eln2,+∞[→ ]1,e[ ,x 7→ g−1 (x) .

As before,B is continuous and decreasing. It follows, as fora= A(m), thatB(m)
is a solution of the starting equation and that it is unique in]1,e[. We want an
estimate ofA(m)−B(m):

A(m)−B(m)> min
m∈N>1

A(m)− max
m∈N>1

B(m) = A(2)−B(2) .

Let’s verify that 4= A(2) and 2= B(2):

4∈ ]e,+∞[ , 24 = 16= 42;

2∈ ]1,e[ , 22 = 4= 22.

In conclusion:
A(m)−B(m)> A(2)−B(2) = 4−2= 2.

�

Lemma 3.3. For any m> 1, for any n> F (m) we have

2n > nm,

while
2F(m)−1 6 (F (m)−1)m.

Proof. Fix m> 1. We have:

F (m) = 1+ ⌊A(m)⌋> 1+A(m)−1= A(m) .

Then F (m) ∈ ]A(m) ,+∞[ and for anyn > F (m) we getn ∈ ]A(m) ,+∞[. By
lemma 3.1 we get 2n > nm. Then, by lemma 3.2

B(m)6 A(m)−2< A(m)−1< F (m)−16 A(m) .

We have two cases:

(1) F(m)−1 ∈ [e,A(m)]: for x∈ [e,A(m)] (which is in the domain off ) we
can write

2x
6 xm ⇐⇒ m> f (x) .

Since f is continuous and increasing forx > e and x = A(m) > e is a
solution of 2x = xm, it follows that

f (F (m)−1)6 f (A(m)) = m,



18 GIULIO FELLIN

i.e.
2F(m)−1 6 (F (m)−1)m.

(2) F (m)−1∈]B(m) ,e[: for x∈]B(m) ,e[ we get

2x < xm ⇐⇒ m> g(x)

(equality is excluded by lemma 3.2). Sinceg is continuous and decreasing
for x< eandx= B(m)< e is a solution of 2x = xm, it follows that

g(F (m)−1)< g(B(m)) = m,

i.e.
2F(m)−1 < (F (m)−1)m. �

4. A PROOF OFTHEOREM 1.3

We first prove separately the casem= 0 of theorem 1.3, verifying thatF(0) = 1.
Formally:

Proposition 4.1. A set X is nonempty if and only if there is no injective map
P (X)→{ /0}.

Proof. The direction “⇐” is easily proved by contraposition sinceP ( /0) = { /0}. To
prove “⇒”, observe that there is an injective mapa: { /0}→X. Suppose that there is
an injective mapb: P (X)→{ /0}. Then there would be an injectiona◦b: P (X)→
X, contradicting Cantor’s theorem. �

Lemma 4.2. Let X be a set, let m∈ N and let v: P (X) → Xm be an injection.
Then for any ordinalα > F(m), there is a map uα : Inj (α,X) → X such that for
any i∈ Inj (α,X) there is uα (i) /∈ i (α).

Proof. Givenm, let α be an ordinal such thatα > F(m). Fix i ∈ Inj (α,X) and set
I = i (α). Let’s build explicitlyuα (i) ∈ X \ I from i.

(1) Suppose thatα is finite. Sinceα is a finite ordinal, we can identify it with
a natural numbern > F(m). Theni induces a bijectionn → I ; whenceI
contains exactlyn elements andP (I) contains exactly 2n elements, as it is
well-known. Sincev is injective,v(P (I)) has 2n elements too. By lemma
3.3 we get|P (I)|= 2n > nm = |Im|. It follows that there isA∈ P (I) such
thatv(A) /∈ Im. We can writev(A) = (x1, ...,xm). Define:

uα (i) := xk,

wherek= min
{

j : x j /∈ Im
}

.
(2) Suppose thatα is infinite. Sinceα is an infinite ordinal,I is infinite and

well-ordered. Then there is a bijectionk : I → Im (proposition 2.1). Define

h : Im → P (I) ,c 7→
{

v−1(c) c∈ v(P (I))

/0 otherwise
.
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ConsiderA := {x∈ I : x /∈ h◦k(x)}. Suppose thatA = h◦ k(x) for some
x ∈ I . In this casex ∈ A ⇐⇒ x /∈ A, contradiction. ThenA /∈ h◦k(I) =
h(Im). It follows thatv(A) /∈ Im, since otherwise the definition ofh would
imply h(v(A)) = A. Then we can writev(A) = (x1, ...,xm) and define

uα (i) := xk

wherek= min
{

j : x j /∈ Im
}

.

