An application of Mittag-Leffler Lemma to the L.F algebra of $\boldsymbol{\mathcal{C}^{(\infty)}}$ $\mathbb{N}$-tempered functions on $\mathbb{R}^+$
DOI:
https://doi.org/10.5644/SJM.13.1.04Keywords:
Fréchet spaces - Fréchet algebrasAbstract
In this note, we show that a ${\mathcal{C}}^{(\infty)}$ $N$-tempered function $f$ on $\mathbb{R}^+$ can be extended as a ${\mathcal{C}}^{(\infty)}$ function $\widetilde{f}$ in $]-\rho, +\infty[ +\mathbb{R}i$ ($\forall \rho>0)$ such that $$D^{\alpha}\frac{\partial }{\partial \overline{z}}\widetilde{f}(z)|_{\{z=x\}}=0, \quad \forall \alpha =(\alpha_1, \alpha_2)\in \mathbb{N}^2, \quad \forall x\in \mathbb{R}^+.$$ To get this result, we use Mittag-Leffler Lemma.
Downloads
References
J. Dieudonné, Elément d'analyse Moderne, 80 Tome 1, Gautier - Villard - Paris 1968.
B. Drost, Holomorphic approximation of ultra differentiable functions, Math. Ann., 257 (1981), 293--316.
M. Hemdaoui, Calcul symbolique et l'opérateur de Laplace, Doctorat: Université Libre de Bruxelles(ULB). Belgique. 03 Juin 1987.
Hikosaburo Komatsu, Ultra ditributions I, structure theorems and caracterizations, J. Fac. Sci. Univ. Tokyo Sec 1 A, 20 )1973), 25--105.
J. Horvarth, Topological Vector Spaces and Distributions, Volume 1, Addison-Wesley 2985.