We thus defineduα for any ordinalα > F(m). �

Proof of theorem 1.3.Casem= 1 is Cantor’s theorem, whilem= 0 is proposi-
tion 4.1. Letm> 1. By lemma 3.3 for anyn > F(m) we have 2n > nm. Sup-
pose thatX has at leastF(m) distinct elements and that there is an injective map
f : P (X) → Xm. Then there is an injective mapjF(m) : F(m) → X. Define by
transfinite induction6 jα : α → X:

• For α = F(m) we already havejF(m).
• If jα is defined, define:

jα+1(ξ) :=

{

jα (ξ) 06 ξ < α
uα ( jα) ξ = α

,

whereuα is the function defined in lemma 4.2. Sinceuα ( jα) /∈ jα (α), we
have the injectivity ofjα+1.

• If λ is a limit ordinal andjα is defined for everyα < λ, define jλ (ξ) :=
jα (ξ) whereξ < α < λ (suchα exists andjα does not depend on it). Since
all jα’s are injective,jλ is injective too.

We obtained that every ordinalα is subpotent toX, thusH (X) = On but, since
H (X) is a set, this contradicts the Burali-Forti theorem7. For the second statement,
observe that ifX has exactlyF (m)−1 elements then

|P (X)|= 2F(m)−1
6 (F (m)−1)m = |Xm| .

It follows thatP (X)� Xm. �

The following result will be useful:

Proposition 4.3. F(3) = 10.

Proof. We have:
f (9) ≈ 2.8392< 3< 3.0103≈ f (10).

Since f is increasing,
9< f−1(3) = A(3)< 10.

In conclusion,F(3) = ⌊A(3)⌋+1= 10. �

6Principle of transfinite induction, 17.8 in Ageron [1]: Consider a classH ⊆On satisfying: (1)
0∈ H; (2) α ∈ H ⇒ α+1∈ H; (3) λ = supλ∧ (α ∈ λ ⇒ α ∈ H)⇒ λ ∈ H. ThenH =On.

7Theorem 17.5(b) in Ageron [1]: The classOn is not a set.



20 GIULIO FELLIN

5. AN ALGORITHM FOR THE FUNCTION

In this section we want to find an algorithm to computeF. Observe that

2x = xm ⇐⇒ x= G(x),

where

G :R+ →R

+,x 7→ m
lnx
ln2

.

Lemma 5.1. Let m> 0. The function G(x) is increasing within its domain. More-
over, for x> m/ ln2 we get|G′(x)| < 1.

Proof. ComputeG′:

G′(x) =
m

ln2
x−1.

Clearly, for anyx in the domain we haveG′(x) > 0. Also,

x>
m

ln2
⇐⇒ m

ln2
x−1 < 1.

Then 0< G′(x)< 1. In particular,|G′(x)| < 1. �

Lemma 5.2. For any m∈N,m> 2 we get:
m

ln2
< 6m−8.

Moreover, if m> 4, then6m−86 A(m).

Proof. For the firs inequality:

m
ln2

< 6m−8 ⇐⇒ m>
8ln2

6ln2−1
≈ 1.76.

For the second one, prove the following equivalent property:

x> A(4)⇒ h(x) := 6 f (x)−x−86 0.

Computeh′:

h′(x) = 6 f ′(x)−1=−(lnx)2−6ln2lnx+6ln2

(lnx)2 < 0

⇐⇒ lnx< 3ln2−
√

3ln2(3ln2−2)∨ lnx> 3ln2+
√

3ln2(3ln2−2)

⇐⇒ 0< x< e3ln2−
√

3ln2(3ln2−2) ≈ 5.33∨x> e3ln2+
√

3ln2(3ln2−2) ≈ 12.01.

In particular, forx> A(4) = 16 we have thath is decreasing. In addition,h(16) =
6·4−16−8= 0, thenx> 16⇒ h(x) 6 0. �

By lemma 5.2, we have that, givenm> 4, the fixed-point method applied toG
starting inx0 = 6m−8 converges to the solution of 2x = xm, i.e. tox∗ = A(m). In
particular, sinceG is increasing, givenx∈ [x0,x∗[, we havex< G(x)< x∗. We are
not interested in the exact value ofx∗, but in the one ofF(m) = ⌊x∗⌋+1. To this
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end we could approximatex∗ and then computeF(m), but the following lemma
will allow us to build a simpler algorithm.

Lemma 5.3. Let m> 1.

i) If A(m) /∈N, then F(m) = ⌈A(m)⌉.
ii) If A(m) ∈N, then F(m) = ⌈A(m)⌉+1.

Proof.

i) ⌈A(m)⌉= ⌊A(m)⌋+1= F(m).
ii) ⌈A(m)⌉= ⌊A(m)⌋⇒ ⌈A(m)⌉+1= ⌊A(m)⌋+1= F(m). �

Define
G̃ :R+ →N,x 7→ ⌈G(x)⌉

Algorithm 1. Let m∈N be given in input.

Case 1:If m= 0, set N= 1.
Case 2:If m= 1, set N= 0.
Case 3:If m> 1:

(a) Set N0 := 6m−8.
(b) Recursively, while Nk < G̃(Nk), set Nk+1 := G̃(Nk). Denote by Nn the

last element in the sequence.
(c) If Nn = mlog2x, set N= Nn+1, otherwise set N= Nn.

Return N.

Proof. Cases 1 and 2 are Cantor’s theorem and proposition 4.1, respectively. If
m> 4, by lemma 5.2 we can apply the modified version of the fixed-point method.
Casesm= 2 andm= 3 are easily checked by direct computation (usingF(2) = 5
andF(3) = 10). �

FIGURE 2. Graph ofF up to 50.
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6. SOME NUMERICAL DATA

Let’s implement algorithm 1 in Matlab/GNU Octave language8 and write it in
figure 3.

FIGURE 3. Matlab/GNU Octave code for algorithm 1.

function N = specker(m)
if m == 0

N = 1;
elseif m == 1

N = 0;
else

g = @(x) ceil(m*log2(x));
N = 6*m - 8;
G = g(N);
while N < G

N = G;
G = g(N);

end
if N == m*log2(N)

N = N + 1;
end

end
end

The algorithm 1 isexact. We want to observe numerically its complexity, via
the number of iterations and time elapsed. Choose a large interval of values ofm,
for example from 0 to 220 = 1048576 and compute the minimum, the maximum
and the average values ofc (number of iterations) and oft (time elapsed).

min(c) = 0 max(c) = 9 sum(c)/m = 7.77033
min(t) = 1.1921e-05 max(t) = 6.4993e-04 sum(t)/m = 2.8193e-04

Notice that even for values ofm of the order of 106 the algorithm terminates in
less than ten iterations. Moreover, the elapsed time is alsovery low, of the order of
10−4s (0.0001s).

Modify the original code in order to show all the iterations.The trace table can
be found in figure 1. Observe the following cases:

(1) Form∈ {0,1} we immediately get the final result.
(2) Form∈ {2,4,32,4096} we getN = Nn+19.
(3) For all the other values ofmwe getN = Nn.

8All the codes in this section (and their respective results)were executed by softwareCantor, an
interface for Octave.

9It can be shown thatm is in this case if and only ifm= 22k−k for somek∈N.
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Notice that, even though the number of iterations has an apparent tendency to in-
crease withm, this isn’t a strict rule.

TABLE 1. Trace table for some values ofm.

m N0 N1 N2 N3 N4 N5 N
0 · · · · · · 1
1 · · · · · · 0
2 4 · · · · · 5
3 10 · · · · · 10
4 16 · · · · · 17
5 22 23 · · · · 23
6 28 29 30 · · · 30
7 34 36 37 · · · 37
8 40 43 44 · · · 44
9 46 50 51 52 · · 52
10 52 58 59 · · · 59
16 88 104 108 109 · · 109
20 112 137 142 143 144 · 144
32 184 241 254 256 · · 257
40 232 315 332 336 · · 336
64 376 548 583 588 589 · 589
100 592 921 985 995 996 997 997
1000 5992 12549 13616 13734 13746 13747 13747
1024 6136 12886 13982 14102 14115 14116 14116
4096 24568 59739 64989 65487 65532 65536 65537

TABLE 2. Some values ofF computed by the algorithm.

m 1 2 3 4 5 6 7 8 9 10
N 0 5 10 17 23 30 37 44 52 59

m 11 12 13 14 15 16 17 18 19 20
N 67 75 83 92 100 109 117 126 135 144

m 21 22 23 24 25 26 27 28 29 30
N 153 162 171 180 190 199 208 218 227 237

m 31 32 33 34 35 36 37 38 39 40
N 247 257 266 276 286 296 306 316 326 336

m 41 42 43 44 45 46 47 48 49 50
N 346 356 367 377 387 398 408 418 429 439
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Birkhäuser Verlag, 1990

[11] E.P. Specker,Verallgemeinerte Kontinuumshypothese und Auswahlaxiom., in “Archiv der Math-
ematik”, August 1954, Volume 5, Issue 4, pp 332-337

[12] A. Tajtelbaum-Tarski,Sur quelques theorems qui equivalent a l’axiome du choix., in “Funda-
menta Mathematicae”, 1924, Volume 5, Issue 1, pp 147-154

[13] D. Van Dalen, H.C. Doets and H. De Swart,Sets: Naive, Axiomatic and Applied. A Basic
Compendium with Exercises for Use in Set Theory For Non Logicians, Working and Teaching
Mathematicians and Students, Oxford, Pergamon Press, 1978

(Received: March 21, 2017)
(Revised: July 10, 2018)

Giulio Fellin
University of Verona
Department of Computer Science
Strada le Grazie 15 37134 Verona, IT
giulio.fellin@univr.it


